Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Clinico-Radiological Parameters
2.1. Clinical Parameters
2.1.1. Etiology
2.1.2. Tumor Burden
2.1.3. Liver Function Parameters
2.2. Pre-Treatment Radiologic Examinations
2.2.1. Hepatobiliary Phase of Magnetic Resonance Imaging (MRI)
2.2.2. Perfusion Changes in Computed Tomography (CT), MRI, and Contrast-Enhanced Ultrasound (CEUS)
2.2.3. Positron Emission Tomography-Computed Tomography (PET-CT)
2.3. Adverse Events (AEs)
2.3.1. Immune-Related Adverse Events (irAEs)
2.3.2. Anti-VEGF-Related AEs
Clinical Markers | Related Outcomes | Study Design (n) | Reference |
---|---|---|---|
Viral etiology (HBV + HCV) | Favorable OS, PFS of AB compared to SOR | Phase III RCT- IMbrave150 (336) | Cheng et al. [17] |
AFP reduction (≥75%) after Tx in HBV subjects | Favorable OS, PFS | Phase Ib and phase III IMbrave150 (440) | Zhu et al. [19] |
Viral etiology (HBV + HCV) | Favorable ORR | Retrospective (23) | Takeda et al. [21] |
Viral etiology (HBV + HCV) | Favorable OS, PFS | Retrospective (66) | Himmelsbach et al. [20] |
Macrovascular invasion | Unfavorable OS | Retrospective (121) | Chon et al. [24] |
Extrahepatic spread | Unfavorable PFS | Retrospective (433) | Fulgenzi et al. [25] |
Child–Pugh B | Treatment discontinuation | Retrospective (28) | Tanaka et al. [30] |
Child–Pugh B | Unfavorable OS, PFS | Retrospective (100) | Jost-Brinkmann et al. [26] |
Child–Pugh B | Unfavorable OS, PFS | Retrospective (66) | Himmelsbach et al. [20] |
Child–Pugh B | Unfavorable OS, PFS | Retrospective (457) | Tanaka et al. [27] |
High ALBI and ECOG | Unfavorable OS, PFS | Retrospective (147) | de Castro et al. [28] |
High ALBI | Unfavorable OS, PFS | Retrospective (50) | Sinner et al. [29] |
High mALBI | Unfavorable ORR, treatment discontinuation | Retrospective (28) | Tanaka et al. [30] |
High mALF score (mALBI + AFP) | Unfavorable OS, PFS | Retrospective (426) | Hatanaka et al. [32] |
Worsening ALBI at wk3 | Unfavorable OS | Retrospective (69) | Unome et al. [31] |
Heterogeneous/hyperintensity in HBP of MRI | Unfavorable PFS | Retrospective (35) | Sasaki et al. [36] |
Decline in TLR in the arterial phase of CT or MRI after Tx | Favorable DCR | Retrospective (19) | Onuoha et al. [38] |
Decrease in blood flow in CEUS after Tx | Favorable DCR, PFS | Retrospective (35) | Takada et al. [39] |
High tumor-to-normal ratio of FDG uptake in PET-CT | Unfavorable PFS and DCR | Retrospective (20) | Kawamura et al. [41] |
Grade 1/2 irAEs | Favorable OS, PFS | Retrospective (150) | Fukushima et al. [43] |
Skin reaction | Favorable OS | Retrospective (130) | Shimose et al. [44] |
Liver injury | Unfavorable OS | Retrospective (130) | Shimose et al. [44] |
Liver injury | Unfavorable OS | Retrospective (286) | Takaki et al. [48] |
Hypertension | Favorable DCR, PFS | Retrospective (286) | Tada et al. [50] |
Hypertension | Favorable OS | Retrospective (130) | Shimose et al. [44] |
Proteinuria | Favorable OS | Retrospective (286) | Takaki et al. [48] |
3. Blood-Based Biomarkers
3.1. Clinically Available Blood-Based Biomarkers
3.1.1. Alpha-Fetoprotein (AFP)
3.1.2. Protein Induced by Vitamin K Antagonist-II (PIVKA-II)
3.1.3. C-Reactive Protein (CRP)
3.1.4. Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR)
3.1.5. Prognostic Nutritional Index (PNI)
3.2. Other Blood-Based Biomarkers Based on Experimental Research
3.2.1. Serum IL-6
3.2.2. Peripheral Blood PD-1 Expression on Granulocytes
3.2.3. Factors Associated with Aberrant Angiogenesis
Blood Markers | Related Outcomes | Predictive/Prognostic | Study Design (n) | Reference |
---|---|---|---|---|
AFP ≥ 100 ng/mL | Unfavorable PFS | Prognostic | Retrospective (286) | Tada et al. [50] |
AFP < 100 ng/mL | Favorable OS, PFS | Prognostic | Retrospective (485) | Tada et al. [78] |
AFP reduction (≥75%, 6 wks) in HBV subjects | Favorable OS, PFS | Prognostic | Phase Ib and phase III IMbrave150 (440) | Zhu et al. [19] |
AFP reduction (≥50% or 20%, 6 wks) | Favorable ORR, PFS | Predictive, prognostic | Prospective (284) | Tamaki et al. [53] |
AFP reduction, 6 wks | Favorable ORR, OS, PFS | Predictive, prognostic | Retrospective (58) | Kuzuya et al. [54] |
Early AFP reduction, 3 wks | Favorable ORR, OS, PFS | Predictive, prognostic | Retrospective (75) | Campani et al. [55] |
PIVKA-II ≥ 186 mAU/mL | Unfavorable OS, PFS | Prognostic | Retrospective (121) | Chon et al. [24] |
PIVKA-II ≥ 400 mAU/mL | Unfavorable PFS | Prognostic | Retrospective (75) | Ochi et al. [57] |
Early increase in PIVKA-II | Unfavorable OS, PFS | Prognostic | Retrospective (69) | Unome et al. [31] |
High CRAFITY (CRP + AFP) score | Unfavorable OS, PFS, frequent AEs | Prognostic | Retrospective (297) | Hatanaka et al. [62] |
High CRAFITY (CRP + AFP) score | Unfavorable OS, PFS | Prognostic | Retrospective (89) | Teng et al. [61] |
High Neo-GPS (CRP + ALBI) score | Unfavorable OS, DCR | Predictive, prognostic | Retrospective (421) | Tada et al. [64] |
