Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of MPSM1a-d and MPSM2a-d
2.2. Preparation and Characterization of MPSM1e and MPSM1f
2.3. Chromatographic Measurements of MPSM1b
3. Materials and Methods
3.1. Chemicals
3.2. Characterization
3.3. Syntheses
3.3.1. Preparation of Monodisperse Porous Hybrid Beads (HB1a-f and HB2a-d) and Mesoporous Silica Microspheres (MPSM1a-f and MPSM2a-d)
3.3.2. Octadecyl Functionalization of Mesoporous Silica Microspheres for Chromatographic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.C.; Fréchet, J.M.J.; Švec, F. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene-co-divinylbenzene). J. Chromatogr. A 1994, 669, 230–235. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, J.J.; Langlois, T.J.; Kirkland, J.J. Characteristics of Superficially-Porous Silica Particles for Fast HPLC: Some Performance Comparisons with Sub-2-µm Particles. J. Chromatogr. Sci. 2008, 46, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeStefano, J.J.; Boyes, B.E.; Schuster, S.A.; Miles, W.L.; Kirkland, J.J. Are sub-2 μm particles best for separating small molecules? An alternative. J. Chromatogr. A 2014, 1368, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peysson, W.; Vulliet, E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J. Chromatogr. A 2013, 1290, 46–61. [Google Scholar] [CrossRef]
- Bayen, S.; Yi, X.; Segovia, E.; Zhou, Z.; Kelly, B.C. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2014, 1338, 38–43. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, Q.; Dai, Z.; Zhang, H. Multi-walled carbon nanotubes as solid-phase extraction adsorbent for the ultra-fast determination of chloramphenicol in egg, honey, and milk by fused-core C18-based high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 1819–1826. [Google Scholar] [CrossRef]
- Tölgyesi, Á.; Sharma, V.K.; Fekete, J. Development and validation of a method for determination of corticosteroids in pig fat using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 403–410. [Google Scholar] [CrossRef]
- Šatínský, D.; Jägerová, K.; Havlíková, L.; Solich, P. A New and Fast HPLC Method for Determination of Rutin, Troxerutin, Diosmin and Hesperidin in Food Supplements Using Fused-Core Column Technology. Food Anal. Methods 2013, 6, 1353–1360. [Google Scholar] [CrossRef]
- Gaborieau, M.; Castignolles, P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal. Bioanal. Chem. 2011, 399, 1413–1423. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, P.; Aarnoutse, P. Multi-Dimensional Separations of Polymers. Anal. Chem. 2014, 86, 6172–6179. [Google Scholar] [CrossRef]
- Kirkland, J.J.; Schuster, S.A.; Johnson, W.L.; Boyes, B.E. Fused-core particle technology in high-performance liquid chromatography: An overview. J. Pharm. Anal. 2013, 3, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Staub, A.; Zurlino, D.; Rudaz, S.; Veuthey, J.-L.; Guillarme, D. Analysis of peptides and proteins using sub-2μm fully porous and sub 3-μm shell particles. J. Chromatogr. A 2011, 1218, 8903–8914. [Google Scholar] [CrossRef]
- Wagner, B.M.; Schuster, S.A.; Boyes, B.E.; Kirkland, J.J. Superficially porous silica particles with wide pores for biomacromolecular separations. J. Chromatogr. A 2012, 1264, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Badley, R.D.; Ford, W.T.; McEnroe, F.J.; Assink, R.A. Surface modification of colloidal silica. Langmuir 1990, 6, 792–801. [Google Scholar] [CrossRef]
- Albert, K.; Brindle, R.; Martin, P.; Wilson, I.D. Characterisation of C18-bonded silicas for solid-phase extraction by solid-state NMR spectroscopy. J. Chromatogr. A 1994, 665, 253–258. [Google Scholar] [CrossRef]
