Recent Advances in Breast Cancer Research
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACTB | Actin Beta |
AE | Adverse effect |
AKT1 | RAC-alpha serine/threonine-protein kinase |
ATRA | All-trans retinoic acid |
BC | Breast cancer |
BCC | Breast cancer cells |
CTC | Circulating tumor cells |
COL4A5 | Collagen type IV alpha 5 chain |
CTNNA1 | Catenin alpha 1 |
CTNNB1 | Catenin beta 1 |
D | Day |
ECM | Extracellular matrix |
EGFR | Epidermal growth factor receptor |
ERα | Estrogen receptor-alpha |
ERβ1 | Estrogen receptor-beta1 |
ERK1 | Extracellular signal-regulated kinase 1 |
EVs | Extracellular vesicles |
FAs | Fibroadenomas |
FELs | Fibro-epithelial lesions |
GRHL2 | Grainyhead-like 2 |
Her-2 | Human epidermal growth factor receptor 2 |
ITGB1 | Integrin-beta1 |
MAPK14 | Mitogen-activated protein kinase 14; p38 |
MCSs | Multicellular spheroids |
NACT | Neoadjuvant chemotherapy |
OHT | 4-hydroxytamoxifen |
OS | Overall survival |
PD | Progression of disease |
PTs | Phyllodes tumors |
PD-L1 | Programmed cell death ligand-1 |
RPM | Random positioning machine |
sTILs | Stromal tumor-infiltrating lymphocytes |
TNBC | Triple-negative breast cancer |
TUBB | Tubulin-beta |
References
- American Cancer Society. Key Statistics for Breast Cancer. Available online: https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html (accessed on 10 July 2023).
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Van’T Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Nassef, M.Z.; Kopp, S.; Melnik, D.; Corydon, T.J.; Sahana, J.; Krüger, M.; Wehland, M.; Bauer, T.J.; Liemersdorf, C.; Hemmersbach, R.; et al. Short-Term Microgravity Influences Cell Adhesion in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 5730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahana, J.; Corydon, T.J.; Wehland, M.; Krüger, M.; Kopp, S.; Melnik, D.; Kahlert, S.; Relja, B.; Infanger, M.; Grimm, D. Alterations of Growth and Focal Adhesion Molecules in Human Breast Cancer Cells Exposed to the Random Positioning Machine. Front. Cell Dev. Biol. 2021, 9, 672098. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Turchinovich, A.; Feisst, M.; Riedel, F.; Haßdenteufel, K.; Scharli, P.; Hartkopf, A.D.; Brucker, S.Y.; Michel, L.; Burwinkel, B.; et al. Circulating miR-200 Family and CTCs in Metastatic Breast Cancer before, during, and after a New Line of Systemic Treatment. Int. J. Mol. Sci. 2022, 23, 9535. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Kaur, J.; Wylie, D.; Mittal, K.; Li, H.; Kolachina, R.; Aleskandarany, M.; Toss, M.S.; Green, A.R.; Yang, J.; et al. A Case Series Exploration of Multi-Regional Expression Heterogeneity in Triple-Negative Breast Cancer Patients. Int. J. Mol. Sci. 2022, 23, 13322. [Google Scholar] [CrossRef]
- Brcic, I.; Kluba, A.M.; Godschachner, T.M.; Suppan, C.; Regitnig, P.; Dandachi, N.; Lax, S.F.; Balić, M. Tumor Microenvironment in Male Breast Carcinoma with Emphasis on Tumor Infiltrating Lymphocytes and PD-L1 Expression. Int. J. Mol. Sci. 2023, 24, 818. [Google Scholar] [CrossRef]
- Sokolenko, A.P.; Moiseyenko, F.V.; Iyevleva, A.G.; Ivantsov, A.O.; Dolmatov, G.D.; Shelekhova, K.V.; Gulo, E.V.; Topal, A.X.; Artemieva, E.V.; Abduloeva, N.H.; et al. Discrimination between Complete versus Non-Complete Pathologic Response to Neoadjuvant Therapy Using Ultrasensitive Mutation Analysis: A Proof-of-Concept Study in BRCA1-Driven Breast Cancer Patients. Int. J. Mol. Sci. 2023, 24, 1870. [Google Scholar] [CrossRef] [PubMed]
- Zaib, T.; Cheng, K.; Liu, T.; Mei, R.; Liu, Q.; Zhou, X.; He, L.; Rashid, H.; Xie, Q.; Khan, H.; et al. Expression of CD22 in Triple-Negative Breast Cancer: A Novel Prognostic Biomarker and Potential Target for CAR Therapy. Int. J. Mol. Sci. 2023, 24, 2152. [Google Scholar] [CrossRef]
