A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors
Abstract
:1. Introduction
2. Results
2.1. Literature Reports of 221 Genes and 80 Proteins Impacted by IMiD Exposure in Embryonic Cells/Tissues Were Identified
2.2. Beta-Catenin Is an Essential Protein in the Network of IMiD-Affected Proteins
2.3. IMiDs’ Exposure Results in a Widespread Impact on Gene Expression
2.4. Cell Cycle and Angiogenesis Are among the Top Biological Processes Altered in IMiD Exposure
2.5. SP1, a C2H2 Transcription Factor, Is a Strong Candidate for an IMiD Neosubstrate
2.6. C2H2 Transcription Factors’ Roles in Embryonic Development Must Be Prioritized in the Search for IMiDs Neosubstrates
2.7. Beta-Catenin and SP1 Might Be Essential to Explaining the Systemic Effects of IMiDs
3. Discussion
4. Materials and Methods
4.1. Literature Review
4.2. Systems Biology Analysis
4.3. Differential Gene Expression Analysis
4.4. Transcription Factor Analysis
4.5. Enrichment and Overrepresentation Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenz, W. A short history of thalidomide embryopathy. Teratology 1988, 38, 203–215. [Google Scholar] [CrossRef]
- Lenz, W.; Knapp, K. Thalidomide embryopathy. Arch. Environ. Health 1962, 5, 100–105. [Google Scholar] [CrossRef]
- Kowalski, T.W.; Sanseverino, M.T.; Schuler-Faccini, L.; Vianna, F.S. Thalidomide embryopathy: Follow-up of cases born between 1959 and 2010. Birth Defects Res. A Clin. Mol. Teratol. 2015, 103, 794–803. [Google Scholar] [CrossRef]
- Smithells, R.W.; Newman, C.G. Recognition of thalidomide defects. J. Med. Genet. 1992, 29, 716–723. [Google Scholar] [CrossRef] [Green Version]
- Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. C Embryo Today 2015, 105, 140–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röllig, C.; Knop, S.; Bornhäuser, M. Multiple myeloma. Lancet 2015, 385, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Celgene. Revlimid (Lenalidomide) Prescribing Information. Food and Drug Administration Access Data. 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021880s028lbl.pdf (accessed on 31 May 2023).
- Celgene. POMALYST (Pomalidomide) Prescribing Information. Food and Drug Administration Access Data. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/204026s019lbl.pdf (accessed on 31 May 2023).
- Christian, M.S.; Laskin, O.L.; Sharper, V.; Hoberman, A.; Stirling, D.I.; Latriano, L. Evaluation of the developmental toxicity of lenalidomide in rabbits. Birth Defects Res. B Dev. Reprod. Toxicol. 2007, 80, 188–207. [Google Scholar] [CrossRef] [PubMed]
- Paumgartten, F.J.; de Souza, N.R. Clinical use and control of the dispensing of thalidomide in Brasilia-Federal District, Brazil, from 2001 to 2012. Cien. Saude Colet. 2013, 18, 3401–3408. [Google Scholar] [CrossRef] [Green Version]
