From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth
Abstract
:1. Introduction
1.1. Overview of Mesenchymal Stem Cells
1.2. Human Dental Stem Cells
1.3. Overview of MSC-Derived Secretome
2. Stem Cells from Human Exfoliated Deciduous Teeth (SHED)
3. Secretome Derived from SHED
4. Secretome Derived from SHED in Tissue Regeneration: Evidence from Experimental Studies
4.1. Effect of SHED-Derived Secretome on Proliferation and Apoptosis
4.2. Effect of SHED-Derived Secretome on Immunomodulation and Immunoregulation
4.3. Effect of SHED-Derived Secretome on Angiogenesis
4.4. Effect of SHED-Derived Secretome on Osteogenesis and Chondrogenesis
4.5. Effect of SHED-Derived Secretome on Neuroprotection and Neuroregeneration
5. Challenges in the Use of Secretome in Tissue Regeneration
6. Ethical Issues in the Use of Secretome
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells—Current trends and future prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessio, N.; Stellavato, A.; Aprile, D.; Cimini, D.; Vassallo, V.; Di Bernardo, G.; Galderisi, U.; Schiraldi, C. Timely Supplementation of Hydrogels Containing Sulfated or Unsulfated Chondroitin and Hyaluronic Acid Affects Mesenchymal Stromal Cells Commitment Toward Chondrogenic Differentiation. Front. Cell Dev. Biol. 2021, 9, 641529. [Google Scholar] [CrossRef]
- Soleimani, M.; Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 2009, 4, 102–106. [Google Scholar] [CrossRef]
- Baghaei, K.; Hashemi, S.M.; Tokhanbigli, S.; Asadi Rad, A.; Assadzadeh-Aghdaei, H.; Sharifian, A.; Zali, M.R. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol. Hepatol. Bed Bench 2017, 10, 208–213. [Google Scholar]
- Maridas, D.E.; Rendina-Ruedy, E.; Le, P.T.; Rosen, C.J. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice. J. Vis. Exp. 2018, 131, e56750. [Google Scholar] [CrossRef]
- Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.M.; Gu, Y.; Pan, C.J.; Yin, L.R. Isolation, culture and identification of human adipose-derived stem cells. Exp. Ther. Med. 2017, 13, 1039–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, W.C.; Khushnooma, I.; Madkaikar, M.; Ghosh, K. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. J. Tissue Eng. Regen. Med. 2008, 2, 394–399. [Google Scholar] [CrossRef]
- Mennan, C.; Wright, K.; Bhattacharjee, A.; Balain, B.; Richardson, J.; Roberts, S. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed. Res. Int. 2013, 2013, 916136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouelnaga, H.; El-Khateeb, D.; Moemen, Y.; El-Fert, A.; Elgazzar, M.; Khalil, A. Characterization of mesenchymal stem cells isolated from Wharton’s jelly of the human umbilical cord. Egypt. Liver J. 2022, 12, 2. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lee, J.L.; Chang, Y.J.; Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 2004, 19, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Wouters, G.; Grossi, S.; Mesoraca, A.; Bizzoco, D.; Mobili, L.; Cignini, P.; Giorlandino, C. Isolation of amniotic fluid-derived mesenchymal stem cells. J. Prenat. Med. 2007, 1, 39–40. [Google Scholar] [PubMed]
- Deedwania, P.; Deka, D.; Mohanty, S.; Dadhwal, V.; Sharma, A. Isolation and characterization of mesenchymal stem cells derived from amniotic fluid: A prospective study. Int. J. Mol. Immuno. Oncol. 2020, 5, 67–72. [Google Scholar] [CrossRef]
- Alessio, N.; Pipino, C.; Mandatori, D.; Di Tomo, P.; Ferone, A.; Marchiso, M.; Melone, M.A.B.; Peluso, G.; Pandolfi, A.; Galderisi, U. Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: An in vitro study. J. Cell. Physiol. 2018, 233, 8996–9006. [Google Scholar] [CrossRef]