NLR > 3.21 | Unfavorable ORR | Predictive | Retrospective (40) | Eso et al. [71] |
NLR ≥ 3 | Unfavorable OS, treatment discontinuation | Prognostic | Retrospective (240) | Tada et al. [72] |
NLR > 3.2 | Unfavorable ORR, PFS | Predictive | Retrospective (100) | Jost-Brinkmann et al. [26] |
NLR ≥ 3 | Hyperprogressive disease | Prognostic | Retrospective (8) | Maesaka et al. [73] |
NLR ≥ 5 | Unfavorable OS | Prognostic | Retrospective (296) | Wu et al. [74] |
NLR ≥ 2.5 | Unfavorable OS, PFS | Prognostic | Retrospective (121) | Chon et al. [24] |
NLR decrease ≥ 10% (at 1st response evaluation) | Favorable OS | Prognostic | Retrospective (121) | Chon et al. [24] |
NLR ratio at second course < 1.97 | Favorable ORR, OS, PFS | Predictive, prognostic | Retrospective (110) | Matoya et al. [75] |
NLR > 3, PLR > 230 | Unfavorable PFS | Prognostic | Retrospective (48) | Wang et al. [76] |
PNI (albumin + peripheral lymphocyte counts) ≥ 47 | Favorable OS, PFS | Prognostic | Retrospective (286) | Takaki et al. [78] |
High serum interleukin-6 | Unfavorable DCR, OS, PFS | Predictive, prognostic | Prospective (165) | Yang et al. [81] |
High serum interleukin-6 | Unfavorable ORR, OS, PFS | Predictive, prognostic | Prospective (64) | Myojin et al. [82] |
Low baseline PD-1% on granulocytes | Favorable ORR, TTP | Predictive | Prospective (34) | Giovannini et al. [83] |
Elevated VEGF-D and ANG-2 | Durable disease control | Predictive | Retrospective (46) | Yang et al. [84] |
Low IGF-1 | Favorable OS, PFS | Prognostic | Phase III IMbrave150 (371) | Kaseb et al. [86] |
Low growth hormone | Favorable OS | Prognostic | Prospective (37) | Mohamed et al. [88] |
High anti-drug antibodies, 3 wks | Unfavorable OS, PFS | Prognostic | Prospective (174) | Kim et al. [89] |
High ctDNA | Unfavorable ORR, OS, PFS | Predictive, prognostic | Retrospective (85) | Matsumae et al. [90] |
TERT mutation within ctDNA | Unfavorable OS | Prognostic | Retrospective (85) | Matsumae et al. [90] |
Low CXCL9 within ctDNA | Unfavorable DCR | Predictive | Retrospective (29) | Hosoda et al. [91] |
4. Tissue-Driven Biomarkers
4.1. Biomarkers Related to Immune Cells
4.1.1. PD-L1 Expression
4.1.2. Immune Cell Infiltrations within Tumor Tissues
4.2. Atezolizumab-Bevacizumab Response Signature
5. Novel Biomarkers
5.1. Anti-Drug Antibodies (ADA)
5.2. Liquid Biopsy
5.2.1. Circulating Tumor DNA (ctDNA) Levels and TERT Mutation
5.2.2. CXCL9 within ctDNA
6. Potential but Unproven Markers
6.1. Sarcopenia and Obesity
6.2. Tumor Mutational Burden (TMB)
6.3. Gene Mutations
6.4. Gut Microbiome
7. Discussion
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, S.; Tovoli, F.; Trevisani, F. Mechanisms of Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma. Cancers 2022, 14, 4616. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Bumbaca, D.; Pastuskovas, C.V.; Boswell, C.A.; West, D.; Cowan, K.J.; Chiu, H.; McBride, J.; Johnson, C.; Xin, Y.; et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs 2016, 8, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F., 3rd; Gaudreault, J.; Damico, L.A.; et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 2184–2191. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Han, J.W.; Yoon, S.K. Tissue-resident lymphocytes: Implications in immunotherapy for hepatocellular carcinoma. Int. J. Mol. Sci. 2020, 22, 232. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Qin, S. Atezolizumab and bevacizumab for hepatocellular carcinoma: Mechanism, pharmacokinetics and future treatment strategies. Future Oncol. 2021, 17, 2243–2256. [Google Scholar] [CrossRef]
- Loosen, S.H.; Schulze-Hagen, M.; Leyh, C.; Benz, F.; Vucur, M.; Kuhl, C.; Trautwein, C.; Tacke, F.; Bruners, P.; Roderburg, C. IL-6 and IL-8 serum levels predict tumor response and overall survival after TACE for primary and secondary hepatic malignancies. Int. J. Mol. Sci. 2018, 19, 1766. [Google Scholar] [CrossRef] [Green Version]
- Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.-L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory activity of VEGF in cancer. Int. Rev. Cell Mol. Biol. 2017, 330, 295–342. [Google Scholar]
- Pfister, D.; Nunez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Beudeker, B.J.; Groothuismink, Z.M.; van der Eijk, A.A.; Debes, J.D.; Boonstra, A. Circulating cytokines reflect the etiology-specific immune environment in cirrhosis and HCC. Cancers 2022, 14, 4900. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.-L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Chan, L.; Kudo, M.; Sangro, B.; Kelley, R.; Furuse, J.; Park, J.; Sunpaweravong, P.; Fasolo, A.; Yau, T.; Kawaoka, T. 714P Impact of viral aetiology in the phase III HIMALAYA study of tremelimumab (T) plus durvalumab (D) in unresectable hepatocellular carcinoma (uHCC). Ann. Oncol. 2022, 33, S869–S870. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Vogel, A.; Rimassa, L.; Sun, H.C.; Abou-Alfa, G.K.; El-Khoueiry, A.; Pinato, D.J.; Sanchez Alvarez, J.; Daigl, M.; Orfanos, P.; Leibfried, M.; et al. Comparative Efficacy of Atezolizumab plus Bevacizumab and Other Treatment Options for Patients with Unresectable Hepatocellular Carcinoma: A Network Meta-Analysis. Liver Cancer 2021, 10, 240–248. [Google Scholar] [CrossRef]