- Sales Luiz Vianna, F.; de Oliveira, M.Z.; Sanseverino, M.T.; Morelo, E.F.; de Lyra Rabello Neto, D.; Lopez-Camelo, J.; Camey, S.A.; Schuler-Faccini, L. Pharmacoepidemiology and thalidomide embryopathy surveillance in Brazil. Reprod. Toxicol. 2015, 53, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Vianna, F.S.; Schüler-Faccini, L.; Leite, J.C.; de Sousa, S.H.; da Costa, L.M.; Dias, M.F.; Morelo, E.F.; Doriqui, M.J.; Maximino, C.M.; Sanseverino, M.T. Recognition of the phenotype of thalidomide embryopathy in countries endemic for leprosy: New cases and review of the main dysmorphological findings. Clin. Dysmorphol. 2013, 22, 59–63. [Google Scholar] [CrossRef]
- Costa, P.; Maciel-Fiuza, M.F.; Kowalski, T.W.; Fraga, L.R.; Feira, M.F.; Camargo, L.M.A.; Caldoncelli, D.I.O.; Silveira, M.; Schuler-Faccini, L.; Vianna, F.S.L. Evaluation of the influence of genetic variants in Cereblon gene on the response to the treatment of erythema nodosum leprosum with thalidomide. Mem. Inst. Oswaldo Cruz 2022, 117, e220039. [Google Scholar] [CrossRef]
- Maciel-Fiuza, M.F.; Costa, P.; Kowalski, T.W.; Schuler-Faccini, L.; Bonamigo, R.R.; Vetoratto, R.; Eidt, L.M.; de Moraes, P.C.; Silveira, M.; Camargo, L.M.A.; et al. Evaluation of Polymorphisms in Toll-Like Receptor Genes as Biomarkers of the Response to Treatment of Erythema Nodosum Leprosum. Front. Med. 2021, 8, 713143. [Google Scholar] [CrossRef]
- D’Amato, R.J.; Loughnan, M.S.; Flynn, E.; Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 1994, 91, 4082–4085. [Google Scholar] [CrossRef] [PubMed]
- Therapontos, C.; Erskine, L.; Gardner, E.R.; Figg, W.D.; Vargesson, N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc. Natl. Acad. Sci. USA 2009, 106, 8573–8578. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Harris, C. A novel hypothesis for thalidomide-induced limb teratogenesis: Redox misregulation of the NF-kappaB pathway. Antioxid. Redox Signal. 2004, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Donovan, K.A.; An, J.; Nowak, R.P.; Yuan, J.C.; Fink, E.C.; Berry, B.C.; Ebert, B.L.; Fischer, E.S. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 2018, 7, e38430. [Google Scholar] [CrossRef]
- Matyskiela, M.E.; Couto, S.; Zheng, X.; Lu, G.; Hui, J.; Stamp, K.; Drew, C.; Ren, Y.; Wang, M.; Carpenter, A.; et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 2018, 14, 981–987. [Google Scholar] [CrossRef]
- Asatsuma-Okumura, T.; Ando, H.; De Simone, M.; Yamamoto, J.; Sato, T.; Shimizu, N.; Asakawa, K.; Yamaguchi, Y.; Ito, T.; Guerrini, L.; et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat. Chem. Biol. 2019, 15, 1077–1084. [Google Scholar] [CrossRef]
- Gao, S.; Wang, S.; Fan, R.; Hu, J. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed. Pharmacother. 2020, 127, 110114. [Google Scholar] [CrossRef]
- Sievers, Q.L.; Petzold, G.; Bunker, R.D.; Renneville, A.; Słabicki, M.; Liddicoat, B.J.; Abdulrahman, W.; Mikkelsen, T.; Ebert, B.L.; Thomä, N.H. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 2018, 362, eaat0572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The HUGO Gene Nomenclature Committee Database. Zinc Fingers C2H2-Type. Available online: https://www.genenames.org/data/genegroup/#!/group/28 (accessed on 31 May 2023).
