Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay
Abstract
:1. Introduction
2. Bacteria, Toxins, Effectors and Modes of MAPK Subversion
2.1. Enteropathogenic and Enterohemorrhagic Escherichia coli
2.2. Shigella
2.3. Yersinia
2.4. Salmonella
2.5. Vibrio cholerae and Vibrio parahaemolyticus
3. Listeria monocytogenes
4. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Lanata, C.F.; Fischer-Walker, C.L.; Olascoaga, A.C.; Torres, C.X.; Aryee, M.J.; Black, R.E.; Child Health Epidemiology Reference Group of the World Health Organization; UNICEF. Global causes of diarrheal disease mortality in children <5 years of age: A systematic review. PLoS ONE 2013, 8, e72788. [Google Scholar] [CrossRef] [Green Version]
- Kotloff, K.L. Bacterial diarrhoea. Curr. Opin. Pediatr. 2022, 34, 147–155. [Google Scholar] [CrossRef]
- Aboutaleb, N.; Kuijper, E.J.; van Dissel, J.T. Emerging infectious colitis. Curr. Opin. Gastroenterol. 2014, 30, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Platts-Mills, J.A.; Hasan, R. Antibiotic-Resistant Enteric Infections. Infect. Dis. Clin. N. Am. 2019, 33, 1105–1123. [Google Scholar] [CrossRef]
- Hansson, K.; Brenthel, A. Imagining a post-antibiotic era: A cultural analysis of crisis and antibiotic resistance. Med. Humanit. 2022, 48, 381–388. [Google Scholar] [CrossRef]
- Krachler, A.M.; Woolery, A.R.; Orth, K. Manipulation of kinase signaling by bacterial pathogens. J. Cell Biol. 2011, 195, 1083–1092. [Google Scholar] [CrossRef]
- Pinaud, L.; Sansonetti, P.J.; Phalipon, A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol. 2018, 26, 266–283. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, Z.; He, C.; Wang, L.; Zhou, R.; Yan, D.; Ge, B. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell. Mol. Immunol. 2017, 14, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Raymond, B.; Young, J.C.; Pallett, M.; Endres, R.G.; Clements, A.; Frankel, G. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013, 21, 430–441. [Google Scholar] [CrossRef]
- Rosenshine, I.; Gur-Arie, L. Subversion of MAPK signaling by pathogenic bacteria. MAP Kinase 2015, 4, 5303. [Google Scholar]
- Kirkwood, K.L.; Rossa, C., Jr. The potential of p38 MAPK inhibitors to modulate periodontal infections. Curr. Drug Metab. 2009, 10, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armani, E.; Capaldi, C.; Bagnacani, V.; Saccani, F.; Aquino, G.; Puccini, P.; Facchinetti, F.; Martucci, C.; Moretto, N.; Villetti, G.; et al. Design, Synthesis, and Biological Characterization of Inhaled p38alpha/beta MAPK Inhibitors for the treatment of Lung Inflammatory Diseases. J. Med. Chem. 2022, 65, 7170–7192. [Google Scholar] [CrossRef]
- Bewley, M.A.; Belchamber, K.B.; Chana, K.K.; Budd, R.C.; Donaldson, G.; Wedzicha, J.A.; Brightling, C.E.; Kilty, I.; Donnelly, L.E.; Barnes, P.J.; et al. Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD. PLoS ONE 2016, 11, e0163139. [Google Scholar] [CrossRef] [Green Version]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef] [Green Version]
- Keshet, Y.; Seger, R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 2010, 661, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Maik-Rachline, G.; Wortzel, I.; Seger, R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021, 10, 3466. [Google Scholar] [CrossRef]
- Arthur, J.S.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013, 13, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Symons, A.; Beinke, S.; Ley, S.C. MAP kinase kinase kinases and innate immunity. Trends Immunol. 2006, 27, 40–48. [Google Scholar] [CrossRef]
- Dong, C.; Davis, R.J.; Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 2002, 20, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Kyriakis, J.M. Dissection of a signaling pathway by which pathogen-associated molecular patterns recruit the JNK and p38 MAPKs and trigger cytokine release. J. Biol. Chem. 2007, 282, 24246–24254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, Y.; Takahashi, M.; Morishita, T.; Noguchi, T.; Matsuzawa, A. Post-Translational Modifications of the TAK1-TAB Complex. Int. J. Mol. Sci. 2017, 18, 205. [Google Scholar] [CrossRef]
- Pais, S.V.; Kim, E.; Wagner, S. Virulence-associated type III secretion systems in Gram-negative bacteria. Microbiology 2023, 169, 001328. [Google Scholar] [CrossRef]
- Slater, S.L.; Sagfors, A.M.; Pollard, D.J.; Ruano-Gallego, D.; Frankel, G. The Type III Secretion System of Pathogenic Escherichia coli. Curr. Top Microbiol. Immunol. 2018, 416, 51–72. [Google Scholar] [CrossRef]
- Chen, D.; Burford, W.B.; Pham, G.; Zhang, L.; Alto, L.T.; Ertelt, J.M.; Winter, M.G.; Winter, S.E.; Way, S.S.; Alto, N.M. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 2021, 29, 1531–1544. [Google Scholar] [CrossRef]
- Sanchez-Garrido, J.; Ruano-Gallego, D.; Choudhary, J.S.; Frankel, G. The type III secretion system effector network hypothesis. Trends Microbiol. 2021, 30, 524–533. [Google Scholar] [CrossRef]
- Shan, L.; He, P.; Sheen, J. Intercepting host MAPK signaling cascades by bacterial type III effectors. Cell Host Microbe 2007, 1, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.; Rodrigues, J.F.; Piazza, R.M.; Ferreira, L.C.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47 (Suppl. S1), 3–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallance, B.A.; Chan, C.; Robertson, M.L.; Finlay, B.B. Enteropathogenic and enterohemorrhagic Escherichia coli infections: Emerging themes in pathogenesis and prevention. Can. J. Gastroenterol. 2002, 16, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.B.; Kim, S.K.; Yoon, J.W. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J. Vet. Sci. 2022, 23, e28. [Google Scholar] [CrossRef]