- Zhu, A.X.; Dayyani, F.; Yen, C.-J.; Ren, Z.; Bai, Y.; Meng, Z.; Pan, H.; Dillon, P.; Mhatre, S.K.; Gaillard, V.E. Alpha-fetoprotein as a potential surrogate biomarker for atezolizumab + bevacizumab treatment of hepatocellular carcinoma. Clin. Cancer Res. 2022, 28, 3537–3545. [Google Scholar] [CrossRef]
- Himmelsbach, V.; Pinter, M.; Scheiner, B.; Venerito, M.; Sinner, F.; Zimpel, C.; Marquardt, J.U.; Trojan, J.; Waidmann, O.; Finkelmeier, F. Efficacy and safety of atezolizumab and bevacizumab in the real-world treatment of advanced hepatocellular carcinoma: Experience from four tertiary centers. Cancers 2022, 14, 1722. [Google Scholar] [CrossRef]
- Takeda, S.; Namisaki, T.; Tsuji, Y.; Fujimoto, Y.; Murata, K.; Enomoto, M.; Fujinaga, Y.; Nishimura, N.; Kitagawa, K.; Takaya, H. Initial Experience with Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma: A Real-world Retrospective Study. Anticancer Res. 2022, 42, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.W.; Bhattacharya, S.; Yanamandra, N.; Kilian, D.; Shi, H.; Yadavilli, S.; Katlinskaya, Y.; Kaczynski, H.; Conner, M.; Benson, W. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE 2018, 13, e0206223. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, C.G.; Hong, J.Y.; Kim, I.-h.; Kang, B.; Jung, S.; Kim, C.; Shin, S.J.; Choi, H.J.; Cheon, J. The presence and size of intrahepatic tumors determine the therapeutic efficacy of nivolumab in advanced hepatocellular carcinoma. Ther. Adv. Med. Oncol. 2022, 14, 17588359221113266. [Google Scholar] [CrossRef] [PubMed]
- Chon, Y.E.; Cheon, J.; Kim, H.; Kang, B.; Ha, Y.; Kim, D.Y.; Hwang, S.G.; Chon, H.J.; Kim, B.K. Predictive biomarkers of survival in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab treatment. Cancer Med. 2023, 12, 2731–2738. [Google Scholar] [CrossRef]
- Fulgenzi, C.A.M.; Cheon, J.; D’Alessio, A.; Nishida, N.; Ang, C.; Marron, T.U.; Wu, L.; Saeed, A.; Wietharn, B.; Cammarota, A. Reproducible safety and efficacy of atezolizumab plus bevacizumab for HCC in clinical practice: Results of the AB-real study. Eur. J. Cancer 2022, 175, 204–213. [Google Scholar] [CrossRef]
- Jost-Brinkmann, F.; Demir, M.; Wree, A.; Luedde, T.; Loosen, S.H.; Müller, T.; Tacke, F.; Roderburg, C.; Mohr, R. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: Results from a German real-world cohort. Aliment. Pharmacol. Ther. 2023, 57, 1313–1325. [Google Scholar] [CrossRef]
- Tanaka, T.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S. Therapeutic efficacy of atezolizumab plus bevacizumab treatment for unresectable hepatocellular carcinoma in patients with Child-Pugh class A or B liver function in real-world clinical practice. Hepatol. Res. 2022, 52, 773–783. [Google Scholar] [CrossRef]
- De Castro, T.; Jochheim, L.S.; Bathon, M.; Welland, S.; Scheiner, B.; Shmanko, K.; Roessler, D.; Ben Khaled, N.; Jeschke, M.; Ludwig, J.M. Atezolizumab and bevacizumab in patients with advanced hepatocellular carcinoma with impaired liver function and prior systemic therapy: A real-world experience. Ther. Adv. Med. Oncol. 2022, 14, 17588359221080298. [Google Scholar] [CrossRef]
- Sinner, F.; Pinter, M.; Scheiner, B.; Ettrich, T.J.; Sturm, N.; Gonzalez-Carmona, M.A.; Waidmann, O.; Finkelmeier, F.; Himmelsbach, V.; De Toni, E.N. Atezolizumab Plus Bevacizumab in Patients with Advanced and Progressing Hepatocellular Carcinoma: Retrospective Multicenter Experience. Cancers 2022, 14, 5966. [Google Scholar] [CrossRef]
- Tanaka, T.; Takata, K.; Yokoyama, K.; Fukuda, H.; Yamauchi, R.; Fukunaga, A.; Shakado, S.; Sakisaka, S.; Hirai, F. Pretreatment Modified Albumin–Bilirubin Grade Is an Important Predictive Factor Associated with the Therapeutic Response and the Continuation of Atezolizumab plus Bevacizumab Combination Therapy for Patients with Unresectable Hepatocellular Carcinoma. Curr. Oncol. 2022, 29, 4799–4810. [Google Scholar] [CrossRef]
- Unome, S.; Imai, K.; Takai, K.; Miwa, T.; Hanai, T.; Nishigaki, Y.; Hayashi, H.; Kochi, T.; Shimizu, S.; Nagano, J. Changes in ALBI Score and PIVKA-II within Three Months after Commencing Atezolizumab Plus Bevacizumab Treatment Affect Overall Survival in Patients with Unresectable Hepatocellular Carcinoma. Cancers 2022, 14, 6089. [Google Scholar] [CrossRef]
- Hatanaka, T.; Kakizaki, S.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E. Development and validation of a modified albumin–bilirubin grade and α-fetoprotein score (mALF score) for hepatocellular carcinoma patients receiving atezolizumab and bevacizumab. Hepatol. Int. 2023, 17, 86–96. [Google Scholar] [CrossRef]
