Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage
Abstract
:1. Introduction
2. Results
2.1. Identification of BcNF-Y Family Members
2.2. Analysis of Motifs and Conserved Domains in BcNF-Y Family Members
2.3. Phylogenetic Analysis and Chromosomal Distribution
2.4. Gene Duplication and Collinearity Analysis
2.5. Analysis of BcNF-Y Gene Expression in Different Periods and Tissues
2.6. BcNF-Y Gene Expression Analysis in Flowering Chinese Cabbage under Different Exogenous Hormone Spraying Conditions
2.7. Interactions of DELLAs with NF-Y Subunits and Inter-Subunit Interactions
2.8. Subcellular Localization and Transcriptional Activation Analysis of NF-Y Genes
3. Discussion
4. Materials and Methods
4.1. Identification of the BcNF-Y Gene Family
4.2. Analysis of Gene Structure, Domains, and Conserved Motifs
4.3. Phylogenetic Analysis
4.4. Chromosomal Locations, Synteny Analysis
4.5. Plant Materials and Treatments
4.6. RNA Extraction and qRT-PCR
4.7. Yeast Two-Hybrid Assay
4.8. DLR Assay
4.9. Subcellular Localization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, S.; Lei, Y.; Huang, X.; Su, W.; Chen, R.; Hao, Y. Crosstalk of Cold and Gibberellin Effects on Bolting and Flowering in Flowering Chinese Cabbage. J. Integr. Agric. 2019, 18, 992–1000. [Google Scholar] [CrossRef]
- Huang, X.; Lei, Y.; Guan, H.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Transcriptomic Analysis of the Regulation of Stalk Development in Flowering Chinese Cabbage (Brassica campestris) by RNA Sequencing. Sci. Rep. 2017, 7, 15517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, E.; Huang, X.; Zhu, Y.; Su, W.; Liu, H.; Sun, G.; Chen, R.; Hao, Y.; Song, S. Crosstalk between Auxin and Gibberellin during Stalk Elongation in Flowering Chinese Cabbage. Sci. Rep. 2021, 11, 3976. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Huang, X.; Zhu, Y.; Xie, B.; Liu, H.; Song, S.; Hao, Y.; Chen, R. Identification of DELLA Genes and Key Stage for GA Sensitivity in Bolting and Flowering of Flowering Chinese Cabbage. Int. J. Mol. Sci. 2021, 22, 12092. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Huang, X.; Su, W.; Hao, Y.; Liu, H.; Chen, R.; Song, S. BcSOC1 Promotes Bolting and Stem Elongation in Flowering Chinese Cabbage. Int. J. Mol. Sci. 2022, 23, 3459. [Google Scholar] [CrossRef]
- Wang, Y.; Song, S.; Hao, Y.; Chen, C.; Ou, X.; He, B.; Zhang, J.; Jiang, Z.; Li, C.; Zhang, S.; et al. Role of BraRGL1 in Regulation of Brassica rapa Bolting and Flowering. Hortic. Res. 2023, uhad119. [Google Scholar] [CrossRef]
- Bucher, P. Weight Matrix Descriptions of Four Eukaryotic RNA Polymerase II Promoter Elements Derived from 502 Unrelated Promoter Sequences. J. Mol. Biol. 1990, 212, 563–578. [Google Scholar] [CrossRef]
- McNabb, D.S.; Xing, Y.; Guarente, L. Cloning of Yeast HAP5: A Novel Subunit of a Heterotrimeric Complex Required for CCAAT Binding. Genes Dev. 1995, 9, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, Z.A. NUCLEAR FACTOR-Y: Still Complex after All These Years? Curr. Opin. Plant Biol. 2018, 45, 96–102. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Li, C.; Zhang, C.; Cui, L.; Ai, G.; Wang, X.; Larkin, R.M.; Ye, Z.; Zhang, J.; et al. NF-Y Plays Essential Roles in Flavonoid Biosynthesis by Modulating Histone Modifications in Tomato. New Phytol. 2020, 229, 3237–3252. [Google Scholar] [CrossRef]