- Khan, M.A.; Bouzari, S.; Ma, C.; Rosenberger, C.M.; Bergstrom, K.S.; Gibson, D.L.; Steiner, T.S.; Vallance, B.A. Flagellin-dependent and -independent inflammatory responses following infection by enteropathogenic Escherichia coli and Citrobacter rodentium. Infect. Immun. 2008, 76, 1410–1422. [Google Scholar] [CrossRef] [Green Version]
- Dahan, S.; Busuttil, V.; Imbert, V.; Peyron, J.F.; Rampal, P.; Czerucka, D. Enterohemorrhagic Escherichia coli infection induces interleukin-8 production via activation of mitogen-activated protein kinases and the transcription factors NF-kappaB and AP-1 in T84 cells. Infect. Immun. 2002, 70, 2304–2310. [Google Scholar] [CrossRef] [Green Version]
- DeVinney, R.; Gauthier, A.; Abe, A.; Finlay, B.B. Enteropathogenic Escherichia coli: A pathogen that inserts its own receptor into host cells. Cell. Mol. Life Sci. 1999, 55, 961–976. [Google Scholar] [CrossRef]
- Campellone, K.G.; Leong, J.M. Tails of two Tirs: Actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 2003, 6, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wang, X.; Luo, L.; Cao, X.; Ge, B. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat. Immunol. 2012, 13, 1063–1071. [Google Scholar] [CrossRef]
- Dushek, O.; Goyette, J.; van der Merwe, P.A. Non-catalytic tyrosine-phosphorylated receptors. Immunol. Rev. 2012, 250, 258–276. [Google Scholar] [CrossRef]
- Coxon, C.H.; Geer, M.J.; Senis, Y.A. ITIM receptors: More than just inhibitors of platelet activation. Blood 2017, 129, 3407–3418. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.M.; Shen, C.; Li, Q.; Zhang, P.; Wu, H. Mechanism of ubiquitin transfer promoted by TRAF6. Proc. Natl. Acad. Sci. USA 2018, 115, 1783–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.; Quan, H.; Wang, L.; Liu, F.; Liu, H.; Chen, J.; Cao, X.; Ge, B. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell. Signal. 2013, 25, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.; Liu, L.; Shao, F. A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J. 2010, 29, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.R.; Clements, A.; Raymond, B.; Crepin, V.F.; Frankel, G. The interplay between the Escherichia coli Rho guanine nucleotide exchange factor effectors and the mammalian RhoGEF inhibitor EspH. MBio 2012, 3, 10–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roxas, J.L.; Monasky, R.C.; Roxas, B.A.P.; Agellon, A.B.; Mansoor, A.; Kaper, J.B.; Vedantam, G.; Viswanathan, V.K. Enteropathogenic Escherichia coli EspH-Mediated Rho GTPase Inhibition Results in Desmosomal Perturbations. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.; Nisan, I.; Yona, C.; Hanski, E.; Rosenshine, I. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol. 2003, 47, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, R.P.; Vences-Catalan, F.; Wiseman, D.; Zlotkin-Rivkin, E.; Shteyer, E.; Melamed-Book, N.; Rosenshine, I.; Levy, S.; Aroeti, B. EspH Suppresses Erk by Spatial Segregation from CD81 Tetraspanin Microdomains. Infect. Immun. 2018, 86, 10-1128. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, R.P.; Nandi, I.; Haritan, N.; Zlotkin-Rivkin, E.; Keren, Y.; Danieli, T.; Lebendiker, M.; Melamed-Book, N.; Breuer, W.; Reichmann, D.; et al. EspH interacts with the host active Bcr related (ABR) protein to suppress RhoGTPases. Gut. Microbes 2022, 14, 2130657. [Google Scholar] [CrossRef]
- Rul, W.; Zugasti, O.; Roux, P.; Peyssonnaux, C.; Eychene, A.; Franke, T.F.; Lenormand, P.; Fort, P.; Hibner, U. Activation of ERK, controlled by Rac1 and Cdc42 via Akt, is required for anoikis. Ann. N. Y. Acad. Sci. 2002, 973, 145–148. [Google Scholar] [CrossRef]
- Orchard, R.C.; Alto, N.M. Mimicking GEFs: A common theme for bacterial pathogens. Cell. Microbiol. 2012, 14, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Raymond, B.; Crepin, V.F.; Collins, J.W.; Frankel, G. The WxxxE effector EspT triggers expression of immune mediators in anErk/JNK and NF-kappaB-dependent manner. Cell. Microbiol. 2011, 13, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, R.P.; Spiegel, C.; Keren, Y.; Danieli, T.; Melamed-Book, N.; Pal, R.R.; Zlotkin-Rivkin, E.; Rosenshine, I.; Aroeti, B. Mitochondrial Targeting of the Enteropathogenic Escherichia coli Map Triggers Calcium Mobilization, ADAM10-MAP Kinase Signaling, and Host Cell Apoptosis. MBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Kralicek, S.E.; Nguyen, M.; Rhee, K.J.; Tapia, R.; Hecht, G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. Lab. Investig. A J. Tech. Methods Pathol. 2018, 98, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grishin, A.M.; Cherney, M.; Anderson, D.H.; Phanse, S.; Babu, M.; Cygler, M. NleH defines a new family of bacterial effector kinases. Structure 2014, 22, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Broom, O.J.; Widjaya, B.; Troelsen, J.; Olsen, J.; Nielsen, O.H. Mitogen activated protein kinases: A role in inflammatory bowel disease? Clin. Exp. Immunol. 2009, 158, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.; Ooka, T.; Iguchi, A.; Hayashi, T.; Sugimoto, N.; Tobe, T. NleC, a type III secretion protease, compromises NF-kappaB activation by targeting p65/RelA. PLoS Pathog. 2010, 6, e1001231. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.S.; Riedmaier, P.; Marches, O.; Frankel, G.; Hartland, E.L. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-kappaB for degradation. Mol. Microbiol. 2011, 80, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; El Qaidi, S.; Hardwidge, P.R. The T3SS Effector Protease NleC Is Active within Citrobacter rodentium. Pathogens 2021, 10, 589. [Google Scholar] [CrossRef]