- Ueno, A.; Masugi, Y.; Yamazaki, K.; Komuta, M.; Effendi, K.; Tanami, Y.; Tsujikawa, H.; Tanimoto, A.; Okuda, S.; Itano, O. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human CancersWNT/β-catenin–Associated Immune Exclusion across Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune TherapiesGenotyping of HCC in the Clinic. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, R.; Nagata, K.; Fukushima, M.; Haraguchi, M.; Miuma, S.; Miyaaki, H.; Soyama, A.; Hidaka, M.; Eguchi, S.; Shigeno, M. Evaluating the role of hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in predicting treatment impact of lenvatinib and atezolizumab plus bevacizumab on unresectable hepatocellular carcinoma. Cancers 2022, 14, 827. [Google Scholar] [CrossRef]
- Shigeta, K.; Datta, M.; Hato, T.; Kitahara, S.; Chen, I.X.; Matsui, A.; Kikuchi, H.; Mamessier, E.; Aoki, S.; Ramjiawan, R.R. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology 2020, 71, 1247–1261. [Google Scholar] [CrossRef]
- Onuoha, E.; Smith, A.D.; Cannon, R.; Khushman, M.d.; Kim, H. Perfusion Change of Hepatocellular Carcinoma during Atezolizumab plus Bevacizumab Treatment: A Pilot Study. J. Gastrointest. Cancer, 2022; in press. [Google Scholar] [CrossRef]
- Takada, H.; Yamashita, K.; Osawa, L.; Komiyama, Y.; Nakakuki, N.; Muraoka, M.; Suzuki, Y.; Sato, M.; Takano, S.; Fukasawa, M. Prediction of Therapeutic Response Using Contrast-Enhanced Ultrasound in Japanese Patients Treated with Atezolizumab and Bevacizumab for Unresectable Hepatocellular Carcinoma. Oncology 2023, 101, 173–184. [Google Scholar] [CrossRef]
- Seo, S.; Hatano, E.; Higashi, T.; Hara, T.; Tada, M.; Tamaki, N.; Iwaisako, K.; Ikai, I.; Uemoto, S. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin. Cancer Res. 2007, 13, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y.; Kobayashi, M.; Shindoh, J.; Matsumura, M.; Okubo, S.; Muraishi, N.; Fujiyama, S.; Hosaka, T.; Saitoh, S.; Sezaki, H. Pretreatment Positron Emission Tomography with 18F-Fluorodeoxyglucose May Be a Useful New Predictor of Early Progressive Disease following Atezolizumab plus Bevacizumab in Patients with Unresectable Hepatocellular Carcinoma. Oncology 2022, 100, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S. Association of early bevacizumab interruption with efficacy of atezolizumab plus bevacizumab for advanced hepatocellular carcinoma: A landmark analysis. Hepatol. Res. 2022, 52, 462–470. [Google Scholar] [CrossRef]
- Fukushima, T.; Morimoto, M.; Kobayashi, S.; Ueno, M.; Uojima, H.; Hidaka, H.; Kusano, C.; Chuma, M.; Numata, K.; Tsuruya, K. Association between Immune-Related Adverse Events and Survival in Patients with Hepatocellular Carcinoma Treated with Atezolizumab Plus Bevacizumab. Oncologist 2023, 28, oyad090. [Google Scholar] [CrossRef] [PubMed]
- Shimose, S.; Iwamoto, H.; Tanaka, M.; Niizeki, T.; Kajiwara, M.; Itano, S.; Moriyama, E.; Shirono, T.; Noda, Y.; Kamachi, N. Association between Adverse Events and Prognosis in Patients with Hepatocellular Carcinoma Treated with Atezolizumab Plus Bevacizumab: A Multicenter Retrospective Study. Cancers 2022, 14, 4284. [Google Scholar] [CrossRef] [PubMed]
- Yokohama, K.; Asai, A.; Matsui, M.; Okamoto, N.; Yasuoka, H.; Nishikawa, T.; Ohama, H.; Tsuchimoto, Y.; Inoue, Y.; Fukunishi, S. Liver dysfunction is associated with poor prognosis in patients after immune checkpoint inhibitor therapy. Sci. Rep. 2020, 10, 14470. [Google Scholar] [CrossRef]
- Yamamoto, T.; Ito, T.; Hase, T.; Ishigami, M.; Mizuno, K.; Yamamoto, K.; Imai, N.; Ishizu, Y.; Honda, T.; Shibata, H. Immune-related liver injury is a poor prognostic factor in patients with nonsmall cell lung cancer treated with immune checkpoint inhibitors. Cancer Investig. 2022, 40, 189–198. [Google Scholar] [CrossRef]
- Chan, S.L.; Yip, T.C.F.; Wong, V.W.S.; Tse, Y.K.; Yuen, B.W.Y.; Luk, H.W.S.; Lui, R.N.S.; Chan, H.L.Y.; Mok, T.S.K.; Wong, G.L.H. Pattern and impact of hepatic adverse events encountered during immune checkpoint inhibitors—A territory-wide cohort study. Cancer Med. 2020, 9, 7052–7061. [Google Scholar] [CrossRef]
- Takaki, S.; Kurosaki, M.; Mori, N.; Tsuji, K.; Ochi, H.; Marusawa, H.; Nakamura, S.; Tada, T.; Narita, R.; Uchida, Y. Effects on survival of the adverse event of atezolizumab plus bevacizumab for hepatocellular carcinoma: A multicenter study by the Japan Red Cross Liver Study Group. Investig. New Drugs 2023, 41, 340–349. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S. Adverse events as potential predictive factors of therapeutic activity in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab. Cancer Med. 2022, 12, 7772–7783. [Google Scholar] [CrossRef]
- Syrigos, K.N.; Karapanagiotou, E.; Boura, P.; Manegold, C.; Harrington, K. Bevacizumab-induced hypertension: Pathogenesis and management. BioDrugs 2011, 25, 159–169. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, N.; Tada, T.; Kurosaki, M.; Yasui, Y.; Ochi, H.; Mashiba, T.; Sakamoto, A.; Marusawa, H.; Narita, R.; Uchida, Y. Optimal threshold of alpha-fetoprotein response in patients with unresectable hepatocellular carcinoma treated with atezolizumab and bevacizumab. Investig. New Drugs 2022, 40, 1290–1297. [Google Scholar] [CrossRef]