- Khalil, A.; Tanos, R.; El-Hachem, N.; Kurban, M.; Bouvagnet, P.; Bitar, F.; Nemer, G. A HAND to TBX5 Explains the Link Between Thalidomide and Cardiac Diseases. Sci. Rep. 2017, 7, 1416. [Google Scholar] [CrossRef] [Green Version]
- Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papavassiliou, K.A.; Papavassiliou, A.G. Transcription Factor Drug Targets. J. Cell. Biochem. 2016, 117, 2693–2696. [Google Scholar] [CrossRef]
- Huilgol, D.; Venkataramani, P.; Nandi, S.; Bhattacharjee, S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes 2019, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, J.; Schmitz, I.; Götz, K.; Schulze-Osthoff, K.; Rüther, U. Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol. Cell. Biol. 2008, 28, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, J.; Shaughnessy, J.D.; Rüther, U. Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J. 2007, 21, 1410–1421. [Google Scholar] [CrossRef]
- Shahbazi, M.N.; Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 2018, 20, 878–887. [Google Scholar] [CrossRef] [Green Version]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Raghavachari, N.; Garcia-Reyero, N. Overview of Gene Expression Analysis: Transcriptomics. Methods Mol. Biol. 2018, 1783, 1–6. [Google Scholar] [CrossRef]
- Minnier, J.; Pennock, N.D.; Guo, Q.; Schedin, P.; Harrington, C.A. RNA-Seq and Expression Arrays: Selection Guidelines for Genome-Wide Expression Profiling. Methods Mol. Biol. 2018, 1783, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Francois, M.; Donovan, P.; Fontaine, F. Modulating transcription factor activity: Interfering with protein-protein interaction networks. Semin. Cell Dev. Biol. 2020, 99, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Butrym, A.; Rybka, J.; Łacina, P.; Gębura, K.; Frontkiewicz, D.; Bogunia-Kubik, K.; Mazur, G. Polymorphisms within beta-catenin encoding gene affect multiple myeloma development and treatment. Leuk. Res. 2015, 39, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J. 2012, 31, 2714–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyashenko, N.; Winter, M.; Migliorini, D.; Biechele, T.; Moon, R.T.; Hartmann, C. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat. Cell Biol. 2011, 13, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.L.; Friedlander, D.R.; Shif, B.; Kaplan, G.; Zagzag, D. Thalidomide and a thalidomide analogue inhibit endothelial cell proliferation in vitro. J. Neurooncol. 1999, 43, 109–114. [Google Scholar] [CrossRef]
- Stephens, T.D.; Fillmore, B.J. Hypothesis: Thalidomide embryopathy-proposed mechanism of action. Teratology 2000, 61, 189–195. [Google Scholar] [CrossRef]
- Mackeh, R.; Marr, A.K.; Fadda, A.; Kino, T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. Nucl. Recept. Signal. 2018, 15, 1550762918801071. [Google Scholar] [CrossRef]
- Liao, L.; Yao, Z.; Kong, J.; Zhang, X.; Li, H.; Chen, W.; Xie, Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genom. 2022, 23, 825. [Google Scholar] [CrossRef] [PubMed]
- Nemer, M.; Horb, M.E. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle 2007, 6, 117–121. [Google Scholar] [CrossRef]
- Bell, C.E.; Watson, A.J. SNAI1 and SNAI2 are asymmetrically expressed at the 2-cell stage and become segregated to the TE in the mouse blastocyst. PLoS ONE 2009, 4, e8530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheldof, A.; Hulpiau, P.; van Roy, F.; De Craene, B.; Berx, G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell. Mol. Life Sci. 2012, 69, 2527–2541. [Google Scholar] [CrossRef]
- Hojo, H.; Ohba, S.; Yano, F.; Saito, T.; Ikeda, T.; Nakajima, K.; Komiyama, Y.; Nakagata, N.; Suzuki, K.; Takato, T.; et al. Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J. Biol. Chem. 2012, 287, 17860–17869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asatsuma-Okumura, T.; Ito, T.; Handa, H. Molecular Mechanisms of the Teratogenic Effects of Thalidomide. Pharmaceuticals 2020, 13, 95. [Google Scholar] [CrossRef]