- Sham, H.P.; Shames, S.R.; Croxen, M.A.; Ma, C.; Chan, J.M.; Khan, M.A.; Wickham, M.E.; Deng, W.; Finlay, B.B.; Vallance, B.A. Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF-kappaB and p38 mitogen-activated protein kinase activation. Infect. Immun. 2011, 79, 3552–3562. [Google Scholar] [CrossRef] [Green Version]
- Baruch, K.; Gur-Arie, L.; Nadler, C.; Koby, S.; Yerushalmi, G.; Ben-Neriah, Y.; Yogev, O.; Shaulian, E.; Guttman, C.; Zarivach, R.; et al. Metalloprotease type III effectors that specifically cleave JNK and NF-kappaB. EMBO J. 2011, 30, 221–231. [Google Scholar] [CrossRef]
- Gur-Arie, L.; Eitan-Wexler, M.; Weinberger, N.; Rosenshine, I.; Livnah, O. The bacterial metalloprotease NleD selectively cleaves mitogen-activated protein kinases that have high flexibility in their activation loop. J. Biol. Chem. 2020, 295, 9409–9420. [Google Scholar] [CrossRef] [PubMed]
- Creuzburg, K.; Giogha, C.; Wong Fok Lung, T.; Scott, N.E.; Muhlen, S.; Hartland, E.L.; Pearson, J.S. The Type III Effector NleD from Enteropathogenic Escherichia coli Differentiates between Host Substrates p38 and JNK. Infect. Immun. 2017, 85, 10–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ding, X.; Cui, J.; Xu, H.; Chen, J.; Gong, Y.N.; Hu, L.; Zhou, Y.; Ge, J.; Lu, Q.; et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-kappaB activation. Nature 2012, 481, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Nadler, C.; Baruch, K.; Kobi, S.; Mills, E.; Haviv, G.; Farago, M.; Alkalay, I.; Bartfeld, S.; Meyer, T.F.; Ben-Neriah, Y.; et al. The type III secretion effector NleE inhibits NF-kappaB activation. PLoS Pathog. 2010, 6, e1000743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Muhlen, S.; Oates, C.V.; Pearson, J.S.; Hartland, E.L. Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ. J. Biol. Chem. 2016, 291, 20149–20162. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.R.; Lei, C.Q. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front. Immunol. 2020, 11, 608976. [Google Scholar] [CrossRef]
- Newton, H.J.; Pearson, J.S.; Badea, L.; Kelly, M.; Lucas, M.; Holloway, G.; Wagstaff, K.M.; Dunstone, M.A.; Sloan, J.; Whisstock, J.C.; et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog. 2010, 6, e1000898. [Google Scholar] [CrossRef] [Green Version]
- Vossenkamper, A.; Marches, O.; Fairclough, P.D.; Warnes, G.; Stagg, A.J.; Lindsay, J.O.; Evans, P.C.; Luong le, A.; Croft, N.M.; Naik, S.; et al. Inhibition of NF-kappaB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J. Immunol. 2010, 185, 4118–4127. [Google Scholar] [CrossRef] [Green Version]
- Collaborators, G.B.D.D.D. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 909–948. [Google Scholar] [CrossRef] [Green Version]
- von Seidlein, L.; Kim, D.R.; Ali, M.; Lee, H.; Wang, X.; Thiem, V.D.; Canh, D.G.; Chaicumpa, W.; Agtini, M.D.; Hossain, A.; et al. A multicentre study of Shigella diarrhoea in six Asian countries: Disease burden, clinical manifestations, and microbiology. PLoS Med. 2006, 3, e353. [Google Scholar] [CrossRef]
- Brunner, K.; Samassa, F.; Sansonetti, P.J.; Phalipon, A. Shigella-mediated immunosuppression in the human gut: Subversion extends from innate to adaptive immune responses. Hum. Vaccines Immunother. 2019, 15, 1317–1325. [Google Scholar] [CrossRef] [Green Version]
- Pore, D.; Mahata, N.; Pal, A.; Chakrabarti, M.K. 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-kappaB and p38 MAP kinase signaling. Mol. Immunol. 2010, 47, 1739–1746. [Google Scholar] [CrossRef]
- Kohler, H.; Rodrigues, S.P.; McCormick, B.A. Shigella flexneri Interactions with the Basolateral Membrane Domain of Polarized Model Intestinal Epithelium: Role of Lipopolysaccharide in Cell Invasion and in Activation of the Mitogen-Activated Protein Kinase ERK. Infect. Immun. 2002, 70, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Killackey, S.A.; Sorbara, M.T.; Girardin, S.E. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes. Front Cell Infect. Microbiol. 2016, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Kasper, C.A.; Sorg, I.; Schmutz, C.; Tschon, T.; Wischnewski, H.; Kim, M.L.; Arrieumerlou, C. Cell-cell propagation of NF-kappaB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity 2010, 33, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, H.; Long, C.; Hu, L.; Xu, H.; Liu, L.; Chen, S.; Wang, D.C.; Shao, F. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 2007, 28, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Chambers, K.A.; Abularrage, N.S.; Scheck, R.A. Selectivity within a Family of Bacterial Phosphothreonine Lyases. Biochemistry 2018, 57, 3790–3796. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, H.; Zhou, Y.; Zhang, J.; Long, C.; Li, S.; Chen, S.; Zhou, J.M.; Shao, F. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007, 315, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Arbibe, L.; Kim, D.W.; Batsche, E.; Pedron, T.; Mateescu, B.; Muchardt, C.; Parsot, C.; Sansonetti, P.J. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol. 2007, 8, 47–56. [Google Scholar] [CrossRef]
- Kramer, R.W.; Slagowski, N.L.; Eze, N.A.; Giddings, K.S.; Morrison, M.F.; Siggers, K.A.; Starnbach, M.N.; Lesser, C.F. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog. 2007, 3, e21. [Google Scholar] [CrossRef] [Green Version]
