Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. VBNC P. aeruginosa Cell Induction in In Vitro Biofilms
2.2. Evaluation of Antibiotic Susceptibility Level upon Exposure to Sublethal Tobramycin and CCCP Concentrations
2.3. Ethidium Bromide Efflux and mexY Gene Expression in P. aeruginosa C30 and PAO1-N
2.4. P. aeruginosa Genome Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Growth Media, and Chemicals
4.2. Antibiotic Susceptibility Test
4.3. VBNC-Cell Induction in P. aeruginosa Biofilms
4.4. Total Viable, Culturable, and VBNC Counts
4.5. P. aeruginosa Genome Analysis
4.6. Ethidium Bromide Accumulation Assay
4.7. mexY Gene Expression Assays
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malhotra, S.; Hayes, D., Jr.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, e00138-18. [Google Scholar] [CrossRef]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 2019, 17, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Ayrapetyan, M.; Williams, T.; Oliver, J.D. Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J. Bacteriol. 2018, 200, e00249-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Bae, S. Molecular viability testing of viable but non-culturable bacteria induced by antibiotic exposure. Microb. Biotechnol. 2018, 11, 1008–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschaght, P.; Schelstraete, P.; Van Simaey, L.; Vanderkercken, M.; Raman, A.; Mahieu, L.; Van Daele, S.; De Baets, F.; Vaneechoutte, M. Is the improvement of CF patients, hospitalized for pulmonary exacerbation, correlated to a decrease in bacterial load? PLoS ONE 2013, 8, e79010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangiaterra, G.; Cedraro, N.; Vaiasicca, S.; Citterio, B.; Galeazzi, R.; Laudadio, E.; Mobbili, G.; Minnelli, C.; Bizzaro, D.; Biavasco, F. Role of Tobramycin in the Induction and Maintenance of Viable but Non-Culturable Pseudomonas aeruginosa in an In Vitro Biofilm Model. Antibiotics 2020, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Mangiaterra, G.; Cedraro, N.; Citterio, B.; Simoni, S.; Vignaroli, C.; Biavasco, F. Diffusion and Characterization of Pseudomonas aeruginosa Aminoglycoside Resistance in an Italian Regional Cystic Fibrosis Centre. Adv. Exp. Med. Biol. 2021, 1323, 71–80. [Google Scholar] [CrossRef]
- Mangiaterra, G.; Amiri, M.; Di Cesare, A.; Pasquaroli, S.; Manso, E.; Cirilli, N.; Citterio, B.; Vignaroli, C.; Biavasco, F. Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: A validation study. BMC Infect. Dis. 2018, 18, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianciulli Sesso, A.; Lilić, B.; Amman, F.; Wolfinger, M.T.; Sonnleitner, E.; Bläsi, U. Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Front. Microbiol. 2021, 12, 626715. [Google Scholar] [CrossRef]
- Mangiaterra, G.; Cedraro, N.; Laudadio, E.; Minnelli, C.; Citterio, B.; Andreoni, F.; Mobbili, G.; Galeazzi, R.; Biavasco, F. The Natural Alkaloid Berberine Can Reduce the Number of Pseudomonas aeruginosa Tolerant Cells. J. Nat. Prod. 2021, 84, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Pamp, S.J.; Gjermansen, M.; Johansen, H.K.; Tolker-Nielsen, T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 2008, 68, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Pan, X.; Wang, D.; Chen, R.; Fu, T.; Yang, B.; Jin, Y.; Bai, F.; Cheng, Z.; Wu, W. Pseudomonas aeruginosa Polynucleotide Phosphorylase Controls Tolerance to Aminoglycoside Antibiotics by Regulating the MexXY Multidrug Efflux Pump. Antimicrob. Agents Chemother. 2021, 65, e01846-20. [Google Scholar] [CrossRef] [PubMed]
- Dufour, D.; Zhao, H.; Gong, S.G.; Lévesque, C.M. A DNA-Damage Inducible Gene Promotes the Formation of Antibiotic Persisters in Response to the Quorum Sensing Signaling Peptide in Streptococcus mutans. Genes 2022, 13, 1434. [Google Scholar] [CrossRef]
- Personnic, N.; Striednig, B.; Lezan, E.; Manske, C.; Welin, A.; Schmidt, A.; Hilbi, H. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat. Commun. 2019, 10, 5216. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Seventh Informational Supplement M100-S27; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Kaatz, G.W.; Seo, S.M.; O’Brien, L.; Wahiduzzaman, M.; Foster, T.J. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1404–1406. [Google Scholar] [CrossRef] [Green Version]
- Revest, M.; Jacqueline, C.; Boudjemaa, R. New in vitro and in vivo models to evaluate antibiotic efficacy in Staphylococcus aureus prosthetic vascular graft infection. J. Antimicrob. Chemother. 2016, 71, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of natural compound inhibitorsbfor multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS ONE 2014, 9, e101840. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Stenhoff, J.; Jalal, S.; Wretlind, B. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. Microb. Drug Resist. 2003, 9, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.; Oliveira, J.; Fernandes, I.; Araújo, P.; Pereira, A.R.; Gameiro, P.; Bessa, L.J. Pyranoanthocyanins Interfering with the Quorum Sensing of Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Mol. Sci. 2021, 2021 22, 8559. [Google Scholar] [CrossRef]
P. aeruginosa Strain | Locus Tag | Gene | Nucleotide Substitutions * |
---|---|---|---|
C30 | PA3477 | rhlR | c.3889934A > G; c.3890096T > C; c.3890198G > T; c.3890225G > A; c.3890393G > A; c.3890504G > A. |
AR86 | c.3889934A > G; c.3890030G > A; c.3890060A > G; c.3890198G > T; c.3890418C > T; c.3890504G > A; c.3890513G > A. | ||
C30 | PA1430 | lasR | c.1558525C > T. |
AR86 | c.1558808G > A. | ||
C30 | PA1003 | pqsR | c.1086804G > A. |
AR86 | c.1086141C > T; c.1086804G > A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangiaterra, G.; Cedraro, N.; Vaiasicca, S.; Citterio, B.; Frangipani, E.; Biavasco, F.; Vignaroli, C. Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2023, 24, 11618. https://doi.org/10.3390/ijms241411618
Mangiaterra G, Cedraro N, Vaiasicca S, Citterio B, Frangipani E, Biavasco F, Vignaroli C. Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa. International Journal of Molecular Sciences. 2023; 24(14):11618. https://doi.org/10.3390/ijms241411618
Chicago/Turabian StyleMangiaterra, Gianmarco, Nicholas Cedraro, Salvatore Vaiasicca, Barbara Citterio, Emanuela Frangipani, Francesca Biavasco, and Carla Vignaroli. 2023. "Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa" International Journal of Molecular Sciences 24, no. 14: 11618. https://doi.org/10.3390/ijms241411618
APA StyleMangiaterra, G., Cedraro, N., Vaiasicca, S., Citterio, B., Frangipani, E., Biavasco, F., & Vignaroli, C. (2023). Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 24(14), 11618. https://doi.org/10.3390/ijms241411618