- Kohlhase, J.; Heinrich, M.; Schubert, L.; Liebers, M.; Kispert, A.; Laccone, F.; Turnpenny, P.; Winter, R.M.; Reardon, W. Okihiro syndrome is caused by SALL4 mutations. Hum. Mol. Genet. 2002, 11, 2979–2987. [Google Scholar] [CrossRef] [Green Version]
- Vargesson, N. The teratogenic effects of thalidomide on limbs. J. Hand Surg. Eur. Vol. 2019, 44, 88–95. [Google Scholar] [CrossRef]
- Gomes, J.D.A.; Kowalski, T.W.; Fraga, L.R.; Macedo, G.S.; Sanseverino, M.T.V.; Schuler-Faccini, L.; Vianna, F.S.L. The role of ESCO2, SALL4 and TBX5 genes in the susceptibility to thalidomide teratogenesis. Sci. Rep. 2019, 9, 11413. [Google Scholar] [CrossRef] [Green Version]
- Falero-Perez, J.; Song, Y.S.; Sorenson, C.M.; Sheibani, N. CYP1B1: A key regulator of redox homeostasis. Trends Cell Mol. Biol. 2018, 13, 27–45. [Google Scholar]
- Kwon, Y.J.; Baek, H.S.; Ye, D.J.; Shin, S.; Kim, D.; Chun, Y.J. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation. PLoS ONE 2016, 11, e0151598. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, P.; Wang, F.; Yang, J.; Yang, Z.; Qin, H. The relationship between early embryo development and tumourigenesis. J. Cell. Mol. Med. 2010, 14, 2697–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowetz, F. All biology is computational biology. PLoS Biol. 2017, 15, e2002050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, M.; Guan, Y.; Wedge, D.C.; Ansari-Pour, N. Re-evaluating experimental validation in the Big Data Era: A conceptual argument. Genome Biol. 2021, 22, 71. [Google Scholar] [CrossRef]
- Shinde, V.; Perumal Srinivasan, S.; Henry, M.; Rotshteyn, T.; Hescheler, J.; Rahnenführer, J.; Grinberg, M.; Meisig, J.; Blüthgen, N.; Waldmann, T.; et al. Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Res. Ther. 2016, 7, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, K.M. Reduce, replace, refine-Animal experiments. Acta Physiol. 2021, 233, e13726. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.H.; Allot, A.; Leaman, R.; Lu, Z. PubTator central: Automated concept annotation for biomedical full text articles. Nucleic Acids Res. 2019, 47, W587–W593. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database: Update 2019. Nucleic Acids Res. 2019, 47, D948–D954. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef] [Green Version]
- Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Gill, E.E.; Hancock, R.E. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015, 10, 823–844. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FastQC: A Quality Control Tool for High Throughput Sequence Data. 2023. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 31 May 2023).
- Giardine, B.; Riemer, C.; Hardison, R.C.; Burhans, R.; Elnitski, L.; Shah, P.; Zhang, Y.; Blankenberg, D.; Albert, I.; Taylor, J.; et al. Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 2005, 15, 1451–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [Google Scholar] [CrossRef] [PubMed]
- Povey, S.; Lovering, R.; Bruford, E.; Wright, M.; Lush, M.; Wain, H. The HUGO Gene Nomenclature Committee (HGNC). Hum. Genet. 2001, 109, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
Topological Analysis | Definition | Highest-Ranked Nodes (Literature Network) 1 |
---|---|---|
Degree | Number of edges that connect to a node. Nodes with a high degree are defined as hubs. | CTNNB1 (13), CRBN (9), and AKT1 (5) |
Closeness | Measures how fast the flow of information travels through the nodes. High closeness centrality scores indicate rapid information flow. | CTNNB1 (20.83), CUL4A (15.67), and CRBN (15.57) |
Betweenness | Demonstrates how crowded a network is. High betweenness centrality score indicate nodes that can control the information flow. | CTNNB1 (713.67), CRBN (283), and CUL4A (220) |
Maximal Clique Centrality (MCC) | Maximal clique indicates subsets of nodes that cannot be extended by adding additional nodes, because all the nodes in the mentioned subset are already interacting with each other. This centrality is proposed by the developers of cytoHubba as the best method to obtain the essential proteins in a network. | CTNNB1 (17), CRBN (12), and CUL4A (7) |
Number of Datasets with Differential Expressions | Number of Differentially Expressed Genes (%) |