- Harouz, H.; Rachez, C.; Meijer, B.M.; Marteyn, B.; Donnadieu, F.; Cammas, F.; Muchardt, C.; Sansonetti, P.; Arbibe, L. Shigella flexneri targets the HP1gamma subcode through the phosphothreonine lyase OspF. EMBO J. 2014, 33, 2606–2622. [Google Scholar] [CrossRef] [Green Version]
- Ambrosi, C.; Pompili, M.; Scribano, D.; Limongi, D.; Petrucca, A.; Cannavacciuolo, S.; Schippa, S.; Zagaglia, C.; Grossi, M.; Nicoletti, M. The Shigella flexneri OspB effector: An early immunomodulator. Int. J. Med. Microbiol. 2015, 305, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.R.; Breitkreutz, A.; Chenal, A.; Sansonetti, P.J.; Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007, 1, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Kim, M.; Sasakawa, C.; Mizushima, T. Crystal structure of the substrate-recognition domain of the Shigella E3 ligase IpaH9.8. Acta crystallographica. Sect. F Struct. Biol. Commun. 2016, 72, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashida, H.; Kim, M.; Schmidt-Supprian, M.; Ma, A.; Ogawa, M.; Sasakawa, C. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat. Cell Biol. 2010, 12, 61–69, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wandel, M.P.; Pathe, C.; Werner, E.I.; Ellison, C.J.; Boyle, K.B.; von der Malsburg, A.; Rohde, J.; Randow, F. GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8. Cell Host Microbe 2017, 22, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Jiang, W.; Yu, Q.; Liu, W.; Zhou, P.; Li, J.; Xu, J.; Xu, B.; Wang, F.; Shao, F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 2017, 551, 378–383. [Google Scholar] [CrossRef]
- Hinnebusch, B.J. The evolution of flea-borne transmission in Yersinia pestis. Curr. Issues Mol. Biol. 2005, 7, 197–212. [Google Scholar]
- Revell, P.A.; Miller, V.L. Yersinia virulence: More than a plasmid. FEMS Microbiol. Lett. 2001, 205, 159–164. [Google Scholar] [CrossRef]
- Grassl, G.A.; Bohn, E.; Muller, Y.; Buhler, O.T.; Autenrieth, I.B. Interaction of Yersinia enterocolitica with epithelial cells: Invasin beyond invasion. Int. J. Med. Microbiol. 2003, 293, 41–54. [Google Scholar] [CrossRef]
- Trosky, J.E.; Liverman, A.D.; Orth, K. Yersinia outer proteins: Yops. Cell Microbiol. 2008, 10, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.H.; Dillon, C.P.; Snyder, A.G.; Fitzgerald, P.; Wynosky-Dolfi, M.A.; Zwack, E.E.; Hu, B.; Fitzgerald, L.; Mauldin, E.A.; Copenhaver, A.M.; et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 7385–7390. [Google Scholar] [CrossRef]
- Philip, N.H.; Brodsky, I.E. Cell death programs in Yersinia immunity and pathogenesis. Front. Cell. Infect. Microbiol. 2012, 2, 149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ting, A.T.; Marcu, K.B.; Bliska, J.B. Inhibition of MAPK and NF-kappa B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J. Immunol. 2005, 174, 7939–7949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orth, K. Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 2002, 5, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Keitany, G.; Li, Y.; Wang, Y.; Ball, H.L.; Goldsmith, E.J.; Orth, K. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 2006, 312, 1211–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, R.; Peak-Chew, S.Y.; McMahon, H.T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 18574–18579. [Google Scholar] [CrossRef]
- Paquette, N.; Conlon, J.; Sweet, C.; Rus, F.; Wilson, L.; Pereira, A.; Rosadini, C.V.; Goutagny, N.; Weber, A.N.; Lane, W.S.; et al. Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl. Acad. Sci. USA 2012, 109, 12710–12715. [Google Scholar] [CrossRef]
- Hao, Y.H.; Wang, Y.; Burdette, D.; Mukherjee, S.; Keitany, G.; Goldsmith, E.; Orth, K. Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways. PLoS ONE 2008, 3, e1375. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Liu, Z.; Eyobo, Y.; Orth, K. Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism. J. Biol. Chem. 2003, 278, 2131–2135. [Google Scholar] [CrossRef] [Green Version]
- Black, D.S.; Bliska, J.B. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 2000, 37, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Aili, M.; Hallberg, B.; Wolf-Watz, H.; Rosqvist, R. GAP activity of Yersinia YopE. Methods Enzymol. 2002, 358, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Von Pawel-Rammingen, U.; Telepnev, M.V.; Schmidt, G.; Aktories, K.; Wolf-Watz, H.; Rosqvist, R. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: A mechanism for disruption of actin microfilament structure. Mol. Microbiol. 2000, 36, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, M.; Cornelis, G.R. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 1998, 29, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Dixon, J.E. YopT is a cysteine protease cleaving Rho family GTPases. Adv. Exp. Med. Biol. 2003, 529, 79–84. [Google Scholar] [CrossRef]
- Viboud, G.I.; Mejia, E.; Bliska, J.B. Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection. Cell Microbiol. 2006, 8, 1504–1515. [Google Scholar] [CrossRef]
- Grassl, G.A.; Finlay, B.B. Pathogenesis of enteric Salmonella infections. Curr. Opin. Gastroenterol. 2008, 24, 22–26. [Google Scholar] [CrossRef]
- Jones, M.A.; Hulme, S.D.; Barrow, P.A.; Wigley, P. The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian. Pathol. 2007, 36, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Lou, L.; Zhang, P.; Piao, R.; Wang, Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front. Cell. Infect. Microbiol. 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Agbor, T.A.; McCormick, B.A. Salmonella effectors: Important players modulating host cell function during infection. Cell. Microbiol. 2011, 13, 1858–1869. [Google Scholar] [CrossRef] [Green Version]