- Kuzuya, T.; Kawabe, N.; Hashimoto, S.; Miyahara, R.; Sawaki, A.; Nakano, T.; Nakaoka, K.; Tanaka, H.; Miyachi, Y.; Mii, A. Early changes in alpha-fetoprotein are a useful predictor of efficacy of atezolizumab plus bevacizumab treatment in patients with advanced hepatocellular carcinoma. Oncology 2022, 100, 12–21. [Google Scholar] [CrossRef]
- Campani, C.; Bamba-Funck, J.; Campion, B.; Sidali, S.; Blaise, L.; Ganne-Carrié, N.; Demory, A.; Sutter, O.; Larrey, E.; Evain, M. Baseline ALBI score and early variation of serum AFP predicts outcomes in patients with HCC treated by atezolizumab–bevacizumab. Liver Int. 2023, 43, 708–717. [Google Scholar] [CrossRef]
- Sun, X.; Mei, J.; Lin, W.; Yang, Z.; Peng, W.; Chen, J.; Zhang, Y.; Xu, L.; Chen, M. Reductions in AFP and PIVKA-II can predict the efficiency of anti-PD-1 immunotherapy in HCC patients. BMC Cancer 2021, 21, 775. [Google Scholar] [CrossRef]
- Ochi, H.; Kurosaki, M.; Joko, K.; Mashiba, T.; Tamaki, N.; Tsuchiya, K.; Marusawa, H.; Tada, T.; Nakamura, S.; Narita, R. Usefulness of neutrophil-to-lymphocyte ratio in predicting progression and survival outcomes after atezolizumab–bevacizumab treatment for hepatocellular carcinoma. Hepatol. Res. 2023, 53, 61–71. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Iivanainen, S.; Ahvonen, J.; Knuuttila, A.; Tiainen, S.; Koivunen, J.P. Elevated CRP levels indicate poor progression-free and overall survival on cancer patients treated with PD-1 inhibitors. Esmo Open 2019, 4, e000531. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy–development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef]
- Teng, W.; Lin, C.-C.; Su, C.-W.; Lin, P.-T.; Hsieh, Y.-C.; Chen, W.-T.; Ho, M.-M.; Wang, C.-T.; Chai, P.-M.; Hsieh, J.C.-H. Combination of CRAFITY score with Alpha-fetoprotein response predicts a favorable outcome of atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma. Am. J. Cancer Res. 2022, 12, 1899. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Kakizaki, S.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: A multicenter retrospective study. Hepatol. Int. 2022, 16, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Kaibori, M.; Hiraoka, A.; Matsui, K.; Matsushima, H.; Kosaka, H.; Yamamoto, H.; Yamaguchi, T.; Yoshida, K.; Sekimoto, M. Predicting complications following surgical resection of hepatocellular carcinoma using newly developed neo-Glasgow prognostic score with ALBI grade: Comparison of open and laparoscopic surgery cases. Cancers 2022, 14, 1402. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Hiraoka, A.; Kariyama, K.; Tani, J.; Hirooka, M.; Takaguchi, K.; Atsukawa, M.; Fukunishi, S.; Itobayashi, E. New prognostic system based on inflammation and liver function predicts prognosis in patients with advanced unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: A validation study. Cancer Med. 2022, 12, 6980–6993. [Google Scholar] [CrossRef] [PubMed]
- Ohki, S.; Shibata, M.; Gonda, K.; Machida, T.; Shimura, T.; Nakamura, I.; Ohtake, T.; Koyama, Y.; Suzuki, S.; Ohto, H. Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypoproteinemia in patients with cancer. Oncol. Rep. 2012, 28, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Sunakawa, Y.; Yang, D.; Cao, S.; Zhang, W.; Moran, M.; Astrow, S.H.; Hsiang, J.; Stephens, C.; Tsuji, A.; Takahashi, T. Immune-related genes to dominate neutrophil-lymphocyte ratio (NLR) associated with survival of cetuximab treatment in metastatic colorectal cancer. Clin. Color. Cancer 2018, 17, e741–e749. [Google Scholar] [CrossRef]
- Chen, Z.; Raghav, K.; Lieu, C.; Jiang, Z.; Eng, C.; Vauthey, J.; Chang, G.; Qiao, W.; Morris, J.; Hong, D. Cytokine profile and prognostic significance of high neutrophil-lymphocyte ratio in colorectal cancer. Br. J. Cancer 2015, 112, 1088–1097. [Google Scholar] [CrossRef]
- Pine, J.; Morris, E.; Hutchins, G.; West, N.; Jayne, D.; Quirke, P.; Prasad, K. Systemic neutrophil-to-lymphocyte ratio in colorectal cancer: The relationship to patient survival, tumour biology and local lymphocytic response to tumour. Br. J. Cancer 2015, 113, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Sangro, B.; Melero, I.; Wadhawan, S.; Finn, R.S.; Abou-Alfa, G.K.; Cheng, A.-L.; Yau, T.; Furuse, J.; Park, J.-W.; Boyd, Z. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 2020, 73, 1460–1469. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Özbek, U.; Lin, J.Y.; Sung, M.; Schwartz, M.; Branch, A.D.; Ang, C. Predictive value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in advanced hepatocellular carcinoma patients treated with anti–PD-1 therapy. Cancer Med. 2020, 9, 4962–4970. [Google Scholar] [CrossRef]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment neutrophil-to-lymphocyte ratio as a predictive marker of response to atezolizumab plus bevacizumab for hepatocellular carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S. Neutrophil–lymphocyte ratio predicts early outcomes in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: A multicenter analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 698–706. [Google Scholar] [CrossRef]