- Mabuchi, Y.; Okawara, C.; Méndez-Ferrer, S.; Akazawa, C. Cellular Heterogeneity of Mesenchymal Stem/Stromal Cells in the Bone Marrow. Front. Cell Dev. Biol. 2021, 9, 689366. [Google Scholar] [CrossRef]
- Horwitz, E.M.; Le Blanc, K.; Dominici, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Deans, R.J.; Krause, D.S.; Keating, A. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005, 7, 393–395. [Google Scholar] [CrossRef]
- Caplan, A.I. Adult Mesenchymal Stem Cells: When, Where, and How. Stem Cells Int. 2015, 2015, 628767. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Nakamura-Yamada, S.; Umemura-Kubota, E.; Baba, S. Diagnostic Cytokines and Comparative Analysis Secreted from Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow Derived Mesenchymal Stem Cells for Functional Cell-Based Therapy. Int. J. Mol. Sci. 2019, 20, 5900. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Chullikana, A.; Rengasamy, M.; Shetty, N.; Pandey, V.; Agarwal, V.; Wagh, S.Y.; Vellotare, P.K.; Damodaran, D.; Viswanathan, P.; et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): Preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res. Ther. 2016, 18, 301. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.L.; Crawford, J.R.; Dib, N.; Verkh, L.; Tankovich, N.; Cramer, S.C. Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. Stroke 2019, 50, 2835–2841. [Google Scholar] [CrossRef] [PubMed]
- Law, Z.K.; Tan, H.J.; Chin, S.P.; Wong, C.Y.; Wan Yahya, W.N.N.; Muda, A.S.; Zakaria, R.; Ariff, M.I.; Ismail, N.A.; Cheong, S.K.; et al. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: A phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021, 23, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Gandia, C.; Armiñan, A.; García-Verdugo, J.M.; Lledó, E.; Ruiz, A.; Miñana, M.D.; Sanchez-Torrijos, J.; Payá, R.; Mirabet, V.; Carbonell-Uberos, F.; et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008, 26, 638–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, M.; Yamamoto, A.; Kako, E.; Kaneko, N.; Matsubara, K.; Sakai, K.; Sawamoto, K.; Ueda, M. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013, 44, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Nito, C.; Sowa, K.; Nakajima, M.; Sakamoto, Y.; Suda, S.; Nishiyama, Y.; Nakamura-Takahashi, A.; Nitahara-Kasahara, Y.; Ueda, M.; Okada, T.; et al. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed. Pharmacother. 2018, 108, 1005–1014. [Google Scholar] [CrossRef]
- Shoushrah, S.H.; Transfeld, J.L.; Tonk, C.H.; Büchner, D.; Witzleben, S.; Sieber, M.A.; Schulze, M.; Tobiasch, E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int. J. Mol. Sci. 2021, 22, 6387. [Google Scholar] [CrossRef]
- Lan, X.; Sun, Z.; Chu, C.; Boltze, J.; Li, S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front. Neurol. 2019, 10, 824. [Google Scholar] [CrossRef]
- Huang, G.T.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Aydin, S.; Şahin, F. Stem Cells Derived from Dental Tissues. Adv. Exp. Med. Biol. 2019, 1144, 123–132. [Google Scholar] [CrossRef]
- Lee, S.-M.; Zhang, Q.; Le, A.D. Dental Stem Cells: Sources and Potential Applications. Curr. Oral Health Rep. 2014, 1, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ling, J.; Wei, X.; Wu, L.; Xiao, Y. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation. J. Endod. 2009, 35, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Menicanin, D.; Shi, S.; Bartold, P.M.; Gronthos, S. Immunomodulatory properties of human periodontal ligament stem cells. J. Cell Physiol. 2009, 219, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Fan, W.; Deng, Q.; He, H.; Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Res. Int. 2019, 2019, 6104738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AR, Y.B.; Casasco, A.; Monti, M. Hypes and Hopes of Stem Cell Therapies in Dentistry: A Review. Stem Cell Rev. Rep. 2022, 18, 1294–1308. [Google Scholar] [CrossRef]