---|---|
Total number of genes in the GRCh38 (human reference genome) | 28,395 (100%) |
1 or more | 8624 (30.4%) |
2 or more | 2947 (10.2%) |
3 or more | 1041 (3.6%) |
4 or more | 334 (1.2%) |
5 or more | 118 (0.4%) |
6 or more | 41 (0.15%) |
7 or more | 16 (0.05%) |
8 or more | 3 (0.01%) |
9 | 1 (0.003%) |
TFs | Chromosomal Location | Gene Groups 1 | Related Pathways or Ontologies 2 |
---|---|---|---|
BCL6 | 3q27.3 | BTB domain | Cytokine signaling in immune system |
CTCF | 16q22.1 | Cilia/flagella | Nervous system development |
EGR1 | 5q31.2 | Regulation of cell survival, proliferation, and cell death | |
GLI1 | 12q13.3 | Signaling by Hedgehog | |
HIC1 | 17p13.3 | BTB domain | Metabolism of proteins |
KLF2 | 19p13.11 | KLF transcription factors | Embryonic and induced pluripotent stem cells and lineage-specific markers |
KLF4 | 9q31.2 | KLF transcription factors | FOXO-mediated transcription |
KLF6 | 10p15.2 | KLF transcription factors | Adipogenesis |
KLF8 | Xp11.21 | KLF transcription factors | Epithelial to mesenchymal transition |
SNAI1 | 20q13.13 | SNAG transcriptional repressors | Gastrulation |
SNAI2 | 8q11.21 | SNAG transcriptional repressors | Epithelial to mesenchymal transition |
SP2 | 17q21.32 | Sp transcription factors | Histone deacetylase binding |
SP3 | 2q31.1 | Sp transcription factors | Metabolism of proteins |
WT1 | 11p13 | Nervous system development | |
YY1 | 14q32.2 | INO80 complex | ESR-mediated signaling |
ZEB1 | 10p11.22 | ZF class homeoboxes and pseudogenes | Cytokine signaling in immune system |
ZEB2 | 2q22.3 | ZF class homeoboxes and pseudogenes | TGFB-receptor signaling |
Topological Analysis | Definition | Highest-Ranked Nodes (Literature + New TFs) 1 |
---|---|---|
Degree | Number of edges that connect to a node. Nodes with a high degree are defined as hubs. | CTNNB1 (14), CRBN (9), and SP1 (9) |
Closeness | Measures how fast the flow of information travels through the nodes. High closeness centrality scores indicate rapid information flow. | CTNNB1 (26.37), SP1 (21.98), and CUL4A (19.67) |
Betweenness | Demonstrates how crowded a network is. High betweenness centrality score indicate nodes that can control the information flow. | CTNNB1 (1325.67), CRBN (601), and SP1 (553.34) |
Maximal Clique Centrality (MCC) | Maximal clique indicates subsets of nodes that cannot be extended by adding additional nodes, because all the nodes in the mentioned subset are already interacting with each other. This centrality is proposed by the developers of cytoHubba as the best method to obtain the essential proteins in a network. | CTNNB1 (20), CRBN (12), and SP1 (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, T.W.; Feira, M.F.; Lord, V.O.; Gomes, J.d.A.; Giudicelli, G.C.; Fraga, L.R.; Sanseverino, M.T.V.; Recamonde-Mendoza, M.; Schuler-Faccini, L.; Vianna, F.S.L. A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors. Int. J. Mol. Sci. 2023, 24, 11515. https://doi.org/10.3390/ijms241411515
Kowalski TW, Feira MF, Lord VO, Gomes JdA, Giudicelli GC, Fraga LR, Sanseverino MTV, Recamonde-Mendoza M, Schuler-Faccini L, Vianna FSL. A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors. International Journal of Molecular Sciences. 2023; 24(14):11515. https://doi.org/10.3390/ijms241411515
Chicago/Turabian StyleKowalski, Thayne Woycinck, Mariléa Furtado Feira, Vinícius Oliveira Lord, Julia do Amaral Gomes, Giovanna Câmara Giudicelli, Lucas Rosa Fraga, Maria Teresa Vieira Sanseverino, Mariana Recamonde-Mendoza, Lavinia Schuler-Faccini, and Fernanda Sales Luiz Vianna. 2023. "A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors" International Journal of Molecular Sciences 24, no. 14: 11515. https://doi.org/10.3390/ijms241411515
APA StyleKowalski, T. W., Feira, M. F., Lord, V. O., Gomes, J. d. A., Giudicelli, G. C., Fraga, L. R., Sanseverino, M. T. V., Recamonde-Mendoza, M., Schuler-Faccini, L., & Vianna, F. S. L. (2023). A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors. International Journal of Molecular Sciences, 24(14), 11515. https://doi.org/10.3390/ijms241411515