- Ke, X.; Xiao, H.; Peng, Y.; Wang, J.; Lv, Q.; Wang, X. Phosphoenolpyruvate Reallocation Links Nitrogen Fixation Rates to Root Nodule Energy State. Science 2022, 378, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Wang, X.; Han, X.; An, Y.; Lin, S.; Shen, C.; Wen, J.; Liu, C.; Yin, W.; et al. Root-specific NF-Y Family Transcription Factor, PdNF-YB21, Positively Regulates Root Growth and Drought Resistance by Abscisic Acid-mediated Indoylacetic Acid Transport in Populus. New Phytol. 2020, 227, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Zhang, Z.; Zhang, J.; Zhou, Y.; Chen, C. The Rice LEC1-Like Transcription Factor OsNF-YB9 Interacts with SPK, an Endosperm-specific Sucrose Synthase Protein Kinase, and Functions in Seed Development. Plant J. 2021, 106, 1233–1246. [Google Scholar] [CrossRef]
- Swain, S. The Multifaceted Roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana Development and Stress Responses. Biophys. Acta 2016, 1860, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-X.; Oono, Y.; Zhu, J.; He, X.-J.; Wu, J.-M.; Iida, K.; Lu, X.-Y.; Cui, X.; Jin, H.; Zhu, J.-K. The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance. Plant Cell 2008, 20, 2238–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Mizoi, J.; Tanaka, H.; Maruyama, K.; Qin, F.; Osakabe, Y.; Morimoto, K.; Ohori, T.; Kusakabe, K.; Nagata, M.; et al. Arabidopsis DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell 2014, 26, 4954–4973. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Liu, Y.; Fu, J.; Ma, J.; Fang, Z.; Chen, J.; Zheng, L.; Lu, Z.; Zhou, Y.; Chen, M.; et al. The NF−Y−PYR Module Integrates the Abscisic Acid Signal Pathway to Regulate Plant Stress Tolerance. Plant Biotechnol. J. 2021, 19, 2589–2605. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Zhong, B.; Liu, X.; Jin, R.; Chan, Z. AtHAP 5A Modulates Freezing Stress Resistance in Arabidopsis Through Binding to CCAAT Motif of AtXTH21. New Phytol. 2014, 203, 554–567. [Google Scholar] [CrossRef]
- Bello, B.K.; Hou, Y.; Zhao, J.; Jiao, G.; Wu, Y.; Li, Z.; Wang, Y.; Tong, X.; Wang, W.; Yuan, W.; et al. NF-YB1-YC12-BHLH144 Complex Directly Activates Wx to Regulate Grain Quality in Rice (Oryza sativa L.). Plant Biotechnol. J. 2019, 17, 1222–1235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Tang, Y.; Hu, Y.; Yang, Y.; Cai, J.; Liu, H.; Zhang, C.; Liu, X.; Hou, X. Arabidopsis NF-YCs Play Dual Roles in Repressing Brassinosteroid Biosynthesis and Signaling during Light-Regulated Hypocotyl Elongation. Plant Cell 2021, 33, 2360–2374. [Google Scholar] [CrossRef]
- Wenkel, S.; Turck, F.; Singer, K.; Gissot, L.; Le Gourrierec, J.; Samach, A.; Coupland, G. CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. Plant Cell 2006, 18, 2971–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumimoto, R.W.; Adam, L.; Hymus, G.J.; Repetti, P.P.; Reuber, T.L.; Marion, C.M.; Hempel, F.D.; Ratcliffe, O.J. The Nuclear Factor Y Subunits NF-YB2 and NF-YB3 Play Additive Roles in the Promotion of Flowering by Inductive Long-Day Photoperiods in Arabidopsis. Planta 2008, 228, 709–723. [Google Scholar] [CrossRef]