- Galan, J.E. Salmonella interactions with host cells: Type III secretion at work. Annu. Rev. Cell Dev. Biol. 2001, 17, 53–86. [Google Scholar] [CrossRef] [Green Version]
- Figueira, R.; Holden, D.W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 2012, 158, 1147–1161. [Google Scholar] [CrossRef] [Green Version]
- Tallant, T.; Deb, A.; Kar, N.; Lupica, J.; de Veer, M.J.; DiDonato, J.A. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol. 2004, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galdiero, M.; Vitiello, M.; Sanzari, E.; D’Isanto, M.; Tortora, A.; Longanella, A.; Galdiero, S. Porins from Salmonella enterica serovar Typhimurium activate the transcription factors activating protein 1 and NF-kappaB through the Raf-1-mitogen-activated protein kinase cascade. Infect. Immun. 2002, 70, 558–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keestra, A.M.; Winter, M.G.; Klein-Douwel, D.; Xavier, M.N.; Winter, S.E.; Kim, A.; Tsolis, R.M.; Baumler, A.J. A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. MBio 2011, 2, 10–1128. [Google Scholar] [CrossRef] [Green Version]
- Pilar, A.V.; Reid-Yu, S.A.; Cooper, C.A.; Mulder, D.T.; Coombes, B.K. GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog. 2012, 8, e1002773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanth, C.V.; Mercado-Lubo, R.; Hallstrom, K.; McCormick, B.A. Salmonella effector proteins and host-cell responses. Cell. Mol. Life Sci. 2011, 68, 3687–3697. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.C.; Galan, J.E. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J. Cell Biol. 2006, 175, 453–463. [Google Scholar] [CrossRef]
- Bruno, V.M.; Hannemann, S.; Lara-Tejero, M.; Flavell, R.A.; Kleinstein, S.H.; Galan, J.E. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog. 2009, 5, e1000538. [Google Scholar] [CrossRef] [Green Version]
- Poh, J.; Odendall, C.; Spanos, A.; Boyle, C.; Liu, M.; Freemont, P.; Holden, D.W. SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cell. Microbiol. 2008, 10, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Odendall, C.; Rolhion, N.; Forster, A.; Poh, J.; Lamont, D.J.; Liu, M.; Freemont, P.S.; Catling, A.D.; Holden, D.W. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe 2012, 12, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Murli, S.; Watson, R.O.; Galan, J.E. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. 2001, 3, 795–810. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.L.; Le, T.X.; Cowen, D.S. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell. Microbiol. 2003, 5, 267–275. [Google Scholar] [CrossRef]
- Mukherjee, S.; Hao, Y.H.; Orth, K. A newly discovered post-translational modification--the acetylation of serine and threonine residues. Trends Biochem. Sci. 2007, 32, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Wu, H.; Wentworth, C.; Luo, L.; Collier-Hyams, L.; Neish, A.S. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe 2008, 3, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, F.; Galan, J.E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog. 2009, 5, e1000595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Jones, R.M.; Neish, A.S. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo. Cell. Microbiol. 2012, 14, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.; Gu, J.; Gu, D.; Wang, Z.; Ji, R.; Jiao, X.; Li, Q. The Salmonella T3SS1 effector IpaJ is regulated by ItrA and inhibits the MAPK signaling pathway. PLoS Pathog. 2022, 18, e1011005. [Google Scholar] [CrossRef]
- Mazurkiewicz, P.; Thomas, J.; Thompson, J.A.; Liu, M.; Arbibe, L.; Sansonetti, P.; Holden, D.W. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol. 2008, 67, 1371–1383. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Bacot, C.M.; Garlington, W.A.; Doyle, T.J.; Roberts, S.; Gulig, P.A. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J. Bacteriol. 2001, 183, 4652–4658. [Google Scholar] [CrossRef] [Green Version]
- Haneda, T.; Ishii, Y.; Shimizu, H.; Ohshima, K.; Iida, N.; Danbara, H.; Okada, N. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell. Microbiol. 2012, 14, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, Y.; Gao, S.; Yuan, H.; Zuo, L.; Wu, C.; Huang, R.; Wu, S. Salmonella spvC Gene Inhibits Autophagy of Host Cells and Suppresses NLRP3 as Well as NLRC4. Front. Immunol. 2021, 12, 639019. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Zhou, L.; Wu, C.; Wang, Y.; Li, Y.; Huang, R.; Wu, S. Salmonella spvC Gene Inhibits Pyroptosis and Intestinal Inflammation to Aggravate Systemic Infection in Mice. Front. Microbiol. 2020, 11, 562491. [Google Scholar] [CrossRef]
- Montero, D.; Vidal, R.; Velasco, J.; George, S.; Lucero, Y.; Gomez, L.; Carreno, L.; Garcia-Betancourt, R.; O’Ryan, M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front. Med. 2023, 10, 1155751. [Google Scholar] [CrossRef]
- Harrison, L.M.; Rallabhandi, P.; Michalski, J.; Zhou, X.; Steyert, S.R.; Vogel, S.N.; Kaper, J.B. Vibrio cholerae flagellins induce Toll-like receptor 5-mediated interleukin-8 production through mitogen-activated protein kinase and NF-kappaB activation. Infect. Immun. 2008, 76, 5524–5534. [Google Scholar] [CrossRef] [Green Version]