- Maesaka, K.; Sakamori, R.; Yamada, R.; Tahata, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Mita, E.; Ito, T.; Hagiwara, H. Hyperprogressive disease in patients with unresectable hepatocellular carcinoma receiving atezolizumab plus bevacizumab therapy. Hepatol. Res. 2022, 52, 298–307. [Google Scholar] [CrossRef]
- Wu, Y.L.; Fulgenzi, C.A.M.; D’Alessio, A.; Cheon, J.; Nishida, N.; Saeed, A.; Wietharn, B.; Cammarota, A.; Pressiani, T.; Personeni, N. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as prognostic biomarkers in unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab. Cancers 2022, 14, 5834. [Google Scholar] [CrossRef]
- Matoya, S.; Suzuki, T.; Matsuura, K.; Suzuki, Y.; Okumura, F.; Nagura, Y.; Sobue, S.; Kuroyanagi, K.; Kusakabe, A.; Koguchi, H. The neutrophil-to-lymphocyte ratio at the start of the second course during atezolizumab plus bevacizumab therapy predicts therapeutic efficacy in patients with advanced hepatocellular carcinoma: A multicenter analysis. Hepatol. Res. 2023, 53, 511–521. [Google Scholar] [CrossRef]
- Wang, J.-H.; Chen, Y.-Y.; Kee, K.-M.; Wang, C.-C.; Tsai, M.-C.; Kuo, Y.-H.; Hung, C.-H.; Li, W.-F.; Lai, H.-L.; Chen, Y.-H. The prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma receiving atezolizumab plus bevacizumab. Cancers 2022, 14, 343. [Google Scholar] [CrossRef]
- Pravisani, R.; Mocchegiani, F.; Isola, M.; Lorenzin, D.; Adani, G.L.; Cherchi, V.; De Martino, M.; Risaliti, A.; Lai, Q.; Vivarelli, M. Postoperative trends and prognostic values of inflammatory and nutritional biomarkers after liver transplantation for hepatocellular carcinoma. Cancers 2021, 13, 513. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Kariyama, K.; Tani, J.; Hirooka, M.; Takaguchi, K.; Atsukawa, M.; Fukunishi, S.; Itobayashi, E. Nutritional status is associated with prognosis in patients with advanced unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab. Oncology 2023, 101, 270–282. [Google Scholar] [CrossRef]
- Shakiba, E.; Ramezani, M.; Sadeghi, M. Evaluation of serum interleukin-6 levels in hepatocellular carcinoma patients: A systematic review and meta-analysis. Clin. Exp. Hepatol. 2018, 4, 182–190. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Fujieda, K.; Senju, S.; Ikeda, T.; Oshiumi, H.; Nishimura, Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci. 2018, 109, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kang, B.; Ha, Y.; Lee, S.H.; Kim, I.; Kim, H.; Lee, W.S.; Kim, G.; Jung, S.; Rha, S.Y. High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep. 2023, 5, 100672. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Sakamori, R.; Maesaka, K.; Matsumae, T.; Sawai, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Tanaka, S. Interleukin-6 is a circulating prognostic biomarker for hepatocellular carcinoma patients treated with combined immunotherapy. Cancers 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, C.; Suzzi, F.; Tovoli, F.; Bruccoleri, M.; Marseglia, M.; Alimenti, E.; Fornari, F.; Iavarone, M.; Piscaglia, F.; Gramantieri, L. Low-Baseline PD1+ Granulocytes Predict Responses to Atezolizumab–Bevacizumab in Hepatocellular Carcinoma. Cancers 2023, 15, 1661. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Suda, G.; Maehara, O.; Ohara, M.; Yoda, T.; Sasaki, T.; Kohya, R.; Yoshida, S.; Hosoda, S.; Tokuchi, Y. Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 593. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, Q.; Shao, X.; Zhang, T.; Xue, C.; Shi, S.; Zhao, D.; Lin, Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI 3K/Akt signal pathway. Cell Prolif. 2017, 50, e12390. [Google Scholar] [CrossRef] [Green Version]
- Kaseb, A.O.; Guan, Y.; Gok Yavuz, B.; Abbas, A.R.; Lu, S.; Hasanov, E.; Toh, H.C.; Verret, W.; Wang, Y. Serum IGF-1 Scores and Clinical Outcomes in the Phase III IMbrave150 Study of Atezolizumab Plus Bevacizumab versus Sorafenib in Patients with Unresectable Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2022, 9, 1065–1079. [Google Scholar] [CrossRef]
- Brunet-Dunand, S.E.; Vouyovitch, C.; Araneda, S.; Pandey, V.; Vidal, L.J.-P.; Print, C.; Mertani, H.C.; Lobie, P.E.; Perry, J.K. Autocrine human growth hormone promotes tumor angiogenesis in mammary carcinoma. Endocrinology 2009, 150, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Y.I.; Duda, D.G.; Awiwi, M.O.; Lee, S.S.; Altameemi, L.; Xiao, L.; Morris, J.S.; Wolff, R.A.; Elsayes, K.M.; Hatia, R.I. Plasma growth hormone is a potential biomarker of response to atezolizumab and bevacizumab in advanced hepatocellular carcinoma patients. Oncotarget 2022, 13, 1314–1321. [Google Scholar] [CrossRef]