- Nakamura, S.; Yamada, Y.; Katagiri, W.; Sugito, T.; Ito, K.; Ueda, M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J. Endod. 2009, 35, 1536–1542. [Google Scholar] [CrossRef]
- Bi, R.; Lyu, P.; Song, Y.; Li, P.; Song, D.; Cui, C.; Fan, Y. Function of Dental Follicle Progenitor/Stem Cells and Their Potential in Regenerative Medicine: From Mechanisms to Applications. Biomolecules 2021, 11, 997. [Google Scholar] [CrossRef]
- Grawish, M.E. Gingival-derived mesenchymal stem cells: An endless resource for regenerative dentistry. World J. Stem Cells 2018, 10, 116–118. [Google Scholar] [CrossRef]
- Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther. 2010, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.; Kumar, B.M.; Lee, W.J.; Jeon, R.H.; Jang, S.J.; Lee, Y.M.; Park, B.W.; Byun, J.H.; Ahn, C.S.; Kim, J.W.; et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp. Cell Res. 2014, 320, 92–107. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, G.; Li, D.; Chen, X.; Pang, J.; Ke, J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 20982–20996. [Google Scholar] [CrossRef] [Green Version]
- Davies, O.G.; Cooper, P.R.; Shelton, R.M.; Smith, A.J.; Scheven, B.A. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J. Bone Miner. Metab. 2015, 33, 371–382. [Google Scholar] [CrossRef]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef] [PubMed]
- Perczel-Kovách, K.; Hegedűs, O.; Földes, A.; Sangngoen, T.; Kálló, K.; Steward, M.C.; Varga, G.; Nagy, K.S. STRO-1 positive cell expansion during osteogenic differentiation: A comparative study of three mesenchymal stem cell types of dental origin. Arch. Oral Biol. 2021, 122, 104995. [Google Scholar] [CrossRef]
- Trubiani, O.; Zalzal, S.F.; Paganelli, R.; Marchisio, M.; Giancola, R.; Pizzicannella, J.; Bühring, H.J.; Piattelli, M.; Caputi, S.; Nanci, A. Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J. Cell Physiol. 2010, 225, 123–131. [Google Scholar] [CrossRef]
- Alipour, R.; Sadeghi, F.; Hashemi-Beni, B.; Zarkesh-Esfahani, S.H.; Heydari, F.; Mousavi, S.B.; Adib, M.; Narimani, M.; Esmaeili, N. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. Int. J. Prev. Med. 2010, 1, 164–171. [Google Scholar]
- Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Xu, X.; Chen, X.; Shi, S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J. Dent. Res. 2015, 94, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucaciu, O.; Soriţău, O.; Gheban, D.; Ciuca, D.R.; Virtic, O.; Vulpoi, A.; Dirzu, N.; Câmpian, R.; Băciuţ, G.; Popa, C.; et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Yang, P.; Ge, S. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. J. Dent. Sci. 2016, 11, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Lee, J.; Kwon, Y.; Park, K.S.; Jeong, J.H.; Choi, S.J.; Bang, S.I.; Chang, J.W.; Lee, C. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton’s Jelly. Int. J. Mol. Sci. 2021, 22, 845. [Google Scholar] [CrossRef]
- Diomede, F.; Fonticoli, L.; Marconi, G.D.; Della Rocca, Y.; Rajan, T.S.; Trubiani, O.; Murmura, G.; Pizzicannella, J. Decellularized Dental Pulp, Extracellular Vesicles, and 5-Azacytidine: A New Tool for Endodontic Regeneration. Biomedicines 2022, 10, 403. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7, 92. [Google Scholar] [CrossRef]