- Prasad, G.; Dhar, V.; Mukhopadhaya, A. Vibrio cholerae OmpU Mediates CD36-Dependent Reactive Oxygen Species Generation Triggering an Additional Pathway of MAPK Activation in Macrophages. J. Immunol. 2019, 202, 2431–2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, J.; Shin, S.; Sur, D.; Nair, G.B.; Holmgren, J. New-generation vaccines against cholera. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 701–710. [Google Scholar] [CrossRef]
- Bharati, K.; Ganguly, N.K. Cholera toxin: A paradigm of a multifunctional protein. Indian J. Med. Res. 2011, 133, 179–187. [Google Scholar]
- Burkart, V.; Kim, Y.E.; Hartmann, B.; Ghiea, I.; Syldath, U.; Kauer, M.; Fingberg, W.; Hanifi-Moghaddam, P.; Muller, S.; Kolb, H. Cholera toxin B pretreatment of macrophages and monocytes diminishes their proinflammatory responsiveness to lipopolysaccharide. J. Immunol. 2002, 168, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, J.; Barnes, J.; Kokkonen, G.C.; Lee, J.C.; Liu, Y. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J. Immunol. 2002, 169, 6408–6416. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, T.; Nandy, R.K.; Mukhopadhyay, A.K.; Dutta, S.; Mutreja, A.; Okamoto, K.; Miyoshi, S.I.; Nair, G.B.; Ghosh, A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol. 2020, 10, 572096. [Google Scholar] [CrossRef]
- Woida, P.J.; Satchell, K.J.F. The Vibrio cholerae MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Sci. Signal. 2020, 13, eaaw9447. [Google Scholar] [CrossRef]
- Suzuki, M.; Danilchanka, O.; Mekalanos, J.J. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 2014, 16, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Bankapalli, L.K.; Mishra, R.C.; Raychaudhuri, S. VopE, a Vibrio cholerae Type III Effector, Attenuates the Activation of CWI-MAPK Pathway in Yeast Model System. Front. Cell. Infect. Microbiol. 2017, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Orth, K. Virulence determinants for Vibrio parahaemolyticus infection. Curr. Opin. Microbiol. 2013, 16, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Calder, T.; de Souza Santos, M.; Attah, V.; Klimko, J.; Fernandez, J.; Salomon, D.; Krachler, A.M.; Orth, K. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence. FEMS Microbiol. Lett. 2014, 361, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matlawska-Wasowska, K.; Finn, R.; Mustel, A.; O’Byrne, C.P.; Baird, A.W.; Coffey, E.T.; Boyd, A. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis. BMC Microbiol. 2010, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- De Nisco, N.J.; Casey, A.K.; Kanchwala, M.; Lafrance, A.E.; Coskun, F.S.; Kinch, L.N.; Grishin, N.V.; Xing, C.; Orth, K. Manipulation of IRE1-Dependent MAPK Signaling by a Vibrio Agonist-Antagonist Effector Pair. mSystems 2021, 6, 10-1128. [Google Scholar] [CrossRef]
- Woolery, A.R.; Yu, X.; LaBaer, J.; Orth, K. AMPylation of Rho GTPases subverts multiple host signaling processes. J. Biol. Chem. 2014, 289, 32977–32988. [Google Scholar] [CrossRef] [Green Version]
- Trosky, J.E.; Li, Y.; Mukherjee, S.; Keitany, G.; Ball, H.; Orth, K. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 2007, 282, 34299–34305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trosky, J.E.; Mukherjee, S.; Burdette, D.L.; Roberts, M.; McCarter, L.; Siegel, R.M.; Orth, K. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J. Biol. Chem. 2004, 279, 51953–51957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Gewurz, B.E.; Ritchie, J.M.; Takasaki, K.; Greenfeld, H.; Kieff, E.; Davis, B.M.; Waldor, M.K. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep. 2013, 3, 1690–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecuit, M. Listeria monocytogenes, a model in infection biology. Cell. Microbiol. 2020, 22, e13186. [Google Scholar] [CrossRef] [Green Version]
- Hamon, M.; Bierne, H.; Cossart, P. Listeria monocytogenes: A multifaceted model. Nat. Rev. Microbiol. 2006, 4, 423–434. [Google Scholar] [CrossRef]
- Tang, P.; Rosenshine, I.; Finlay, B.B. Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells. Mol. Biol. Cell 1994, 5, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Seveau, S.; Bierne, H.; Giroux, S.; Prevost, M.C.; Cossart, P. Role of lipid rafts in E-cadherin-- and HGF-R/Met--mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 2004, 166, 743–753. [Google Scholar] [CrossRef]
- Copp, J.; Marino, M.; Banerjee, M.; Ghosh, P.; van der Geer, P. Multiple regions of internalin B contribute to its ability to turn on the Ras-mitogen-activated protein kinase pathway. J. Biol. Chem. 2003, 278, 7783–7789. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Sutherland, C.L.; Gold, M.R.; Finlay, B.B. Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect. Immun. 1998, 66, 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Weiglein, I.; Goebel, W.; Troppmair, J.; Rapp, U.R.; Demuth, A.; Kuhn, M. Listeria monocytogenes infection of HeLa cells results in listeriolysin O-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiol. Lett. 1997, 148, 189–195. [Google Scholar] [CrossRef]
- Stoiber, D.; Stockinger, S.; Steinlein, P.; Kovarik, J.; Decker, T. Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3. J. Immunol. 2001, 166, 466–472. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, M.; Yi, C.H.; Gonzales, R.; Lee, K.D.; Portnoy, D.A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl. Acad. Sci. USA 2002, 99, 13861–13866. [Google Scholar] [CrossRef] [PubMed]