- Kim, C.; Yang, H.; Kim, I.; Kang, B.; Kim, H.; Kim, H.; Lee, W.S.; Jung, S.; Lim, H.Y.; Cheon, J. Association of High Levels of Antidrug Antibodies against Atezolizumab with Clinical Outcomes and T-Cell Responses in Patients with Hepatocellular Carcinoma. JAMA Oncol. 2022, 8, 1825–1829. [Google Scholar] [CrossRef]
- Matsumae, T.; Kodama, T.; Myojin, Y.; Maesaka, K.; Sakamori, R.; Takuwa, A.; Oku, K.; Motooka, D.; Sawai, Y.; Oshita, M. Circulating cell-free DNA profiling predicts the therapeutic outcome in advanced hepatocellular carcinoma patients treated with combination immunotherapy. Cancers 2022, 14, 3367. [Google Scholar] [CrossRef]
- Hosoda, S.; Suda, G.; Sho, T.; Ogawa, K.; Kimura, M.; Yang, Z.; Yoshida, S.; Kubo, A.; Tokuchi, Y.; Kitagataya, T. Low baseline CXCL9 predicts early progressive disease in unresectable HCC with atezolizumab plus bevacizumab treatment. Liver Cancer 2022, 12, 156–170. [Google Scholar] [CrossRef]
- Yamazaki, T.; Akiba, H.; Iwai, H.; Matsuda, H.; Aoki, M.; Tanno, Y.; Shin, T.; Tsuchiya, H.; Pardoll, D.M.; Okumura, K. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 2002, 169, 5538–5545. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.S.; Laurent, A.; Azoulay, D. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship with clinical and pathological features. Hepatology 2016, 64, 2038–2046. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.-Y.; Qiu, S.-J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.-Z.; Shi, Y.-H.; Xiao, Y.-S. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 2009, 15, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.-H.; He, A.R.; Ryoo, B.-Y. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef]
- Duffy, A.G.; Ulahannan, S.V.; Makorova-Rusher, O.; Rahma, O.; Wedemeyer, H.; Pratt, D.; Davis, J.L.; Hughes, M.S.; Heller, T.; ElGindi, M. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 2017, 66, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Sternheim, N.; Agarwal, P.; Suchomel, J.; Vadhavkar, S.; Bruno, R.; Ballinger, M.; Bernaards, C.A.; Chan, P.; Ruppel, J. Evaluation of atezolizumab immunogenicity: Clinical pharmacology (part 1). Clin. Transl. Sci. 2022, 15, 130–140. [Google Scholar] [CrossRef]
- Ogawa, K.; Kanzaki, H.; Chiba, T.; Ao, J.; Qiang, N.; Ma, Y.; Zhang, J.; Yumita, S.; Ishino, T.; Unozawa, H. Effect of Atezolizumab plus Bevacizumab in Patients with Hepatocellular Carcinoma Harboring CTNNB1 Mutation in Early Clinical Experience. J. Cancer 2022, 13, 2656. [Google Scholar] [CrossRef]
- Litchfield, K.; Reading, J.L.; Puttick, C.; Thakkar, K.; Abbosh, C.; Bentham, R.; Watkins, T.B.; Rosenthal, R.; Biswas, D.; Rowan, A. Meta-analysis of tumor-and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021, 184, 596–614.e514. [Google Scholar] [CrossRef] [PubMed]
- Gorbachev, A.V.; Kobayashi, H.; Kudo, D.; Tannenbaum, C.S.; Finke, J.H.; Shu, S.; Farber, J.M.; Fairchild, R.L. CXC chemokine ligand 9/monokine induced by IFN-γ production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J. Immunol. 2007, 178, 2278–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, S.; Shirabe, K.; Matsumoto, Y.; Yoshiya, S.; Muto, J.; Harimoto, N.; Yamashita, Y.-i.; Ikegami, T.; Yoshizumi, T.; Nishie, A. Effect of body composition on outcomes after hepatic resection for hepatocellular carcinoma. Ann. Surg. Oncol. 2014, 21, 3063–3068. [Google Scholar] [CrossRef] [PubMed]
- Takada, H.; Kurosaki, M.; Nakanishi, H.; Takahashi, Y.; Itakura, J.; Tsuchiya, K.; Yasui, Y.; Tamaki, N.; Takaura, K.; Komiyama, Y. Impact of pre-sarcopenia in sorafenib treatment for advanced hepatocellular carcinoma. PLoS ONE 2018, 13, e0198812. [Google Scholar] [CrossRef] [PubMed]
- Uojima, H.; Chuma, M.; Tanaka, Y.; Hidaka, H.; Nakazawa, T.; Iwabuchi, S.; Kobayashi, S.; Hattori, N.; Ogushi, K.; Morimoto, M. Skeletal muscle mass influences tolerability and prognosis in hepatocellular carcinoma patients treated with lenvatinib. Liver Cancer 2020, 9, 193–206. [Google Scholar] [CrossRef]
- Toshida, K.; Itoh, S.; Tomiyama, T.; Morinaga, A.; Kosai, Y.; Tomino, T.; Kurihara, T.; Nagao, Y.; Morita, K.; Harada, N. Comparison of the prognostic effect of sarcopenia on atezolizumab plus bevacizumab and lenvatinib therapy in hepatocellular carcinoma patients. JGH Open 2022, 6, 477–486. [Google Scholar] [CrossRef]
- Akce, M.; Liu, Y.; Zakka, K.; Martini, D.J.; Draper, A.; Alese, O.B.; Shaib, W.L.; Wu, C.; Wedd, J.P.; Sellers, M.T. Impact of sarcopenia, BMI, and inflammatory biomarkers on survival in advanced hepatocellular carcinoma treated with anti-PD-1 antibody. Am. J. Clin. Oncol. 2021, 44, 74–81. [Google Scholar] [CrossRef]