- Bartaula-Brevik, S.; Bolstad, A.; Mustafa, K.; Pedersen, T. Secretome of Mesenchymal Stem Cells Grown in Hypoxia Accelerates Wound Healing and Vessel Formation In Vitro. Int. J. Stem Cell Res. Ther. 2017, 4, 045. [Google Scholar] [CrossRef]
- Ragni, E.; Perucca Orfei, C.; De Luca, P.; Mondadori, C.; Viganò, M.; Colombini, A.; de Girolamo, L. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: The example of joint disease. Stem Cell Res. Ther. 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Parner, E.T.; Heidmann, J.M.; Kjaer, I.; Vaeth, M.; Poulsen, S. Biological interpretation of the correlation of emergence times of permanent teeth. J. Dent. Res. 2002, 81, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Martinez Saez, D.; Sasaki, R.T.; Neves, A.D.; da Silva, M.C. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs 2016, 202, 269–280. [Google Scholar] [CrossRef]
- Anoop, M.; Datta, I. Stem Cells Derived from Human Exfoliated Deciduous Teeth (SHED) in Neuronal Disorders: A Review. Curr. Stem Cell Res. Ther. 2021, 16, 535–550. [Google Scholar] [CrossRef]
- Mohd Nor, N.H.; Berahim, Z.; Azlina, A.; Kannan, T.P. Identification of novel fibroblast-like cells from stem cells from human exfoliated deciduous teeth. Clin. Oral Investig. 2019, 23, 3959–3966. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Y.; Guo, W.; Yang, B.; Tian, W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics 2019, 9, 2694–2711. [Google Scholar] [CrossRef]
- Bhandi, S.; Alkahtani, A.; Mashyakhy, M.; Abumelha, A.S.; Albar, N.H.M.; Renugalakshmi, A.; Alkahtany, M.F.; Robaian, A.; Almeslet, A.S.; Patil, V.R.; et al. Effect of Ascorbic Acid on Differentiation, Secretome and Stemness of Stem Cells from Human Exfoliated Deciduous Tooth (SHEDs). J. Pers. Med. 2021, 11, 589. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Berahim, Z.; Azlina, A.; Kannan, T.P. Growth Factor Cocktail to Facilitate Epithelial Differentiation of Exfoliated Deciduous Teeth Stem Cells. Sains Malays. 2022, 51, 3009–3018. [Google Scholar]
- Vu, H.T.; Han, M.R.; Lee, J.H.; Kim, J.S.; Shin, J.S.; Yoon, J.Y.; Park, J.H.; Dashnyam, K.; Knowles, J.C.; Lee, H.H.; et al. Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells. Biomedicines 2022, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Shin, M.K.; Jeon, M.; Lee, Y.H.; Song, J.S.; Lee, J.H. Distinctive cytokine profiles of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. J. Dent. Sci. 2022, 17, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Kunimatsu, R.; Nakajima, K.; Abe, T.; Yamada, S.; Rikitake, K.; Tanimoto, K. Stem cell-derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral. Dis. 2020, 26, 381–390. [Google Scholar] [CrossRef]
- Konala, V.B.R.; Bhonde, R.; Pal, R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. Vitr. Cell Dev. Biol. Anim. 2020, 56, 689–700. [Google Scholar] [CrossRef]
- Inoue, T.; Sugiyama, M.; Hattori, H.; Wakita, H.; Wakabayashi, T.; Ueda, M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng. Part A 2013, 19, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Izumoto-Akita, T.; Tsunekawa, S.; Yamamoto, A.; Uenishi, E.; Ishikawa, K.; Ogata, H.; Iida, A.; Ikeniwa, M.; Hosokawa, K.; Niwa, Y.; et al. Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res. Care 2015, 3, e000128. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Shibata, R.; Yamamoto, N.; Nishikawa, M.; Hibi, H.; Tanigawa, T.; Ueda, M.; Murohara, T.; Yamamoto, A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci. Rep. 2015, 5, 16295. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, Y.; Ishigami, M.; Matsubara, K.; Kondo, M.; Wakayama, H.; Goto, H.; Ueda, M.; Yamamoto, A. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J. Tissue Eng. Regen. Med. 2017, 11, 1888–1896. [Google Scholar] [CrossRef]
