Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers
Abstract
:1. Introduction
2. Results
2.1. Design of Stapled TP10 Peptides
2.2. Secondary Structural Analysis of Stapled TP10 Peptides
2.3. Evaluation of the Delivery of Small Molecules by Stapled TP10 Peptides
2.4. pDNA Delivery by Stapled TP10 Peptides
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis
4.2. Circular Dichroism Spectroscopy
4.3. Cell Culture
4.4. Flow Cytometry
4.5. Inhibition of Endocytosis
4.6. Preparation of Peptide/pDNA Complexes
4.7. DLS Measurements and Zeta-Potential Measurements
4.8. Cellular Uptake
4.9. Displacement Assay with Dextran Sulfate
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano 2014, 8, 1972–1994. [Google Scholar] [CrossRef]
- Guo, Z.; Peng, H.; Kang, J.; Sun, D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed. Rep. 2016, 4, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Mueller, L.K.; Baumruck, A.C.; Zhdanova, H.; Tietze, A.A. Challenges and perspectives in chemical synthesis of highly hydrophobic peptides. Front. Bioeng. Biotechnol. 2020, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- De Mello, L.R.; Porosk, L.; Lourenço, T.C.; Garcia, B.B.M.; Costa, C.A.R.; Han, S.W.; de Souza, J.S.; Langel, Ü.; da Silva, E.R. Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and its use as a carrier for nucleic acids. ACS Appl. Bio Mater. 2021, 4, 6404–6416. [Google Scholar] [CrossRef]
- Pooga, M.; Kut, C.; Kihlmark, M.; Hällbrink, M.; Fernaeus, S.; Raid, R.; Land, T.; Hallberg, E.; Bartfai, T.; Langel, U. Cellular translocation of proteins by transportan. FASEB J. 2001, 15, 1451–1453. [Google Scholar] [CrossRef]
- Soomets, U.; Lindgren, M.; Gallet, X.; Hällbrink, M.; Elmquist, A.; Balaspiri, L.; Zorko, M.; Pooga, M.; Brasseur, R.; Langel, U. Deletion analogues of transportan. Biochim. Biophys. Acta 2000, 1467, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Pooga, M.; Hällbrink, M.; Zorko, M.; Langel, Ü. Cell penetration by transportan. FASEB J. 1998, 12, 67–77. [Google Scholar] [CrossRef]
- Madani, F.; Lindberg, S.; Langel, U.; Futaki, S.; Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011, 2011, 414729. [Google Scholar] [CrossRef] [Green Version]
- Langel, K.; Lindberg, S.; Copolovici, D.; Arukuusk, P.; Sillard, R.; Langel, Ü. Novel fatty acid modifications of transportan 10. Int. J. Pept. Res. Ther. 2010, 16, 247–255. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.; Xu, D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J. Control. Release 2016, 229, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 2012, 45, 1048–1056. [Google Scholar] [CrossRef]
- Nakase, I.; Akita, H.; Kogure, K.; Gräslund, A.; Langel, Ü.; Harashima, H.; Futaki, S. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc. Chem. Res. 2012, 45, 1132–1139. [Google Scholar] [CrossRef]
- Futaki, S.; Ohashi, W.; Suzuki, T.; Niwa, M.; Tanaka, S.; Ueda, K.; Harashima, H.; Sugiura, Y. Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjug. Chem. 2001, 12, 1005–1011. [Google Scholar] [CrossRef]
- Yamashita, H.; Oba, M.; Misawa, T.; Tanaka, M.; Hattori, T.; Naito, M.; Kurihara, M.; Demizu, Y. A helix-stabilized cell-penetrating peptide as an intracellular delivery tool. ChemBioChem 2016, 17, 137–140. [Google Scholar] [CrossRef]
- Guarracino, D.A.; Riordan, J.A.; Barreto, G.M.; Oldfield, A.L.; Kouba, C.M.; Agrinsoni, D. Macrocyclic control in helix mimetics. Chem. Rev. 2019, 119, 9915–9949. [Google Scholar] [CrossRef]
- Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 2000, 122, 5891–5892. [Google Scholar] [CrossRef]
- Fadzen, C.M.; Wolfe, J.M.; Cho, C.F.; Chiocca, E.A.; Lawler, S.E.; Pentelute, B.L. Perfluoroarene-based peptide macrocycles to enhance penetration across the blood-brain barrier. J. Am. Chem. Soc. 2017, 139, 15628–15631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lock, L.L.; Cheetham, A.G.; Cui, H. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol. Pharm. 2014, 11, 964–973. [Google Scholar] [CrossRef]
- Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J. Circular dichroism spectrum of a peptide 310-helix. J. Am. Chem. Soc. 1996, 118, 2744–2745. [Google Scholar] [CrossRef]
- Formaggio, F.; Crisma, M.; Rossi, P.; Scrimin, P.; Kaptein, B.; Broxterman, Q.B.; Kamphuis, J.; Toniolo, C. The first water-soluble 310-helical peptides. Chem. Eur. J. 2000, 6, 4498–4504. [Google Scholar] [CrossRef]
- Khalil, I.A.; Kogure, K.; Akita, H.; Harashima, H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 2006, 58, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäger, I.; Langel, K.; Lehto, T.; Eiríksdóttir, E.; Langel, U. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim. Biophys. Acta 2012, 1818, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oba, M.; Tanaka, M. Intracellular internalization mechanism of protein transfection reagents. Biol. Pharm. Bull. 2012, 35, 1064–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptide | Sequence | |
TP10 (F-1) | CF-XAGYLLGKINLKALAALAKKIL | |
F-2 | CF-XAS5*YLLS5*KINLKALAALAKKIL | |
F-3 | CF-XAGYLLGKINLKALAAS5*AKKS5*L | |
F-4 | CF-XAGYS5*LGKS5*NLKALAALAKKIL |
Peptide | N/P Ratio | Size (nm) | PDI | Zeta-Potential (mV) |
---|---|---|---|---|
F-1 | 2 | 3364 ± 689 | 0.707 ± 0.250 | 16.6 ± 1.2 |
4 | 291 ± 40 | 0.368 ± 0.041 | 19.1 ± 1.9 | |
8 | 352 ± 71 | 0.407 ± 0.038 | 15.5 ± 2.1 | |
F-2 | 2 | 226 ± 8 | 0.251 ± 0.018 | 23.4 ± 0.9 |
4 | 291 ± 61 | 0.324 ± 0.097 | 23.4 ± 1.4 | |
8 | 410 ± 59 | 0.411 ± 0.058 | 16.7 ± 2.2 | |
F-3 | 2 | 391 ± 8 | 0.417 ± 0.049 | 22.9 ± 1.1 |
4 | 352 ± 57 | 0.366 ± 0.054 | 18.0 ± 1.7 | |
8 | 324 ± 53 | 0.399 ± 0.083 | 20.6 ± 3.0 | |
F-4 | 2 | 480 ± 21 | 0.476 ± 0.015 | 19.3 ± 1.8 |
4 | 263 ± 15 | 0.332 ± 0.032 | 15.6 ± 1.1 | |
8 | 392 ± 91 | 0.350 ± 0.042 | 16.7 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, K.; Horikoshi, K.; Fujita, M.; Hirano, M.; Miyamoto, M.; Yokoo, H.; Demizu, Y. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers. Int. J. Mol. Sci. 2023, 24, 11768. https://doi.org/10.3390/ijms241411768
Tsuchiya K, Horikoshi K, Fujita M, Hirano M, Miyamoto M, Yokoo H, Demizu Y. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers. International Journal of Molecular Sciences. 2023; 24(14):11768. https://doi.org/10.3390/ijms241411768
Chicago/Turabian StyleTsuchiya, Keisuke, Kanako Horikoshi, Minami Fujita, Motoharu Hirano, Maho Miyamoto, Hidetomo Yokoo, and Yosuke Demizu. 2023. "Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers" International Journal of Molecular Sciences 24, no. 14: 11768. https://doi.org/10.3390/ijms241411768
APA StyleTsuchiya, K., Horikoshi, K., Fujita, M., Hirano, M., Miyamoto, M., Yokoo, H., & Demizu, Y. (2023). Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers. International Journal of Molecular Sciences, 24(14), 11768. https://doi.org/10.3390/ijms241411768