Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway
Abstract
:1. Introduction
2. Results
2.1. Insulin Treatment Enhances mRNA Abundance of per1a and per2 in the Liver of Goldfish
2.2. Insulin Treatment Enhances mRNA Abundance of per Genes Independently of Protein Translation
2.3. Insulin and Dexamethasone Have Independent Effects over per1a and per2 mRNA Abundance
2.4. Insulin-Mediated Induction of per Genes Is Reversed by the Inactivation of the PI3K Pathway
2.5. Insulin-Mediated Induction of per1a and per2 Is Independent of the MEK Pathway
3. Discussion
4. Materials and Methods
4.1. Animals and Housing
4.2. Drugs
4.3. Primary Hepatic Cultures
4.4. Experimental Designs
4.4.1. Insulin Effects on Hepatic Clock Gene Expression
4.4.2. Transcription Dependence of Insulin Action on Clock Genes
4.4.3. Possible Interaction between Dexamethasone and Insulin Treatments on per1 and per2 Induction
4.4.4. Second Messenger Pathways Activated by Insulin in Goldfish Cultured Liver
4.4.5. Involvement of PI3K and MEK/ERK Pathways on Insulin-Mediated per1 and per2 Induction
4.5. Western Blotting
4.6. Assessment of mRNA Abundance by RT-qPCR
4.7. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roenneberg, T.; Merrow, M. The Network of Time: Understanding the Molecular Circadian System. Curr. Biol. 2003, 13, R198–R207. [Google Scholar] [CrossRef] [Green Version]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nat. Rev. Mol. Cell Biol 2020, 21, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U. Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks. Neuron 2012, 74, 246–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatine, G.; Vallone, D.; Gothilf, Y.; Foulkes, N.S. It’s Time to Swim! Zebrafish and the Circadian Clock. FEBS Lett. 2011, 585, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Schibler, U.; Gotic, I.; Saini, C.; Gos, P.; Curie, T.; Emmenegger, Y.; Sinturel, F.; Gosselin, P.; Gerber, A.; Fleury-Olela, F.; et al. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2015; Volume 80, pp. 223–232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef] [PubMed]
- Cahill, G.M. Clock Mechanisms in Zebrafish. Cell Tissue Res. 2002, 309, 27–34. [Google Scholar] [CrossRef]
- Sánchez-Bretaño, A.; Alonso-Gómez, Á.L.; Delgado, M.J.; Isorna, E. The Liver of Goldfish as a Component of the Circadian System: Integrating a Network of Signals. Gen. Comp. Endocrinol. 2015, 221, 213–216. [Google Scholar] [CrossRef]
- Frøland Steindal, I.A.; Whitmore, D. Circadian Clocks in Fish-What Have We Learned so Far? Biology 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Isorna, E.; de Pedro, N.; Valenciano, A.I.; Alonso-Gómez, Á.L.; Delgado, M.J. Interplay between the Endocrine and Circadian Systems in Fishes. J. Endocrinol. 2017, 232, R141–R159. [Google Scholar] [CrossRef] [Green Version]
- West, A.C.; Iversen, M.; Jørgensen, E.H.; Sandve, S.R.; Hazlerigg, D.G.; Wood, S.H. Diversified Regulation of Circadian Clock Gene Expression Following Whole Genome Duplication. PLoS Genet. 2020, 16, e1009097. [Google Scholar] [CrossRef]
- Golombek, D.A.; Rosenstein, R.E. Physiology of Circadian Entrainment. Physiol. Rev. 2010, 90, 1063–1102. [Google Scholar] [CrossRef] [Green Version]
- Ashton, A.; Foster, R.G.; Jagannath, A. Photic Entrainment of the Circadian System. Int. J. Mol. Sci. 2022, 23, 729. [Google Scholar] [CrossRef]
- López-Olmeda, J.F. Nonphotic Entrainment in Fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 203, 133–143. [Google Scholar] [CrossRef]