- Matsubara, K.; Matsushita, Y.; Sakai, K.; Kano, F.; Kondo, M.; Noda, M.; Hashimoto, N.; Imagama, S.; Ishiguro, N.; Suzumura, A.; et al. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J. Neurosci. 2015, 35, 2452–2464. [Google Scholar] [CrossRef] [Green Version]
- Wakayama, H.; Hashimoto, N.; Matsushita, Y.; Matsubara, K.; Yamamoto, N.; Hasegawa, Y.; Ueda, M.; Yamamoto, A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015, 17, 1119–1129. [Google Scholar] [CrossRef]
- Shimojima, C.; Takeuchi, H.; Jin, S.; Parajuli, B.; Hattori, H.; Suzumura, A.; Hibi, H.; Ueda, M.; Yamamoto, A. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis. J. Immunol. 2016, 196, 4164–4171. [Google Scholar] [CrossRef] [Green Version]
- Sugimura-Wakayama, Y.; Katagiri, W.; Osugi, M.; Kawai, T.; Ogata, K.; Sakaguchi, K.; Hibi, H. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth. Stem Cells Dev. 2015, 24, 2687–2699. [Google Scholar] [CrossRef]
- de Cara, S.P.H.M.; Origassa, C.S.T.; de Sá Silva, F.; Moreira, M.S.N.A.; de Almeida, D.C.; Pedroni, A.C.F.; Carvalho, G.L.; Cury, D.P.; Câmara, N.O.S.; Marques, M.M. Angiogenic properties of dental pulp stem cells conditioned medium on endothelial cells in vitro and in rodent orthotopic dental pulp regeneration. Heliyon 2019, 5, e01560. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Tsunekawa, S.; Nakamura, N.; Miura-Yura, E.; Yamada, Y.; Hayashi, Y.; Nakai-Shimoda, H.; Asano, S.; Hayami, T.; Motegi, M.; et al. Secreted Factors from Stem Cells of Human Exfoliated Deciduous Teeth Directly Activate Endothelial Cells to Promote All Processes of Angiogenesis. Cells 2020, 9, 2385. [Google Scholar] [CrossRef] [PubMed]
- Katahira, Y.; Murakami, F.; Inoue, S.; Miyakawa, S.; Sakamoto, E.; Furusaka, Y.; Watanabe, A.; Sekine, A.; Kuroda, M.; Hasegawa, H.; et al. Protective effects of conditioned media of immortalized stem cells from human exfoliated deciduous teeth on pressure ulcer formation. Front. Immunol. 2022, 13, 1010700. [Google Scholar] [CrossRef]
- Muhammad, S.A.; Nordin, N.; Hussin, P.; Mehat, M.Z.; Abu Kasim, N.H.; Fakurazi, S. Protective effects of stem cells from human exfoliated deciduous teeth derived conditioned medium on osteoarthritic chondrocytes. PLoS ONE 2020, 15, e0238449. [Google Scholar] [CrossRef]
- Giannasi, C.; Niada, S.; Magagnotti, C.; Ragni, E.; Andolfo, A.; Brini, A.T. Comparison of two ASC-derived therapeutics in an in vitro OA model: Secretome versus extracellular vesicles. Stem Cell Res. Ther. 2020, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Mita, T.; Furukawa-Hibi, Y.; Takeuchi, H.; Hattori, H.; Yamada, K.; Hibi, H.; Ueda, M.; Yamamoto, A. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav. Brain Res. 2015, 293, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Matsubara, K.; Sakai, K.; Ito, M.; Ohno, K.; Ueda, M.; Yamamoto, A. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res. 2015, 1613, 59–72. [Google Scholar] [CrossRef]
- Chen, Y.R.; Lai, P.L.; Chien, Y.; Lee, P.H.; Lai, Y.H.; Ma, H.I.; Shiau, C.Y.; Wang, K.C. Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 3807. [Google Scholar] [CrossRef] [PubMed]
- Wanandi, S.I.; Wideani, G.; Zainuri, M.; Putri, R.R.; Bachtiar, E.W.; Jusman, S.W.A. Evaluation of stemness and proliferation of human breast cancer stem cells (ALDH+) supplemented with heat-activated TGF-beta1 in the secretomes of stem cells from human exfoliated deciduous teeth (SHED). Ann. Oncol. 2018, 29, viii13. [Google Scholar] [CrossRef]
Cell Population | Stem Cell Markers | Immunophenotype | Differentiation Potential | Reference |
---|---|---|---|---|