- Lehner, M.D.; Schwoebel, F.; Kotlyarov, A.; Leist, M.; Gaestel, M.; Hartung, T. Mitogen-activated protein kinase-activated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection. J. Immunol. 2002, 168, 4667–4673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helander, H.F.; Fandriks, L. Surface area of the digestive tract—Revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Nell, S.; Suerbaum, S.; Josenhans, C. The impact of the microbiota on the pathogenesis of IBD: Lessons from mouse infection models. Nat. Rev. Microbiol. 2010, 8, 564–577. [Google Scholar] [CrossRef]
- Hommes, D.W.; Peppelenbosch, M.P.; van Deventer, S.J. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 2003, 52, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Woida, P.J.; Satchell, K.J.F. Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Front. Cell. Dev. Biol. 2022, 10, 837691. [Google Scholar] [CrossRef]
- Wu, S.C.; Chu, X.L.; Su, J.Q.; Cui, Z.Q.; Zhang, L.Y.; Yu, Z.J.; Wu, Z.M.; Cai, M.L.; Li, H.X.; Zhang, Z.J. Baicalin protects mice against Salmonella typhimurium infection via the modulation of both bacterial virulence and host response. Phytomedicine 2018, 48, 21–31. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Xu, W.; Geng, Y.; Su, Y.; Wang, Q.; Wang, J. Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates autophagy through TLR4/MAPK/NF-kappaB signalling pathway. Basic Clin. Pharmacol. Toxicol. 2021, 128, 241–255. [Google Scholar] [CrossRef]
- Han, J.; Lee, J.D.; Bibbs, L.; Ulevitch, R.J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994, 265, 808–811. [Google Scholar] [CrossRef]
- Badger, A.M.; Bradbeer, J.N.; Votta, B.; Lee, J.C.; Adams, J.L.; Griswold, D.E. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J. Pharmacol. Exp. Ther. 1996, 279, 1453–1461. [Google Scholar]
- Rubalcava, N.S.; Gadepalli, S.K. Inflammatory Bowel Disease in Children and Adolescents. Adv. Pediatr. 2021, 68, 121–142. [Google Scholar] [CrossRef]
- Mirsepasi-Lauridsen, H.C.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef] [Green Version]
- Axelrad, J.E.; Cadwell, K.H.; Colombel, J.F.; Shah, S.C. The role of gastrointestinal pathogens in inflammatory bowel disease: A systematic review. Ther. Adv. Gastroenterol. 2021, 14, 17562848211004493. [Google Scholar] [CrossRef]
- Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021, 20, 39–63. [Google Scholar] [CrossRef]
- Coskun, M.; Olsen, J.; Seidelin, J.B.; Nielsen, O.H. MAP kinases in inflammatory bowel disease. Clin. Chim. Acta 2011, 412, 513–520. [Google Scholar] [CrossRef]
- Bo, M.; Jasemi, S.; Uras, G.; Erre, G.L.; Passiu, G.; Sechi, L.A. Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020, 8, 1459. [Google Scholar] [CrossRef] [PubMed]
- Roszyk, E.; Puszczewicz, M. Role of human microbiome and selected bacterial infections in the pathogenesis of rheumatoid arthritis. Reumatologia 2017, 55, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Florez, D.; Valor, L. Protein-kinase inhibitors: A new treatment pathway for autoimmune and inflammatory diseases? Reumatol. Clin. 2016, 12, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Patterson, H.; Nibbs, R.; McInnes, I.; Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol. 2014, 176, 1–10. [Google Scholar] [CrossRef] [PubMed]
Bacterium | Effector/ Toxin | Targeted Component of the MAPK Signaling Pathway (Activation/ Inhibition) | Enzymatic Activity | Mechanism | Host Response | Host Models | Ref. |
---|---|---|---|---|---|---|---|
Enteropathogenic Escherichia (E.) coli (EPEC) and enterohemorrhagic E. coli (EHEC) | Tir | TRAF6, Erk1/2, c-JNK, p38, NF-ĸB (inhibition) | Unknown | An ITIM motif in Tir interacts with SHP1&2, which inhibits the ubiquitination of TRAF6 and the downstream NF-κB/MAPK pathway | Inhibition of proinflammatory cytokine production | Mammalian cell culture, C. rodentium/murine | [38,42] |
EspH | Cdc42, Rac1, Erk1/2 (inhibition) | Rho-GAP through binding host Abr | Inhibits RhoGTPases and deactivates Erk1/2 | Inhibition of innate immunity through inhibition of TNF-α- induced Erk signaling; inducing host cell cytotoxicity and death | Mammalian cell culture | [47,48] | |
Map | Cdc42, MEK1, Erk1/2, p38 (activation) | Rho-GEF (WxxxE) | Activation of EGFR and MAPK signaling independent of Rho GTPase activation. MAPK is activated through mitochondrial cytotoxicity, the rise in cytoplasmic Ca+2, and stimulation of ADAM10 | Induction of apoptosis | Mammalian cell culture | [52] | |
NleH1/ NleH2 | NleH1—Erk1/2, p38, NF-ĸB NleH2—p38, NF-ĸB (inhibition) | Kinase | The kinase activity deactivates NF-ĸB, but not the MAPKs; the mechanism of MAPK inhibition is not known | Improved recovery from colitis | Mammalian cell culture, murine | [53] | |
NleC | p38, NF-ĸB (inhibition) | Zinc metalloprotease | Cleaves NF-ĸB; the mechanism of p38 inhibition is not known | Inhibition of IL-8 release | Mammalian cell culture, murine | [56,57,58,59] | |
NleD | c-JNK, p38, NF-ĸB (inhibition) | Zinc metalloprotease | Cleaves the TXY motif in the activation loop of the MAPKs | Inhibition of AP-1-dependent gene transcription and innate immune responses | Mammalian cell culture | [60,61,62] | |
NleE | TAK1, NF-ĸB (inhibition) | Cysteine methyltransferase | Inhibits TAB2/3 by methylation of a conserved cysteine in Npl4-like zinc finger domains of the complex, leading to the TAK1-mediated suppression of downstream NF-ĸB | Inhibition of IL-6, IL-8, and TNF production | Mammalian cell culture | [64,65,67,68] | |