- Vrancken, K.C.; Possemiers, K.; Van Der Voort, P.; Vansant, E.F. Surface modification of silica gels with aminoorganosilanes. Colloids Surfaces A Physicochem. Eng. Asp. 1995, 98, 235–241. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Comparative study of the performance of columns packed with several new fine silica particles. J. Chromatogr. A 2007, 1166, 30–46. [Google Scholar] [CrossRef]
- Baker, J.S.; Vinci, J.C.; Moore, A.D.; Colón, L.A. Physical characterization and evaluation of HPLC columns packed with superficially porous particles. J. Sep. Sci. 2010, 33, 2547–2557. [Google Scholar] [CrossRef]
- Cabooter, D.; Fanigliulo, A.; Bellazzi, G.; Allieri, B.; Rottigni, A.; Desmet, G. Relationship between the particle size distribution of commercial fully porous and superficially porous high-performance liquid chromatography column packings and their chromatographic performance. J. Chromatogr. A 2010, 1217, 7074–7081. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Chen, S.-L.; Dong, P.; Yang, G.-H.; Yang, J.-J. Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds. J. Colloid Interface Sci. 1996, 180, 237–241. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhan, P.; Wang, Z.L.; Zhang, W.Y.; Ming, N.B. Preparation of monodisperse silica particles with controllable size and shape. J. Mater. Res. 2003, 18, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, K.; Gailhanou, H.; Raison, L.; Panizza, P.; Ushiki, H.; Sellier, E.; Delville, J.P.; Delville, M.H. Smart Control of Monodisperse Stöber Silica Particles: Effect of Reactant Addition Rate on Growth Process. Langmuir 2005, 21, 1516–1523. [Google Scholar] [CrossRef]
- Nakabayashi, H.; Yamada, A.; Noba, M.; Kobayashi, Y.; Konno, M.; Nagao, D. Electrolyte-Added One-Pot Synthesis for Producing Monodisperse, Micrometer-Sized Silica Particles up to 7 μm. Langmuir 2010, 26, 7512–7515. [Google Scholar] [CrossRef]
- Harris, M.T.; Brunson, R.R.; Byers, C.H. The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J. Non-Cryst. Solids 1990, 121, 397–403. [Google Scholar] [CrossRef]
- Sadasivan, S.; Dubey, A.K.; Li, Y.; Rasmussen, D.H. Alcoholic Solvent Effect on Silica Synthesis—NMR and DLS Investigation. J. Sol-Gel. Sci. Technol. 1998, 12, 5–14. [Google Scholar] [CrossRef]
- Malay, O.; Yilgor, I.; Menceloglu, Y.Z. Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J. Sol-Gel. Sci. Technol. 2013, 67, 351–361. [Google Scholar] [CrossRef]
- Van Blaaderen, A.; Van Geest, J.; Vrij, A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism. J. Colloid Interface Sci. 1992, 154, 481–501. [Google Scholar] [CrossRef]
- Van Helden, A.K.; Jansen, J.W.; Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J. Colloid Interface Sci. 1981, 81, 354–368. [Google Scholar] [CrossRef]
- Bogush, G.H.; Tracy, M.A.; Zukoski, C.F. Preparation of monodisperse silica particles: Control of size and mass fraction. J. Non-Cryst. Solids 1988, 104, 95–106. [Google Scholar] [CrossRef]
- Giesche, H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. J. Eur. Ceram. Soc. 1994, 14, 189–204. [Google Scholar] [CrossRef]
- Chen, K.C.; Tsuchiya, T.; Mackenzie, J.D. Sol-Gel Processing of Silica I. The role of the starting compounds. J. Non-Cryst. Solids 1986, 86, 227–237. [Google Scholar] [CrossRef]
- Matsoukas, T.; Gulari, E. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J. Colloid Interface Sci. 1988, 124, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Lu, Z.; Teng, Z.; Liang, J.; Guo, Z.; Wang, D.; Han, M.-Y.; Yang, W. Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. Langmuir 2017, 33, 5879–5890. [Google Scholar] [CrossRef]
- He, J.; Yang, C.; Xiong, X.; Jiang, B. Preparation and characterization of monodisperse porous silica microspheres with controllable morphology and structure. J. Polym. Sci. A Polym. Chem. 2012, 50, 2889–2897. [Google Scholar] [CrossRef]