DPSCs | STRO-1, Nanog, Oct4, Sox-2, SSEA-3, SSEA-4 | CD10+, CD13+, CD29+, CD44+, CD59+, CD73+, CD90+, CD105+, CD106+, CD146+, CD14-, CD34-, CD45-, HLA-DR- | Odontogenic, osteogenic, neurogenic, adipogenic, myogenic, chondrogenic | [40,42] |
PDLSCs | STRO-1, Nanog, Oct-4, Sox-2, Rex-1, SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 | CD9+, CD10+, CD13+, CD26+, CD29+, CD44+, CD59+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+, CD14-, CD34-, CD45-, HLA-DR- | Osteogenic, cementogenic, adipogenic, chondrogenic, insulin-producing cells | [41,45] |
SCAP | STRO-1, Nanog, Oct4 | CD13+, CD24+, CD29+, CD44+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+ | Odontogenic, osteogenic, neurogenic, adipogenic | [40] |
SHED | STRO-1, Nanog, Oct4, Nestin, SSEA-3, SSEA-4, TRA-1-60, TRA1-81 | CD13+, CD29+, CD44+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+, CD14-, CD34-, CD45-, HLA-DR- | Odontogenic, osteogenic, neurogenic, adipogenic, myogenic, chondrogenic | [39,46,47] |
DFSCs | STRO-1, Nanog, Oct4, SSEA-4 | CD9+, CD10+, CD13+, CD29+, CD44+, CD53+, CD59+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+, CD14-, CD34-, CD45-, HLA-DR- | Odontogenic, osteogenic, neurogenic, adipogenic | [40,48] |
GMSCs | STRO-1, Nanog, Oct4 | CD13+, CD29+, CD44+, CD73+, CD90+, CD105+, CD146+, CD14-, CD34-, CD45-, HLA-DR- | Osteogenic, neurogenic, adipogenic, chondrogenic, endothelial | [41,49] |
Type of Study | Purpose | Secreted Soluble Factors | Key Findings | References |
---|---|---|---|---|
In vitro (SHED vs DPSCs) | To compare cytokine profiles produced by SHED and DPSCs. | IL-6, CNTF, CCL23, IGFBP2, IL-7, EGF, BMP6, IGFBP1, GM-CSF, Eotaxin1, IL-5, IFN-gamma, PARC, IL-2, BLC, BDNF, MCP-1 | SHED-derived secretome expressed more cytokines involved in odontogenesis, osteogenesis, and immunomodulation, while DPSCs-derived secretome expressed more cytokines involved in angiogenesis. | [63] |
In vitro (DPSCs) | To investigate the potency of SHED-CM on DPSCs in pulp regeneration. | TGF-β, MMP, VEGF, FGF, Ils, BMP | SHED-CM showed a dose-dependent promotive effect on the proliferation, migration, and survival of DPSCs. Upregulation of marker genes for odontoblasts and osteogenesis and increased mineral deposition of impaired DPSCs in the presence of SHED-CM. | [62] |
In vivo (Mouse calvarial bone defect model) | To investigate the effect of SHED-CM on bone regeneration. | TIMP-1, OPG, OPN, M-CSF, MCP-1, HGF, ANG, VEGF-C, IL-6, BDNF, NT-3, BMP-4, BMP-2, bNGF, FGF-2, GDNF, PDGF-BB, EGF | Bone regeneration was improved in the defects treated with stem cells and CM compared to controls 8 weeks after transplantation. Mature bone formation and angiogenesis were confirmed with SHED-CM but not with stem cells or in controls. | [64] |
In vitro (OA chondrocytes) | To evaluate the regenerative effect of SHED-CM on OA chondrocytes for cartilage repair and regeneration. | TGF-β1, IL-10, IL-6 | SHED-CM protected chondrocytes by increasing matrix proteins and suppressed MMP-13 expression. SHED-CM attenuated the inflammatory assault induced by IL-1β. The regenerative effect of SHED-CM could be attributed to secreted factors modulating catabolic processes towards an anabolic phenotype by downregulating NF-κB. | [77] |
In vitro (HUVECs) In vivo (Mouse Matrigel plug assays) Ex vivo (Rat aortic ring assay) | To examine the beneficial effects of secreted factors from SHED on endothelial cells to promote angiogenesis. | n/a | SHED-CM significantly increased the proliferation of HUVECs. SHED-CM accelerated the migration of HUVECs in wound healing and Boyden chamber assays. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. SHED-CM significantly increased neovascularisation in rat aorta. The angiogenic effects of SHED-CM were equal to or greater than the effective concentration of VEGF. | [75] |
