Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. Quality Parameters and Main Components of CO
2.2. Effect of CO on Reducing Fat Accumulation in High-Fat C. elegans
2.3. Effects of CO Supplementation on C. elegans Transcriptome
2.4. Effects of CO Supplementation on C. elegans Metabolic Profiles
2.5. Integrated Analysis of Transcriptome and Metabolome
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Quality Parameters and Main Components of CO Assay
4.3. C. elegans Strains and Maintenance
4.4. Lipid Droplet Visualization by Oil Red O Staining
4.5. Triglycerides (TG) Content Assay
4.6. RNA Extraction and Transcriptome Sequencing Analysis
4.7. Reverse Transcription and Quantitative Real-Time PCR (qRT-PCR) Analysis
4.8. Untargeted Metabolomics Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natesan, V.; Kim, S.J. Lipid metabolism, disorders and therapeutic drugs—Review. Biomol. Ther. 2021, 29, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, K.L.; Ruan, X.Z.; Liu, B.C. Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int. J. Biol. Sci. 2016, 12, 569–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waller, J.R.; Waller, D.G. Drugs for lipid disorders, antiplatelet drugs and fibrinolytics. Medicine 2014, 42, 544–548. [Google Scholar] [CrossRef]
- Parhofer, K.G. The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int. 2016, 113, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Luan, F.; Zeng, J.; Yang, Y.; He, X.; Wang, B.; Gao, Y.; Zeng, N. Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, C.; Chen, H.; Zhou, H.; Ye, J. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chem. 2013, 138, 1657–1662. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Verardo, V.; Contreras, M.D.M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar] [CrossRef]
- Yang, J.Y.; Li, J.; Wang, M.; Zou, X.G.; Peng, B.; Yin, Y.L.; Deng, Z.Y. A novel aqueous extraction for camellia oil by emulsified oil: A frozen/thawed method. Eur. J. Lipid Sci. Technol. 2019, 121, 1800431. [Google Scholar] [CrossRef]
- Feas, X.; Estevinho, L.M.; Salinero, C.; Vela, P.; Sainz, M.J.; Vazquez-Tato, M.P.; Seijas, J.A. Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleifera, C. reticulata and C. sasanqua oils. Molecules 2013, 18, 4573–4587. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry. Chem. Phys. Lipids 2012, 165, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Yang, C.H.; Chang, M.S.; Ciou, Y.P.; Huang, Y.C. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int. J. Mol. Sci. 2010, 11, 4417–4425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.T.; Lu, C.C.; Yen, G.C. Beneficial effects of camellia oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO 1 and VEGF. J. Nutr. Sci. Vitaminol. 2015, 61, S100–S102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bumrungpert, A.; Pavadhgul, P.; Kalpravidh, R.W. Camellia oil-enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic subjects. J. Med. Food 2016, 19, 895–898. [Google Scholar] [CrossRef]
- Corsi, A.K.; Wightman, B.; Chalfie, M. A Transparent window into biology: A primer on Caenorhabditis elegans. Genetics 2015, 200, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 2006, 5, 387–398. [Google Scholar] [CrossRef]
- Yilmaz, L.S.; Li, X.; Nanda, S.; Fox, B.; Schroeder, F.; Walhout, A.J. Modeling tissue-relevant Caenorhabditis elegans metabolism at network, pathway, reaction, and metabolite levels. Mol. Syst. Biol. 2020, 16, e9649. [Google Scholar] [CrossRef]
- Shaye, D.D.; Greenwald, I. OrthoList: A compendium of C. elegans genes with human orthologs. PLoS ONE 2011, 6, e20085. [Google Scholar] [CrossRef] [PubMed]
- The C. elegans Sequencing Consortium. Genome sequence of the nematode C-elegans: A platform for investigating biology. Science 1998, 282, 2012–2018. [CrossRef]
- Liao, V.H. Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. J. Agric. Food Chem. 2018, 66, 1737–1742. [Google Scholar] [CrossRef]
- Mullaney, B.C.; Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta 2009, 1791, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Jonathan, H. Orlistat. Endocrine 2000, 13, 201–206. [Google Scholar]
- Lin, C.; Lin, Y.; Chen, Y.; Xu, J.; Li, J.; Cao, Y.; Su, Z.; Chen, Y. Effects of Momordica saponin extract on alleviating fat accumulation in Caenorhabditis elegans. Food Funct. 2019, 10, 3237–3251. [Google Scholar] [CrossRef]
- GB/T 11765-2018; Oil-Tea Camellia Seed Oil. China National Standardization Committee: Beijing, China, 2018.