- Mendoza, J. Circadian Clocks: Setting Time by Food. J. Neuroendocrinol. 2007, 19, 127–137. [Google Scholar] [CrossRef]
- López-Olmeda, J.F.; Tartaglione, E.V.; De La Iglesia, H.O.; Sánchez-Vázquez, F.J. Feeding Entrainment of Food-Anticipatory Activity and Per1 Expression in the Brain and Liver of Zebrafish under Different Lighting and Feeding Conditions. Chronobiol. Int. 2010, 27, 1380–1400. [Google Scholar] [CrossRef]
- Saiz, N.; Gómez-Boronat, M.; De Pedro, N.; Delgado, M.J.; Isorna, E. The Lack of Light-Dark and Feeding-Fasting Cycles Alters Temporal Events in the Goldfish (Carassius auratus) Stress Axis. Animals 2021, 11, 669. [Google Scholar] [CrossRef]
- Ferrell, J.M.; Chiang, J.Y.L. Circadian Rhythms in Liver Metabolism and Disease. Acta Pharm. Sin. B 2015, 5, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Pickel, L.; Sung, H.K. Feeding Rhythms and the Circadian Regulation of Metabolism. Front. Nutr. 2020, 7, 39. [Google Scholar] [CrossRef]
- Damiola, F.; Le Minli, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted Feeding Uncouples Circadian Oscillators in Peripheral Tissues from the Central Pacemaker in the Suprachiasmatic Nucleus. Genes Dev. 2000, 14, 2950–2961. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, A.; Vivas, Y.; De Pedro, N.; Delgado, M.J.; Velarde, E.; Isorna, E. Feeding Time Synchronizes Clock Gene Rhythmic Expression in Brain and Liver of Goldfish (Carassius auratus). J. Biol. Rhythms. 2011, 26, 24–33. [Google Scholar] [CrossRef]
- Gómez-Boronat, M.; Sáiz, N.; Delgado, M.J.; de Pedro, N.; Isorna, E. Time-Lag in Feeding Schedule Acts as a Stressor That Alters Circadian Oscillators in Goldfish. Front. Physiol. 2018, 9, 1749. [Google Scholar] [CrossRef] [PubMed]
- Vera, L.M.; Negrini, P.; Zagatti, C.; Frigato, E.; Sánchez-Vázquez, F.J.; Bertolucci, C. Light and Feeding Entrainment of the Molecular Circadian Clock in a Marine Teleost (Sparus aurata). Chronobiol. Int. 2013, 30, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.S.; Serrano, I.; Sánchez-Vázquez, F.J.; López-Olmeda, J.F. Circadian Rhythms of Clock Gene Expression in Nile Tilapia (Oreochromis niloticus) Central and Peripheral Tissues: Influence of Different Lighting and Feeding Conditions. J. Comp. Physiol. B 2016, 186, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.; Takahashi, J.S. Circadian Integration of Metabolism and Energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisembaum, L.G.; De Pedro, N.; Delgado, M.J.; Sánchez-Bretaño, A.; Isorna, E. Orexin as an Input of Circadian System in Goldfish: Effects on Clock Gene Expression and Locomotor Activity Rhythms. Peptides 2014, 52, 29–37. [Google Scholar] [CrossRef]
- Nisembaum, L.G.; de Pedro, N.; Delgado, M.J.; Isorna, E. Crosstalking between the “Gut-Brain” Hormone Ghrelin and the Circadian System in the Goldfish. Effects on Clock Gene Expression and Food Anticipatory Activity. Gen. Comp. Endocrinol. 2014, 205, 287–295. [Google Scholar] [CrossRef]
- De Meyts, P. The Insulin Receptor and Its Signal Transduction Network; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Caruso, M.A.; Sheridan, M.A. New Insights into the Signaling System and Function of Insulin in Fish. Gen. Comp. Endocrinol. 2011, 173, 227–247. [Google Scholar] [CrossRef]
- Honma, K.; Hikosaka, M.; Mochizuki, K.; Goda, T. Loss of Circadian Rhythm of Circulating Insulin Concentration Induced by High-Fat Diet Intake Is Associated with Disrupted Rhythmic Expression of Circadian Clock Genes in the Liver. Metabolism 2016, 65, 482–491. [Google Scholar] [CrossRef]