In vitro (HUVECs) In vivo (Rat model of orthotopic dental pulp regeneration) | To evaluate the effect of SHED-CM on the proliferation, differentiation, migration ability, cell death, gene expression, and production of VEGF. | n/a | SHED-CM significantly induced lower expression of 7AAD in HUVECs, whereas the expression of the Ki67 was similar in all groups. SHED-CM induced expression of VEGF-A. SHED-CM significantly induced higher VEGF synthesis than other media. SHED-CM induced the formation of vascularised connective tissue inside the root canal. | [74] |
In vitro (Human breast cancer stem cells (BCSCs)) | To evaluate the stemness and proliferation of human BCSCs after being supplemented with heated secretome from SHED. | n/a | The heated secretome of SHED contained activated TGF-β1, which increased the expression of stemness genes, OCT4, and ALDH1A1, as well as the proliferation of human BCSCs (ALDH+) via TGF-β1 paracrine signalling. | [82] |
In vivo (Rat with ALF) | To study the multifaceted therapeutic benefit of SHED-CM in ALF in rats. | HGF, MMP-10, MCP-1, ANG, SCF, IGFBP-2, sIL-6R, EGFR, FSTN, MMP-3, spg130, GRO, MIP-1β, MIF, RAGE, TIMP-4, adipsin, OPG, CXCL16, IGFBP-1, BDNF, LAP, GDNF, sTNFR1, TGF-β2, FGF-7, MMP-13, MMP-9, Flt-3 L, Dkk-3, NID-1, VEGF-A, CTSS, HVEM, GDF-15, TIMP-1, B2M, EG-VEGF, β-IG-H3, TIMP-2, IL-6, MCP-3, PAI-1, uPAR, IGFBP-6, Dkk-1, MMP-1 | SHED-CM attenuated the ALF-induced inflammation by suppressing the proinflammatory cytokine levels (IL-6, TNFα, IL-1β, and iNOS), increasing the anti-inflammatory cytokine levels (IL-10 and TGF-β1), and M2 cell markers. SHED-CM promoted hepatocyte proliferation and inhibited apoptosis. SHED-CM induced angiogenesis. | [69] |
In vitro (Myelin oligodendrocyte glycoprotein-specific CD4+ T cells) In vivo (A mouse model of multiple sclerosis (MS)) | To investigate the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis, a mouse model of MS. | n/a | In vitro: SHED-CM inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4+ T cells. In vivo: SHED-CM exhibited significantly improved disease scores, reduced demyelination, and axonal injury. SHED-CM reduced inflammatory cell infiltration and proinflammatory cytokine expression (IFN-γ, IL-17, and TNF-α) in the spinal cord. | [72] |
In vitro (Schwann cells and DRG cells) In vivo (Rat model of sciatic nerve transection) | To investigate the effect of SHED-CM in the regeneration of the peripheral nerve. | NT-3, NGF, CNTF, HGF, GDNF, BDNF, VEGF | In vitro: SHED-CM significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes in Schwann cells. SHED-CM stimulated the neuritogenesis of DRG cells and increased cell viability. SHED-CM enhanced tube formation in an angiogenesis assay. In vivo: SHED-CM promoted axon regeneration and functional recovery. SHED-CM reduced muscle atrophy. | [73] |
In vitro (Cerebellar granule neurons (CGNs) isolated from newborn rats) | To evaluate the trophic actions of SHED-CM and dSHED-CM on neurite outgrowth and apoptosis in CGNs isolated from newborn rats. | n/a | SHED-CM or dSHED-CM significantly suppressed the 6-OHDA-induced apoptosis in CGNs isolated from newborn rats. Neurite outgrowth was significantly enhanced by SHED-CM and dSHED-CM. | [80] |