- Yang, C.Y.; Liu, X.M.; Chen, Z.Y.; Lin, Y.S.; Wang, S.Y. Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. J. Lipid. 2016, 10, 3982486. [Google Scholar]
- Giakoustidis, D.; Papageorgiou, G.; Iliadis, S.; Kontos, N.; Kostopoulou, E.; Papachrestou, A.; Tsantilas, D.; Spyridis, C.; Takoudas, D.; Botsoglou, N.; et al. Intramuscular administration of very high dose of alpha-tocopherol protects liver from severe ischemia/reperfusion injury. World J. Surg. 2002, 26, 872–877. [Google Scholar] [CrossRef]
- Nie, M.; Yang, X.H.; Yao, X.H.; Fang, X.Z.; Wang, Y.P. Effects of processing methods on physicochemical property and nutritient component of tea oil. Fore. Res. 2010, 23, 165–169. [Google Scholar]
- Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef]
- Huang, T.; Zhou, W.; Ma, X.; Jiang, J.; Zhang, F.; Zhou, W.; He, H.; Cui, G. Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiol. Lett. 2021, 368, fnab063. [Google Scholar] [CrossRef]
- Schlotterer, A.; Kukudov, G.; Bozorgmehr, F.; Hutter, H.; Du, X.; Oikonomou, D.; Ibrahim, Y.; Pfisterer, F.; Rabbani, N.; Thornalley, P.; et al. C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 2009, 58, 2450–2456. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Martinez, F.; Franco-Juarez, B.; Moreno-Arriola, E.; Hernández-Vázquez, A.; Martinez-Avila, M.; Gómez-Manzo, S.; Marcial-Quino, J.; Carvajal, K.; Velazquez-Arellano, A.; Ortega-Cuellar, D. The MXL-3/SBP-1 axis is responsible for glucose-dependent fat accumulation in C. elegans. Genes 2017, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.F.; Meade, M.; Ranepura, G.; Hall, D.H.; Savage-Dunn, C. Caenorhabditis elegans DBL-1/BMP regulates lipid accumulation via interaction with insulin signaling. Genes 2018, 8, 343–351. [Google Scholar]
- Yue, Y.; Shen, P.; Chang, A.L.; Qi, W.; Kim, K.H.; Kim, D.; Park, Y. Trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food Funct. 2019, 10, 4966–4974. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Gandhimathi, K.; Karthi, S.; Manimaran, P.; Varalakshmi, P.; Ashokkumar, B. Riboflavin transporter-2 (rft-2) of Caenorhabditis elegans: Adaptive and developmental regulation. J. Biosci. 2015, 40, 257–268. [Google Scholar] [CrossRef]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Al-Sakkaf, K.; Shait Mohammed, M.R.; Dallol, A.; Al-Maghrabi, J.; Aldahlawi, A.; Ashoor, S.; Maamra, M.; Ragoussis, J.; Wu, W.; et al. Integration of transcriptome and metabolome provides unique insights to pathways associated with obese breast cancer patients. Front. Oncol. 2020, 10, 804. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M. Utilization of dietary glucose in the metabolic syndrome. Nutr. Metab. 2011, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Jacques, M.A.; Wang, W.; Myers, C.L.; Yilmaz, L.S.; Walhout, A.J. Systems-level transcriptional regulation of Caenorhabditis elegans metabolism. Mol. Syst. Biol. 2023, 19, e11443. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.J.; Li, J.; Jannasch, A.; Mutlu, A.S.; Wang, M.C.; Cheng, J.X. Fingerprint stimulated raman scattering imaging reveals retinoid coupling lipid metabolism and survival. Chemphys. Chem. 2018, 19, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Feng, S.; Chen, T.; Zhou, L.; Yuan, M.; Liao, J.; Huang, Y.; Yang, H.; Yang, R.; Ding, C. Quality assessment of Camellia oleifera oil cultivated in southwest China. Separations 2021, 8, 144. [Google Scholar] [CrossRef]
- GB5009.229-2016; Determination of Acid Value in Food. China National Standardization Committee: Beijing, China, 2018.