- Tahara, Y.; Otsuka, M.; Fuse, Y.; Hirao, A.; Shibata, S. Refeeding after Fasting Elicits Insulin-Dependent Regulation of Per2 and Rev-Erbα with Shifts in the Liver Clock. J. Biol. Rhythms 2011, 26, 230–240. [Google Scholar] [CrossRef]
- Fougeray, T.; Polizzi, A.; Régnier, M.; Fougerat, A.; Ellero-Simatos, S.; Lippi, Y.; Smati, S.; Lasserre, F.; Tramunt, B.; Huillet, M.; et al. The Hepatocyte Insulin Receptor Is Required to Program the Liver Clock and Rhythmic Gene Expression. Cell Rep. 2022, 39, 110674. [Google Scholar] [CrossRef]
- Yamajuku, D.; Inagaki, T.; Haruma, T.; Okubo, S.; Kataoka, Y.; Kobayashi, S.; Ikegami, K.; Laurent, T.; Kojima, T.; Noutomi, K.; et al. Real-Time Monitoring in Three-Dimensional Hepatocytes Reveals That Insulin Acts as a Synchronizer for Liver Clock. Sci. Rep. 2012, 2, 439. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Murakami, M.; Node, K.; Matsumura, R.; Akashi, M. The Role of the Endocrine System in Feeding-Induced Tissue-Specific Circadian Entrainment. Cell Rep. 2014, 8, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Oishi, K.; Yasumoto, Y.; Higo-Yamamoto, S.; Yamamoto, S.; Ohkura, N. Feeding Cycle-Dependent Circulating Insulin Fluctuation Is Not a Dominant Zeitgeber for Mouse Peripheral Clocks except in the Liver: Differences between Endogenous and Exogenous Insulin Effects. Biochem. Biophys. Res. Commun. 2017, 483, 165–170. [Google Scholar] [CrossRef]
- Dang, F.; Sun, X.; Ma, X.; Wu, R.; Zhang, D.; Chen, Y.; Xu, Q.; Wu, Y.; Liu, Y. Insulin Post-Transcriptionally Modulates Bmal1 Protein to Affect the Hepatic Circadian Clock. Nat. Commun. 2016, 7, 12696. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, A.; Montoya, A.; Vera, L.M.; Sánchez-Vázquez, F.J. Daily Rhythms of Clock Gene Expression, Glycaemia and Digestive Physiology in Diurnal/Nocturnal European Seabass. Physiol. Behav. 2012, 106, 446–450. [Google Scholar] [CrossRef]
- Crosby, P.; Hamnett, R.; Putker, M.; Hoyle, N.P.; Reed, M.; Karam, C.J.; Maywood, E.S.; Stangherlin, A.; Chesham, J.E.; Hayter, E.A.; et al. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019, 177, 896–909. [Google Scholar] [CrossRef] [Green Version]
- Kajimoto, J.; Matsumura, R.; Node, K.; Akashi, M. Potential Role of the Pancreatic Hormone Insulin in Resetting Human Peripheral Clocks. Genes Cells 2018, 23, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Tuvia, N.; Pivovarova-Ramich, O.; Murahovschi, V.; Lück, S.; Grudziecki, A.; Ost, A.C.; Kruse, M.; Nikiforova, V.J.; Osterhoff, M.; Gottmann, P.; et al. Insulin Directly Regulates the Circadian Clock in Adipose Tissue. Diabetes 2021, 70, 1985–1999. [Google Scholar] [CrossRef]
- Vatine, G.; Vallone, D.; Appelbaum, L.; Mracek, P.; Ben-Moshe, Z.; Lahiri, K.; Gothilf, Y.; Foulkes, N.S. Light Directs Zebrafish Period2 Expression via Conserved D and E Boxes. PLoS Biol. 2009, 7, e1000223. [Google Scholar] [CrossRef] [Green Version]
- Siddle, K. Signalling by Insulin and IGF Receptors: Supporting Acts and New Players. J. Mol. Endocrinol. 2011, 47, R1–R10. [Google Scholar] [CrossRef] [Green Version]
- Durham, S.K.; Suwanichkul, A.; Scheimann, A.O.; Yee, D.; Jackson, J.G.; Barr, F.G.; Powell, D.R. FKHR Binds the Insulin Response Element in the Insulin-Like Growth Factor Binding Protein-1 Promoter. Endocrinology 1999, 140, 3140–3146. [Google Scholar] [CrossRef]