- Vithayathil, M.; D’Alessio, A.; Fulgenzi, C.A.M.; Nishida, N.; Schönlein, M.; von Felden, J.; Schulze, K.; Wege, H.; Saeed, A.; Wietharn, B. Impact of body mass index in patients receiving atezolizumab plus bevacizumab for hepatocellular carcinoma. Hepatol. Int. 2023; in press. [Google Scholar] [CrossRef]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancerstmb predicts response to immunotherapy in diverse cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Bai, X.; Wang, J.; Tang, X.-R.; Wu, D.-H.; Du, S.-S.; Du, X.-J.; Zhang, Y.-W.; Zhu, H.-B.; Fang, Y. Combination of TMB and CNA Stratifies Prognostic and Predictive Responses to Immunotherapy Across Metastatic CancerPrognostic and Predictive of the Combination of TMB and CNA. Clin. Cancer Res. 2019, 25, 7413–7423. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, Y.; Jia, R.; Yue, C.; Chang, L.; Liu, R.; Zhang, G.; Zhao, C.; Zhang, Y.; Chen, C. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: An open-label, dose escalation and expansion study. Clin. Cancer Res. 2019, 25, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Pinyol, R.; Sia, D.; Llovet, J.M. Immune Exclusion-Wnt/CTNNB1 Class Predicts Resistance to Immunotherapies in HCCCTNNB1-Mutated HCC Tumors Are Resistant to Immunotherapy. Clin. Cancer Res. 2019, 25, 2021–2023. [Google Scholar] [CrossRef] [Green Version]
- Kuwano, A.; Yada, M.; Narutomi, F.; Nagasawa, S.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 2022, 24, 216. [Google Scholar] [CrossRef]
- Guo, G.; Yu, M.; Xiao, W.; Celis, E.; Cui, Y. Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor ImmunityLocal p53 Activation in the TME Enhances Antitumor Immunity. Cancer Res. 2017, 77, 2292–2305. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.L.; Hibshman, G.; Hu, K.; Ferrara, S.E.; Costello, J.C.; Kim, W.; Tamayo, P.; Cech, T.R.; Huang, F.W. Mesenchymal and MAPK Expression Signatures Associate with Telomerase Promoter Mutations in Multiple CancersMesenchymal/MAPK Signatures of TERT Promoter Mutants. Mol. Cancer Res. 2020, 18, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.P.; Tong, P.; Diao, L.; Cardnell, R.J.; Gibbons, D.L.; William, W.N.; Skoulidis, F.; Parra, E.R.; Rodriguez-Canales, J.; Wistuba, I.I. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal TransitionPan-Cancer EMT Molecular and Immune Alterations. Clin. Cancer Res. 2016, 22, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat. Rev. Clin. Oncol. 2017, 14, 115–128. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Santoni, M.; Rizzo, A.; Kucharz, J.; Mollica, V.; Rosellini, M.; Marchetti, A.; Tassinari, E.; Monteiro, F.S.M.; Soares, A.; Molina-Cerrillo, J.; et al. Complete remissions following immunotherapy or immuno-oncology combinations in cancer patients: The MOUSEION-03 meta-analysis. Cancer Immunol. Immunother. 2023, 72, 1365–1379. [Google Scholar] [CrossRef]
- Di Federico, A.; Rizzo, A.; Carloni, R.; De Giglio, A.; Bruno, R.; Ricci, D.; Brandi, G. Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: Preclinical rationale and ongoing clinical trials. Expert Opin. Investig. Drugs 2022, 31, 361–369. [Google Scholar] [CrossRef]
- Rizzo, A.; Cusmai, A.; Gadaleta-Caldarola, G.; Palmiotti, G. Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma? Expert Rev. Gastroenterol. Hepatol. 2022, 16, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Jang, M.; Kim, Y.; Leem, G.; Kim, K.H.; Lee, H.; Kim, T.-S.; Choi, S.J.; Kim, H.-D.; Han, J.W. VEGF-A drives TOX-dependent T cell exhaustion in anti–PD-1–resistant microsatellite stable colorectal cancers. Sci. Immunol. 2019, 4, eaay0555. [Google Scholar] [CrossRef] [PubMed]
Tissue Markers | Related Outcomes | Study Design (n) | Reference |
---|---|---|---|
PD-L1 expression CPS ≥ 1% (IHC, clone SP263) | Favorable ORR, PFS of AB compared to SOR | Phase III RCT- IMbrave150 (336) | Cheng et al. [17] |
Signature associated with the PD-L1 expression (RNA sequencing) | Favorable ORR, PFS | Phase Ib and phase III IMbrave150 (358) | Zhu et al. [97] |
TERT promoter mutation (whole exome sequencing) | Favorable ORR, PFS of AB compared to SOR | Phase Ib and phase III IMbrave150 (358) | Zhu et al. [97] |
High atezolizumab–bevacizumab response signature (ABRS) -PD-L1 and effector T cell signatures (RNA sequencing) | Favorable ORR, PFS | Phase Ib and phase III IMbrave150 (358) | Zhu et al. [97] |
High infiltration of CD3/8+ T cells, Granzyme+ T cells, and MHC-I+ tumor cells (IHC) | Favorable ORR | Phase Ib and phase III IMbrave150 (358) | Zhu et al. [97] |
High expression of CD4/8+ T cells, Treg cells, B cells, and DCs (RNA sequencing) | Favorable ORR, PFS | Phase Ib and phase III IMbrave150 (358) | Zhu et al. [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.W.; Jang, J.W. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 11799. https://doi.org/10.3390/ijms241411799
Han JW, Jang JW. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2023; 24(14):11799. https://doi.org/10.3390/ijms241411799
Chicago/Turabian StyleHan, Ji Won, and Jeong Won Jang. 2023. "Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma" International Journal of Molecular Sciences 24, no. 14: 11799. https://doi.org/10.3390/ijms241411799
APA StyleHan, J. W., & Jang, J. W. (2023). Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. International Journal of Molecular Sciences, 24(14), 11799. https://doi.org/10.3390/ijms241411799