In vitro (Glutamate-induced neurons from the cortices of C57BL/6 mice embryos) In vivo (A mouse model of Aβ-induced AD) | To investigate the therapeutic benefits of a serum-free SHED-CM in a mouse model of AD. | n/a | SHED-CM attenuated the proinflammatory (IL-1β, TNF-α, and iNOS) and induced anti-inflammatory M2-like microglia. SHED-CM improved cognitive function. SHED-CM inhibited oxidative-nitrosative stress (3-NT and iNOS) in the cerebral parenchyma. SHED-CM promoted the expression of multiple neurotrophic factors (BDNF, NGF, and IGF-1). SHED-CM suppressed glutamate-induced neuronal death. | [79] |
In vivo (A mouse model of I/R) | To investigate the impact of SHED-CM on myocardial injury in a mouse model of I/R. | VEGF, IGF-1, HGF, bFGF, SDF-1, EGF, SCF | SHED-CM reduced the size of myocardial infarct, inhibited myocyte apoptosis, and suppressed inflammatory cytokine levels (IL-6, IL-1β, and TNFα). | [68] |
In vivo (A rat model of SCI) | To investigate the effect of SHED-CM in a rat model of SCI. | MCP-1, ED-Siglec-9 | SHED-CM improved functional recovery after SCI. SHED-CM suppressed expressions of proinflammatory cytokines (IL-1β, TNF-α, and iNOS) and induced anti-inflammatory M2-like macrophages. | [70] |
In vivo (A mouse model of streptozocin-induced diabetes) | To investigate the effect of factors secreted by SHED on β-cell function and survival. | n/a | SHED-CM suppressed inflammatory chronic response of macrophage. SHED-CM promoted lung regeneration. SHED-CM increased insulin secretion, β-cell proliferation, and reduced apoptosis. | [67] |
In vivo (A mouse model of BLM-induced ALI) | To investigate the effects of SHED-CM in a mouse model of BLM-induced ALI. | n/a | SHED-CM attenuated lung injury and weight loss in BLM-treated mice and improved their survival rate. SHED-CM attenuated the BLM-induced proinflammatory response and promoted the induction of anti-inflammatory M2-like lung macrophage. SHED-CM suppressed the BLM-induced tissue damage and inhibited the expression of α-SMA. SHED-CM promoted the M2 differentiation of bone marrow-derived macrophages in vitro. | [71] |
In vivo (Rat model of pMCAO) | To investigate the effects of SHED-CM in a rat model of pMCAO. | n/a | SHED-CM improved motor function recovery. SHED-CM increased the expression of doublecortin (DCX), neurofilament, neuronal nuclei, and rat endothelial cell antigen in the peri-infarct area. SHED-CM induced the migration of NPCs from the subventricular zone to the peri-infarct area. | [66] |
In vivo (A mouse model of perinatal HI-induced brain injury) | To investigate the effects of SHED-CM for the treatment of neonatal HI brain injury. | n/a | SHED-CM exhibited significant reductions in apoptosis and tissue loss. SHED-CM improved neurological functions. | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Nor, N.H.; Mansor, N.I.; Mohd Kashim, M.I.A.; Mokhtar, M.H.; Mohd Hatta, F.A. From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth. Int. J. Mol. Sci. 2023, 24, 11763. https://doi.org/10.3390/ijms241411763
Mohd Nor NH, Mansor NI, Mohd Kashim MIA, Mokhtar MH, Mohd Hatta FA. From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth. International Journal of Molecular Sciences. 2023; 24(14):11763. https://doi.org/10.3390/ijms241411763
Chicago/Turabian StyleMohd Nor, Nurul Hafizah, Nur Izzati Mansor, Mohd Izhar Ariff Mohd Kashim, Mohd Helmy Mokhtar, and Farah Ayuni Mohd Hatta. 2023. "From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth" International Journal of Molecular Sciences 24, no. 14: 11763. https://doi.org/10.3390/ijms241411763
APA StyleMohd Nor, N. H., Mansor, N. I., Mohd Kashim, M. I. A., Mokhtar, M. H., & Mohd Hatta, F. A. (2023). From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth. International Journal of Molecular Sciences, 24(14), 11763. https://doi.org/10.3390/ijms241411763