- Zhang, J.; Ou, J.; Bashmakov, Y.; Horton, J.D.; Brown, M.S.; Goldstein, J.L. Insulin Inhibits Transcription of IRS-2 Gene in Rat Liver through an Insulin Response Element (IRE) That Resembles IREs of Other Insulin-Repressed Genes. Proc. Natl. Acad. Sci. USA 2001, 98, 3756–3761. [Google Scholar] [CrossRef]
- Gutierrez, J.; Carrillo, M.; Zanuy, S.; Planas, J. Daily Rhythms of Insulin and Glucose Levels in the Plasma of Sea Bass Dicentrarchus abrax after Experimental Feeding. Gen. Comp. Endocrinol. 1984, 55, 393–397. [Google Scholar] [CrossRef]
- Boege, H.L.; Bhatti, M.Z.; St-Onge, M.P. Circadian Rhythms and Meal Timing: Impact on Energy Balance and Body Weight. Curr. Opin. Biotechnol. 2021, 70, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tsang, A.H.; Barclay, J.L.; Oster, H. Interactions between Endocrine and Circadian Systems. J. Mol. Endocrinol. 2013, 52, R1–R16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Bretaño, A.; Blanco, A.M.; Alonso-Gómez, Á.L.; Delgado, M.J.; Kah, O.; Isorna, E. Ghrelin Induces Clock Gene Expression in the Liver of Goldfish in Vitro via Protein Kinase C and Protein Kinase A Pathways. J. Exp. Biol. 2017, 220, 1295–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soengas, J.L.; Cerdá-Reverter, J.M.; Delgado, M.J. Central Regulation of Food Intake in Fish: An Evolutionary Perspective. J. Mol. Endocrinol. 2018, 60, R171–R199. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bretaño, A.; Callejo, M.; Montero, M.; Alonso-Gómez, Á.L.; Delgado, M.J.; Isorna, E. Performing a Hepatic Timing Signal: Glucocorticoids Induce Gper1a and Gper1b Expression and Repress Gclock1a and Gbmal1a in the Liver of Goldfish. J. Comp. Physiol. B 2016, 186, 73–82. [Google Scholar] [CrossRef]
- Landgraf, D.; Tsang, A.H.; Leliavski, A.; Koch, C.E.; Barclay, J.L.; Drucker, D.J.; Oster, H. Oxyntomodulin Regulates Resetting of the Liver Circadian Clock by Food. Elife 2015, 4, e06253. [Google Scholar] [CrossRef]
- Rutter, J.; Reick, M.; Wu, L.C.; McKnight, S.L. Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD Cofactors. Science 2001, 293, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Asher, G.; Gatfield, D.; Stratmann, M.; Reinke, H.; Dibner, C.; Kreppel, F.; Mostoslavsky, R.; Alt, F.W.; Schibler, U. SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell 2008, 134, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Fu, O.; Yao, L.; Sun, L.; Zhuge, F.; Fu, Z. Differential Responses of Peripheral Circadian Clocks to a Short-Term Feeding Stimulus. Mol. Biol. Rep. 2012, 39, 9783–9789. [Google Scholar] [CrossRef]
- Oike, H.; Oishi, K.; Kobori, M. Nutrients, Clock Genes, and Chrononutrition. Curr. Nutr. Rep. 2014, 3, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.B.; Maywood, E.S.; Karp, N.A.; King, V.M.; Inoue, Y.; Gonzalez, F.J.; Lilley, K.S.; Kyriacou, C.P.; Hastings, M.H. Glucocorticoid Signaling Synchronizes the Liver Circadian Transcriptome. Hepatology 2007, 45, 1478–1488. [Google Scholar] [CrossRef]
- Balsalobre, A.; Brown, S.A.; Marcacci, L.; Tronche, F.; Kellendonk, C.; Reichardt, H.M.; Schutz, G.; Schibler, U. Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science 2000, 289, 2344–2347. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, M.M.; Raptis, S.; Sathiyaa, R. Cortisol Treatment Affects Glucocorticoid Receptor and Glucocorticoid-Responsive Genes in the Liver of Rainbow Trout. Gen. Comp. Endocrinol. 2003, 132, 256–263. [Google Scholar] [CrossRef]