- GB5009.227-2016; Determination of Peroxide Value in Food. China National Standardization Committee: Beijing, China, 2018.
- Cao, J.; Li, H.; Xia, X.; Zou, X.G.; Li, J.; Zhu, X.M.; Deng, Z.Y. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int. J. Food Prop. 2015, 18, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.X. The Study of Polyphenol and Oxidation Stability of Oil From Camellia; Central South University of Forestry and Technology: Hunan, China, 2013; pp. 9–11. [Google Scholar]
- Peng, H.; Wei, Z.; Luo, H.; Yang, Y.; Wu, Z.; Gan, L.; Yang, X. Inhibition of fat accumulation by hesperidin in Caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 5207–5214. [Google Scholar] [CrossRef]
- Su, J.; Peng, T.; Bai, M.; Bai, H.; Li, H.; Pan, H.; He, H.; Liu, H.; Wu, H. Transcriptome and metabolome analyses provide insights into the flavonoid accumulation in peels of Citrus reticulata ‘Chachi’. Molecules 2022, 27, 6476. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Chu, C.; Mao, Z.; Yang, J.; Wang, J.; Hu, L.; Chen, P.; Cao, Y.; Li, Y.; Wan, H.; et al. Metabolomics-based mechanism exploration of pulmonary arterial hypertension pathogenesis: Novel lessons from explanted human lungs. Hypertens. Res. 2022, 45, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Qiu, W.; Bai, G.; Qiao, Y.; Su, S.; Lo, P.C.; Lu, Y.; Xu, G.; Wang, Q.; Li, M.; et al. Metabolomics analysis on mice with depression ameliorated by acupoint catgut embedding. Front. Psychiatry 2021, 12, 703516. [Google Scholar] [CrossRef]
- Liu, R.; Deng, Y.; Liu, Y.; Wang, Z.; Yu, S.; Nie, Y.; Zhu, W.; Zhou, Z.; Diao, J. Combined analysis of transcriptome and metabolome reveals the potential mechanism of the enantioselective effect of chiral penthiopyrad on tomato fruit flavor quality. J. Agric. Food Chem. 2022, 70, 10872–10885. [Google Scholar] [CrossRef]
CO | |
---|---|
Acid value (mg/g) | 1.513 ± 0.089 |
Peroxide value (g/100 g) | 0.016 ± 0.001 |
Myristoleic acid (C14:1, %) | 0.01 ± 0.01 |
Palmitic acid (C16:0, %) | 8.55 ± 0.34 |
Stearic acid (C18:0, %) | 1.48 ± 0.11 |
Oleic acid (C18:1, %) | 86.32 ± 1.22 |
Linoleic acid (C18:2, %) | 3.55 ± 0.66 |
Eicosenoic acid (C20:1, %) | 0.11 ± 0.04 |
UFA | 89.99 |
SFA | 10.03 |
UFA/SFA | 8.97 |
α-tocopherol (mg/kg) | 266.88 ± 9.91 |
β-tocopherol (mg/kg) | - |
γ-tocopherol (mg/kg) | - |
δ-tocopherol (mg/kg) | - |
Polyphenols (mg/kg) | 51.34 ± 4.19 |
Squalene (mg/kg) | 26.38 ± 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Kong, Q.; Xiang, Z.; Kuang, X.; Wang, H.; Zhou, L.; Feng, S.; Chen, T.; Ding, C. Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans. Int. J. Mol. Sci. 2023, 24, 11615. https://doi.org/10.3390/ijms241411615
Liu L, Kong Q, Xiang Z, Kuang X, Wang H, Zhou L, Feng S, Chen T, Ding C. Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans. International Journal of Molecular Sciences. 2023; 24(14):11615. https://doi.org/10.3390/ijms241411615
Chicago/Turabian StyleLiu, Li, Qingbo Kong, Zhuoya Xiang, Xuekun Kuang, Heng Wang, Lijun Zhou, Shiling Feng, Tao Chen, and Chunbang Ding. 2023. "Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans" International Journal of Molecular Sciences 24, no. 14: 11615. https://doi.org/10.3390/ijms241411615
APA StyleLiu, L., Kong, Q., Xiang, Z., Kuang, X., Wang, H., Zhou, L., Feng, S., Chen, T., & Ding, C. (2023). Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans. International Journal of Molecular Sciences, 24(14), 11615. https://doi.org/10.3390/ijms241411615