- Kumimoto, R.W.; Zhang, Y.; Siefers, N.; Holt, B.F. NF-YC3, NF-YC4 and NF-YC9 Are Required for CONSTANS-Mediated, Photoperiod-Dependent Flowering in Arabidopsis thaliana. Plant J. 2010, 63, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Ben-Naim, O.; Eshed, R.; Parnis, A.; Teper-Bamnolker, P.; Shalit, A.; Coupland, G.; Samach, A.; Lifschitz, E. The CCAAT Binding Factor Can Mediate Interactions between CONSTANS-Like Proteins and DNA. Plant J. 2006, 46, 462–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Kumimoto, R.W.; Gnesutta, N.; Calogero, A.M.; Mantovani, R.; Holt, B.F.; Distal, A. A Distal CCAAT /NUCLEAR FACTOR Y Complex Promotes Chromatin Looping at the FLOWERING LOCUS T Promoter and Regulates the Timing of Flowering in Arabidopsis. Plant Cell 2014, 26, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Siriwardana, C.L.; Gnesutta, N.; Kumimoto, R.W.; Jones, D.S.; Myers, Z.A.; Mantovani, R.; Holt, B.F. NUCLEAR FACTOR Y, Subunit A (NF-YA) Proteins Positively Regulate Flowering and Act through FLOWERING LOCUS T. PLOS Genet. 2016, 12, e1006496. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Shen, Y.; Chang, H.; Hou, Y.; Harris, A.; Ma, S.F.; McPartland, M.; Hymus, G.J.; Adam, L.; Marion, C.; et al. The Flowering Time Regulator CONSTANS Is Recruited to the FLOWERING LOCUS T Promoter via a Unique Cis-Element. New Phytol. 2010, 187, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhou, J.; Liu, C.; Liu, L.; Shen, L.; Yu, H. Nuclear Factor Y-Mediated H3K27me3 Demethylation of the SOC1 Locus Orchestrates Flowering Responses of Arabidopsis. Nat. Commun. 2014, 5, 4601. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, P.; Huang, M.; Tang, Y.; Li, Y.; Li, L.; Hou, X. The NF-YC–RGL2 Module Integrates GA and ABA Signalling to Regulate Seed Germination in Arabidopsis. Nat. Commun. 2016, 7, 12768. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Hussain, N.; Wang, Y.; Li, M.; Liu, L.; Qin, M.; Ma, N.; Gao, J.; Sun, X. An Ethylene-Inhibited NF-YC Transcription Factor RhNF-YC9 Regulates Petal Expansion in Rose. Hortic. Plant J. 2020, 6, 419–427. [Google Scholar] [CrossRef]
- Zhang, C.; Jian, M.; Li, W.; Yao, X.; Tan, C.; Qian, Q.; Hu, Y.; Xu, L.; Hou, X. Gibberellin Signaling Modulates Flowering via the DELLA-BRAHMA-NF-YC Module in Arabidopsis. Plant Cell 2023, koad166. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, Z.; Wang, Y.; Li, S.; Liang, Z. Genome-Wide Identification and Characterization of the NF-Y Gene Family in Grape (Vitis vinifera L.). BMC Genom. 2016, 17, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.; Cao, H.; Wang, X.; Zhang, K.; Si, H.; Zang, J.; Xing, J.; Dong, J. Identification and Expression Analysis of Maize NF-YA Subunit Genes. PeerJ 2022, 10, e14306. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, G.; Liu, W.; Dong, X.; Zhang, A. Genome-Wide Analysis of the NF-Y Gene Family in Peach (Prunus persica L.). BMC Genom. 2019, 20, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xu, W.; Chen, Z.; Han, B.; Haque, M.E.; Liu, A. Gene Structure, Expression Pattern and Interaction of Nuclear Factor-Y Family in Castor Bean (Ricinus communis). Planta 2018, 247, 559–572. [Google Scholar] [CrossRef]
- Siefers, N.; Dang, K.K.; Kumimoto, R.W.; Bynum, W.E.; Tayrose, G.; Holt, B.F. Tissue-Specific Expression Patterns of Arabidopsis NF-Y Transcription Factors Suggest Potential for Extensive Combinatorial Complexity. Plant Physiol. 2009, 149, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, E. Do Not Panic: An Intron-Centric Guide to Alternative Splicing. Plant Cell 2023, 35, 1752–1761. [Google Scholar] [CrossRef]
- Keren, H.; Lev-Maor, G.; Ast, G. Alternative Splicing and Evolution: Diversification, Exon Definition and Function. Nat. Rev. Genet. 2010, 11, 345–355. [Google Scholar] [CrossRef]