- Woodward, C.J.H.; Hervey, G.R.; Oakey, R.E.; Whitaker, E.M. The Effects of Fasting on Plasma Corticosterone Kinetics in Rats. Br. J. Nutr. 1991, 66, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Sujino, M.; Furukawa, K.; Koinuma, S.; Fujioka, A.; Nagano, M.; Iigo, M.; Shigeyoshi, Y. Differential Entrainment of Peripheral Clocks in the Rat by Glucocorticoid and Feeding. Endocrinology 2012, 153, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nakahata, Y.; Tanaka, M.; Yoshida, M.; Soma, H.; Shinohara, K.; Yasuda, A.; Mamine, T.; Takumi, T. Acute Physical Stress Elevates Mouse Period1 MRNA Expression in Mouse Peripheral Tissues via a Glucocorticoid-Responsive Element. J. Biol. Chem. 2005, 280, 42036–42043. [Google Scholar] [CrossRef] [Green Version]
- So, A.Y.-L.; Bernal, T.U.; Pillsbury, M.L.; Yamamoto, K.R.; Feldman, B.J. Glucocorticoid Regulation of the Circadian Clock Modulates Glucose Homeostasis. Proc. Natl. Acad. Sci. USA 2009, 106, 17582–17587. [Google Scholar] [CrossRef]
- Isorna, E.; Sánchez-Bretaño, A.; Nisembaum, L.G.; Alonso-Gómez, Á.L.; de Pedro, N.; Delgado, M.J. Hormonal Inputs for Fish Circadian System: Goldfish as a Model. In Abstracts of the XXXIX Congress of the Spanish Society of Physiological Sciences; Servicio de Publicaciones: Cádiz, Spain, 2018. [Google Scholar]
- Sánchez-Bretaño, A. Interacción Entre El Sistema Endocrino y Los Osciladores Circadianos En El Carpín (Carassius auratus): Regulación de Genes Reloj En Relojes Centrales y Periféricos Por Péptidos de Origen Gastrointestinal y Por Glucocorticoides. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2017. [Google Scholar]
- Otero-Rodino, C.; Velasco, C.; Álvarez-Otero, R.; López-Patino, M.A.; Miguez, J.M.; Soengas, J.L. Changes in the Levels and Phosphorylation Status of Akt, AMPK, CREB and FoxO1 in Hypothalamus of Rainbow Trout under Conditions of Enhanced Glucosensing Activity. J. Exp. Biol. 2017, 220, 4410–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Transcript | Access Number (GenBank) | Sequence (5′→3′) | Product (bp) | |
---|---|---|---|---|
β-actin | AB039726.2 | Forward | CAGGGAGTGATGGTTGGCA | 168 |
Reverse | AACACGCAGCTCGTTGTAGA | |||
bmal1a | KF840401.1 | Forward | AGATTCTGTTCGTCTCGGAG | 161 |
Reverse | ATCGATGAGTCGTTCCCGTG | |||
clock1a | KJ574204.1 | Forward | CGATGGCAGCATCTCTTGTGT | 187 |
Reverse | TCCTGGATCTGCCGCAGTTCAT | |||
per1a | EF690698.1 | Forward | CAGTGGCTCGAATGAGCACCA | 155 |
Reverse | TGAAGACCTGCTGTCCGTTGG | |||
per1b | KP663726.1 | Forward | CTCGCAGCTCCACAAACCTA | 235 |
Reverse | TGATCGTGCAGAAGGAGCCG | |||
per2 | EF690697.1 | Forward | TTTGTCAATCCCTGGAGCCGC | 105 |
Reverse | AAGGATTTGCCCTCAGCCACG | |||
rev-erbα | KU242427 | Forward | CGTTCATCTCAGGCACCACT | 166 |
Reverse | AACTGACCTGCAGACACCAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiz, N.; Velasco, C.; de Pedro, N.; Soengas, J.L.; Isorna, E. Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. Int. J. Mol. Sci. 2023, 24, 11897. https://doi.org/10.3390/ijms241511897
Saiz N, Velasco C, de Pedro N, Soengas JL, Isorna E. Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. International Journal of Molecular Sciences. 2023; 24(15):11897. https://doi.org/10.3390/ijms241511897
Chicago/Turabian StyleSaiz, Nuria, Cristina Velasco, Nuria de Pedro, José Luis Soengas, and Esther Isorna. 2023. "Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway" International Journal of Molecular Sciences 24, no. 15: 11897. https://doi.org/10.3390/ijms241511897
APA StyleSaiz, N., Velasco, C., de Pedro, N., Soengas, J. L., & Isorna, E. (2023). Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. International Journal of Molecular Sciences, 24(15), 11897. https://doi.org/10.3390/ijms241511897