Shigella flexneri | OspF | c-JNK, p38, Erk 1/2 (inhibition) | Phosphothreonine lyase | Removes a phosphorylated-threonine residue in the TXY motif of the activation loop in MAPKs | Inhibition of production of IL-8, c-Fos, CD44, and NF-ĸB1 | Mammalian cell culture, yeast, guinea pig | [76,78,79,80,81] |
OspB | Erk1/2, p38 (activation) | Unknown | OspB activates Erk1/2 and p38, leading to the activation of inflammatory responses. | Promotes the production and secretion of metabolites involved in polymorphonuclear (PMN) leucocytes attraction | Mammalian cell culture, Guinea pig | [82] | |
IpaH9.8 | MAPKK Ste7 (inhibition) | E3 ubiquitin ligase | Promotes proteasome-dependent degradation of the MAPKK Ste7 in yeast and NF-ĸB and guanylate-binding proteins in mammalian cells | Suppression of MIP-2, IL-6, IL-1β | Mammalian cells, yeast, murine | [83,84,85,86,87] | |
Yersinia spp. | YopJ/P | MEK2, MKK4, MKK6, MKK7 and MAPKKK-TAK1, MKK Pbs2 (inhibition) | Acetyltransferase | Adds acetyl-coenzyme A to critical serine, threonine, and lysine residues in the activation loop | Induces programmed cell death and inhibits proinflammatory signaling through TNFα and IL-8 | Mammalian cell culture, Drosophila, yeast | [96,97,98,99,100] |
YopE | Cdc42, RhoA, Rac1, c-JNK, Erk1/2 (inhibition) | Rho-GAP | Inactivates RhoGTPases by GAP activity, suppressing c-JNK and Erk1/2 | Inhibition of the production of IL-8 | Mammalian cell culture, murine | [101,102,103,104,106] | |
YopT | Cdc42, RhoA, Rac1, c-JNK, Erk1/2 (inhibition) | Cysteine protease | Proteolytically cleaves the lipid modification of the RhoGTPases, resulting in their deactivation | Inhibition of the production of IL-8 | Mammalian cell culture, murine | [99,104,105] | |
Salmonella enterica serovar Typhimurium | SopE/ SopE2 and SopB | Cdc42, Rac1, Erk1/2, p38, JNK (activation) | Rho-GEF | Activates RhoGTPases and downstream MAPKs to induce bacterial internalization and proinflammatory response | Production of IL-8 | Mammalian cell culture | [118,119] |
SteC | MAPKK (activation) | Kinase | Phosphorylates MEK1 and MEK2, which activates the Erk/MLCK/Myosin IIB pathway | F-actin remodeling | Mammalian cell culture, murine | [120,121] | |
SptP | Cdc42, Rac1, Raf-1, Erk1/2, c-JNK (inhibition) | Rho-GAP and tyrosine phosphatase | Inhibits the Raf-1/Erk1/2 pathway through C-terminal tyrosine phosphatase activity | Inhibition of IL-8 and TNF- α production | Mammalian cell culture | [122,123] | |
AvrA | MKK4, MKK7, c-JNK (inhibition) | Acetyltransferase | Acetylates a specific serine residue of MKK4 and MKK7 and blocks their phosphorylation leading to the suppression of c-JNK and NF-ĸB | Inhibition of inflammatory responses and cell death | Mammalian cell culture, Drosophila, yeast, murine | [120,125,126] | |
IpaJ | Ras (inhibition) | Unknown | Prevents the ubiquitination of Ras and phosphorylation of downstream MEK and Erk1/2 | Downregulates proinflammatory responses, cellular growth, differentiation, cell survival, and apoptosis | Mammalian cell culture | [128] | |
SpvC | Erk1/2, p38, c-JNK (inhibition) | Phosphothreonine lyase | Phosphothreonine lyase activity towards p38, Erk1/2 in vitro, and Erk1/2 only in vivo | Inhibition of proinflammatory cytokine production, neutrophil infiltration, and pyroptotic cell death | Mammalian cell culture, murine | [129,130,131,132,133] | |
Vibrio cholerae | CTXB * | c-JNK, p38 (inhibition) | Unknown | Induces the expression of MKP1 and inhibits the activation of c-JNK and p38 | Inhibition of LPS-activated proinflammatory responses (TNFα and IL-6) | Mammalian cell culture | [139,140] |
MARTX * | Rho GTPases (inhibition) | Unknown | Inactivates Rho GTPases and downstream MAPK pathways | Inhibition of IL-8 production and intestinal inflammation | Mammalian cell culture | [141,142] | |
VopE | Cell wall integrity-MAPK (CWI-MAPK) (inhibition) | Unknown | Disrupts the MAPK signaling pathway through an unknown mechanism | Unknown | Yeast | [144] | |
Vibrio parahaemolyticus | VopQ | Erk1/2 (activation) | Unknown | Activates the IRE1 branch of the unfolded protein response, resulting in the induction of Erk1/2 | Unknown | Mammalian cell culture | [148] |
VopS | Rho GTPases (inhibition) | AMPylation | AMPylates Rho GTPases, resulting in the shutdown of the downstream MAPKs | Unknown | Mammalian cell culture | [148] | |
VopA | Erk1/2, p38, c-JNK (inhibition) | Acetyltransferase | Acetylates a conserved lysine located in the catalytic loop of MAPKs | Suppress host innate immune responses, but not the NF-κB pathway | Mammalian cell culture, yeast | [150,151] | |
VopZ | TAK1 (inhibition) | Unknown | Inactivates TAK1 | Unknown | Mammalian cell culture | [152] | |
Listeria monocytogenes | LLO * | Raf, p38 (activation) | Unknown | Activates the Raf-MEK and p38 pathway | Activation of gene expression of NF-ĸB and the p38 pathway | Mammalian cell culture, murine | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandi, I.; Aroeti, B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int. J. Mol. Sci. 2023, 24, 11905. https://doi.org/10.3390/ijms241511905
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. International Journal of Molecular Sciences. 2023; 24(15):11905. https://doi.org/10.3390/ijms241511905
Chicago/Turabian StyleNandi, Ipsita, and Benjamin Aroeti. 2023. "Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay" International Journal of Molecular Sciences 24, no. 15: 11905. https://doi.org/10.3390/ijms241511905
APA StyleNandi, I., & Aroeti, B. (2023). Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. International Journal of Molecular Sciences, 24(15), 11905. https://doi.org/10.3390/ijms241511905