- An, Y.; Suo, X.; Niu, Q.; Yin, S.; Chen, L. Genome-Wide Identification and Analysis of the NF-Y Transcription Factor Family Reveal Its Potential Roles in Salt Stress in Alfalfa (Medicago sativa L.). Int. J. Mol. Sci. 2022, 23, 6426. [Google Scholar] [CrossRef]
- Baudin, M.; Laloum, T.; Lepage, A.; Rípodas, C.; Ariel, F.; Frances, L.; Crespi, M.; Gamas, P.; Blanco, F.A.; Zanetti, M.E.; et al. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes. Plant Physiol. 2015, 169, 2761–2773. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Arabidopsis LEAFY COTYLEDON1 Represents a Functionally Specialized Subunit of the CCAAT Binding Transcription Factor. Proc. Natl. Acad. Sci. USA 2003, 100, 2152–2156. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, D.; Wu, Y.; Voigt, A.; Adams, R.; Schramm, P.; Grimm, B. Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis Thaliana Transcription Factor NF-Y. Mol. Plant 2012, 5, 876–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorin, C.; Declerck, M.; Christ, A.; Blein, T.; Ma, L.; Lelandais-Brière, C.; Njo, M.F.; Beeckman, T.; Crespi, M.; Hartmann, C. A MiR169 Isoform Regulates Specific NF—YA Targets and Root Architecture in a Rabidopsis. New Phytol. 2014, 202, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Wang, Y.; Zhang, J.; Xie, Z.; He, B.; Jiang, Z.; Wang, Y.; Su, W.; Song, S.; Hao, Y.; et al. Identification of BcARR Genes and CTK Effects on Stalk Development of Flowering Chinese Cabbage. Int. J. Mol. Sci. 2022, 23, 7412. [Google Scholar] [CrossRef] [PubMed]
- Gnesutta, N.; Kumimoto, R.W.; Swain, S.; Chiara, M.; Siriwardana, C.; Horner, D.S.; Holt, B.F.; Mantovani, R. CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer. Plant Cell 2017, 29, 1516–1532. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Hu, Y.; Liu, X.; Li, Y.; Hou, X. Arabidopsis LEAFY COTYLEDON1 Mediates Postembryonic Development via Interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 2015, 27, 3099–3111. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-X.; Howell, S.H. BZIP28 and NF-Y Transcription Factors Are Activated by ER Stress and Assemble into a Transcriptional Complex to Regulate Stress Response Genes in Arabidopsis. Plant Cell 2010, 22, 782–796. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Thirumurugan, T.; Ito, Y.; Kubo, T.; Serizawa, A.; Kurata, N. Identification, Characterization and Interaction of HAP Family Genes in Rice. Mol. Genet. Genom. 2008, 279, 279–289. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhao, X.; Aiwaili, P.; Mu, X.; Zhao, M.; Zhao, J.; Cheng, L.; Ma, C.; Gao, J.; Hong, B. A Zinc Finger Protein BBX19 Interacts with ABF3 to Affect Drought Tolerance Negatively in Chrysanthemum. Plant J. 2020, 103, 1783–1795. [Google Scholar] [CrossRef]
- Ohta, M.; Matsui, K.; Hiratsu, K.; Shinshi, H.; Ohme-Takagi, M. Repression Domains of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression. Plant Cell 2001, 13, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Name | CDS (bp) | Length (AA) | pI | MW (Da) | Homologs in Arabidopsis |
---|---|---|---|---|---|
BcNF-YA1 | 2430 | 809 | 9.36 | 34,401.98 | AtNF-YA6 |
BcNF-YA2 | 945 | 314 | 9.87 | 13,514.28 | AtNF-YA2 |
BcNF-YA3 | 720 | 239 | 9.54 | 28,766 | AtNF-YA1 |
BcNF-YA4 | 963 | 320 | 9.99 | 20,085.81 | AtNF-YA3 |
BcNF-YA5 | 1653 | 550 | 7.16 | 155,711.3 | AtNF-YA1 |