- Xia, H.; Wan, G.; Zhao, J.; Liu, J.; Bai, Q. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation. J. Chromatogr. A 2016, 1471, 138–144. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L.; Ren, L.; Teng, C.; Wang, Y.; Jiang, B.; He, J. Fabrication of Monodisperse Porous Silica Microspheres with a Tunable Particle Size and Pore Size for Protein Separation. ACS Appl. Bio Mater. 2018, 1, 604–612. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, Q.; Tang, C.; Liu, J.; Yi, Y.; Bai, Q. Synthesis and application of 5 μm monodisperse porous silica microspheres with controllable pore size using polymeric microspheres as templates for the separation of small solutes and proteins by high-performance liquid chromatography. J. Chromatogr. A 2022, 1675, 463165. [Google Scholar] [CrossRef]
- Steinbach, J.C.; Fait, F.; Mayer, H.A.; Kandelbauer, A. Monodisperse Porous Silica/Polymer Nanocomposite Microspheres with Tunable Silica Loading, Morphology and Porosity. Int. J. Mol. Sci. 2022, 23, 14977. [Google Scholar] [CrossRef]
- Fait, F.; Steinbach, J.C.; Kandelbauer, A.; Mayer, H.A. Impact of porosity and surface functionalization of hard templates on the preparation of mesoporous silica microspheres. Micropor. Mesopor. Mat. 2023, 351, 112482. [Google Scholar] [CrossRef]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef]
- Heudi, O.; Kilinç, T.; Fontannaz, P. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: Application to polyvitaminated premixes. J. Chromatogr. A 2005, 1070, 49–56. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.L.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, J.C.; Fait, F.; Wagner, S.; Wagner, A.; Brecht, M.; Mayer, H.A.; Kandelbauer, A. Rational Design of Pore Parameters in Monodisperse Porous Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Particles Based on Response Surface Methodology. Polymers 2022, 14, 382. [Google Scholar] [CrossRef]
Particle Size | SiO2 Content | Particle Size | Median Pore Size | Pore Volume | Specific Surface Area | ||
---|---|---|---|---|---|---|---|
(µm) | (%) | (µm) | (nm) | (mL g−1) | (m² g−1) | ||
HB1a | 6.3 | 37.8 | MPSM1a | 6.0 | 23.6 | 0.50 | 271 |
HB1b | 6.3 | 29.9 | MPSM1b | 5.5 | 11.3 | 0.84 | 389 |
HB1c | 6.3 | 17.7 | MPSM1c | 3.6 | 8.8 | 0.62 | 339 |
HB1d | 6.3 | 6.6 | MPSM1d | 2.2 | 4.0 | 0.68 | 637 |
HB2a | 6.7 | 32.7 | MPSM2a | 5.9 | 15.7 | 0.87 | 390 |
HB2b | 6.2 | 35.8 | MPSM2b | 6.0 | 24.9 | 0.69 | 346 |
HB2c | 6.0 | 0.01 | MPSM2c | 0.8 | 1 | 1 | 1 |
HB2d | 6.0 | 0.01 | MPSM2d | 0.5 | 1 | 1 | 1 |
HB1e | 7.1 | 43.0 | MPSM1e | 7.3 | 16.6 | 0.79 | 247 |
HB1f | 8.6 | 33.8 | MPSM1f | 6.6 | 15.6 | 1.06 | 311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fait, F.; Wagner, S.; Steinbach, J.C.; Kandelbauer, A.; Mayer, H.A. Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors. Int. J. Mol. Sci. 2023, 24, 11729. https://doi.org/10.3390/ijms241411729
Fait F, Wagner S, Steinbach JC, Kandelbauer A, Mayer HA. Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors. International Journal of Molecular Sciences. 2023; 24(14):11729. https://doi.org/10.3390/ijms241411729
Chicago/Turabian StyleFait, Fabio, Stefanie Wagner, Julia C. Steinbach, Andreas Kandelbauer, and Hermann A. Mayer. 2023. "Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors" International Journal of Molecular Sciences 24, no. 14: 11729. https://doi.org/10.3390/ijms241411729
APA StyleFait, F., Wagner, S., Steinbach, J. C., Kandelbauer, A., & Mayer, H. A. (2023). Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors. International Journal of Molecular Sciences, 24(14), 11729. https://doi.org/10.3390/ijms241411729