BcNF-YA6 | 846 | 281 | 9.74 | 26,426.97 | AtNF-YA2 |
BcNF-YA7 | 927 | 308 | 6.87 | 44,034.04 | AtNF-YA9 |
BcNF-YA8 | 360 | 119 | 9.51 | 24,406.47 | AtNF-YA4 |
BcNF-YA9 | 696 | 231 | 9.61 | 27,110.81 | AtNF-YA5 |
BcNF-YA10 | 450 | 149 | 6.99 | 88,896.45 | AtNF-YA9 |
BcNF-YA11 | 783 | 260 | 9.04 | 35,419.5 | AtNF-YA5/6 |
BcNF-YA12 | 4125 | 1374 | 6.32 | 26,437.07 | AtNF-YA3 |
BcNF-YA13 | 540 | 179 | 8.99 | 34,091.57 | AtNF-YA3 |
BcNF-YA14 | 717 | 238 | 9.68 | 30,882.8 | AtNF-YA5 |
BcNF-YA15 | 645 | 214 | 6.36 | 61,377.49 | AtNF-YA7 |
BcNF-YA16 | 1188 | 395 | 9.95 | 17,017.99 | AtNF-YA8 |
BcNF-YA17 | 711 | 236 | 9.9 | 25,671.99 | AtNF-YA10 |
BcNF-YB1 | 414 | 137 | 7.07 | 14,745.38 | AtNF-YB3 |
BcNF-YB2 | 309 | 102 | 6.91 | 25,881.06 | AtNF-YB12 |
BcNF-YB3 | 372 | 123 | 5.06 | 23,121.14 | AtNF-YB2 |
BcNF-YB4 | 804 | 267 | 7.76 | 13,714.15 | AtNF-YB8/10 |
BcNF-YB5 | 438 | 145 | 5.1 | 25,587.71 | AtNF-YB3 |
BcNF-YB6 | 1497 | 498 | 8.84 | 19,813.36 | AtNF-YB7 |
BcNF-YB7 | 684 | 227 | 5.04 | 15,948.19 | AtNF-YB8/10 |
BcNF-YB8 | 468 | 155 | 4.27 | 24,485.01 | AtNF-YB5 |
BcNF-YB9 | 357 | 118 | 5.96 | 25,267.27 | AtNF-YB1 |
BcNF-YB10 | 408 | 135 | 8.92 | 13,174.68 | AtNF-YB3 |
BcNF-YB11 | 369 | 122 | 4.8 | 11,670.12 | AtNF-YB4 |
BcNF-YB12 | 681 | 226 | 5.01 | 56,994.71 | AtNF-YB2 |
BcNF-YB13 | 693 | 230 | 7.07 | 15,677.32 | AtNF-YB9 |
BcNF-YB14 | 666 | 221 | 8.8 | 29,546.27 | AtNF-YB11 |
BcNF-YB15 | 510 | 169 | 9.61 | 25,962.1 | AtNF-YB13 |
BcNF-YB16 | 456 | 151 | 6.91 | 14,458.08 | AtNF-YB7 |
BcNF-YB17 | 363 | 120 | 5.21 | 13,011.72 | AtNF-YB2 |
BcNF-YB18 | 648 | 215 | 6.65 | 17,694.84 | AtNF-YB9 |
BcNF-YB19 | 969 | 322 | 10.11 | 12,238.18 | AtNF-YB9 |
BcNF-YB20 | 552 | 183 | 5.34 | 29,312.26 | AtNF-YB8/10 |
BcNF-YC1 | 717 | 238 | 7.12 | 63,811.16 | AtNF-YC11 |
BcNF-YC2 | 2070 | 689 | 5.7 | 35,706.48 | AtNF-YC11 |
BcNF-YC3 | 525 | 174 | 6.22 | 23,990.09 | AtNF-YC10 |
BcNF-YC4 | 693 | 230 | 5.72 | 12,891.28 | AtNF-YC9 |
BcNF-YC5 | 636 | 211 | 6.7 | 17,457.36 | AtNF-YC1 |
BcNF-YC6 | 813 | 270 | 4.74 | 19,047.31 | AtNF-YC4 |
BcNF-YC7 | 330 | 109 | 8.49 | 17,259.75 | AtNF-YC13 |
BcNF-YC8 | 417 | 138 | 8.9 | 26,409.45 | AtNF-YC2 |
BcNF-YC9 | 1734 | 577 | 6.93 | 75,108.26 | AtNF-YC9 |
BcNF-YC10 | 687 | 228 | 6.13 | 12,824.61 | AtNF-YC9 |
BcNF-YC11 | 339 | 112 | 5.1 | 25,421.53 | AtNF-YC10 |
BcNF-YC12 | 459 | 152 | 9.1 | 19,965.36 | AtNF-YC11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Wang, Y.; Li, W.; Wang, Y.; Liu, X.; Ou, X.; Su, W.; Song, S.; Chen, R. Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. Int. J. Mol. Sci. 2023, 24, 11898. https://doi.org/10.3390/ijms241511898
Jiang Z, Wang Y, Li W, Wang Y, Liu X, Ou X, Su W, Song S, Chen R. Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. International Journal of Molecular Sciences. 2023; 24(15):11898. https://doi.org/10.3390/ijms241511898
Chicago/Turabian StyleJiang, Zhehao, Yuting Wang, Wenxiang Li, Yudan Wang, Xiaojuan Liu, Xi Ou, Wei Su, Shiwei Song, and Riyuan Chen. 2023. "Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage" International Journal of Molecular Sciences 24, no. 15: 11898. https://doi.org/10.3390/ijms241511898
APA StyleJiang, Z., Wang, Y., Li, W., Wang, Y., Liu, X., Ou, X., Su, W., Song, S., & Chen, R. (2023). Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. International Journal of Molecular Sciences, 24(15), 11898. https://doi.org/10.3390/ijms241511898