- Li, X.; Vail, E.; Maluf, H.; Chaum, M.; Leong, M.; Lownik, J.; Che, M.; Giuliano, A.; Cao, D.; Dadmanesh, F. Gene Expression Profiling of Fibroepithelial Lesions of the Breast. Int. J. Mol. Sci. 2023, 24, 9041. [Google Scholar] [CrossRef]
- Wise, P.M.; Sahana, J.; Neviani, P.; Corydon, T.J.; Schulz, H.; Wehland, M.; Infanger, M.; Grimm, D. Prolonged Exposure to Simulated Microgravity Changes Release of Small Extracellular Vesicle in Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 16095. [Google Scholar] [CrossRef] [PubMed]
- Sahana, J.; Cortés-Sánchez, J.L.; Sandt, V.; Melnik, D.; Corydon, T.J.; Schulz, H.; Cai, Z.; Evert, K.; Grimm, D.; Wehland, M. Long-Term Simulation of Microgravity Induces Changes in Gene Expression in Breast Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1181. [Google Scholar] [CrossRef]
- Wang, Z.; Coban, B.; Liao, C.-Y.; Chen, Y.-J.; Liu, Q.; Danen, E.H.J. GRHL2 Regulation of Growth/Motility Balance in Luminal versus Basal Breast Cancer. Int. J. Mol. Sci. 2023, 24, 2512. [Google Scholar] [CrossRef]
- Meligova, A.K.; Siakouli, D.; Stasinopoulou, S.; Xenopoulou, D.S.; Zoumpouli, M.; Ganou, V.; Gkotsi, E.-F.; Chatziioannou, A.; Papadodima, O.; Pilalis, E.; et al. ERβ1 Sensitizes and ERβ2 Desensitizes ERα-Positive Breast Cancer Cells to the Inhibitory Effects of Tamoxifen, Fulvestrant and Their Combination with All-Trans Retinoic Acid. Int. J. Mol. Sci. 2023, 24, 3747. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Zhang, Y.; Hu, H.; Wan, F.; Min, H.; Zhou, H.; Gu, L.; Liao, X.; Zhou, J.; et al. NUF2 Promotes Breast Cancer Development as a New Tumor Stem Cell Indicator. Int. J. Mol. Sci. 2023, 24, 4226. [Google Scholar] [CrossRef]
- Piasna-Słupecka, E.; Leszczyńska, T.; Drozdowska, M.; Dziadek, K.; Domagała, B.; Domagała, D.; Koronowicz, A. Young Shoots of Red Beet and the Root at Full Maturity Inhibit Proliferation and Induce Apoptosis in Breast Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 6889. [Google Scholar] [CrossRef]
- Archer, M.; Bernhardt, S.M.; Hodson, L.J.; Woolford, L.; Van der Hoek, M.; Dasari, P.; Evdokiou, A.; Ingman, W.V. CCL2-Mediated Stromal Interactions Drive Macrophage Polarization to Increase Breast Tumorigenesis. Int. J. Mol. Sci. 2023, 24, 7385. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. STEM CELLS Transl. Med. 2020, 9, 882–894. [Google Scholar] [CrossRef]
- Pietsch, J.; Kussian, R.; Sickmann, A.; Bauer, J.; Weber, G.; Nissum, M.; Westphal, K.; Egli, M.; Grosse, J.; Schönberger, J.; et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 2010, 10, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Infanger, M.; Bauer, J.; Grimm, D. Genomic Approach to Identify Factors That Drive the Formation of Three-Dimensional Structures by EA.hy926 Endothelial Cells. PLoS ONE 2013, 8, e64402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riwaldt, S.; Bauer, J.; Wehland, M.; Slumstrup, L.; Kopp, S.; Warnke, E.; Dittrich, A.; Magnusson, N.E.; Pietsch, J.; Corydon, T.J.; et al. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach. Int. J. Mol. Sci. 2016, 17, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Title | Topics and Results | Type | Reference |
---|---|---|---|---|
Fischer C. et al. | Circulating miR-200 families and CTCs in metastatic breast cancer before, during, and after a new line of systemic treatment |
| Research article | [7] |
Xu Q. et al. | A case series-based exploration of multi-regional expression heterogeneity in triple-negative breast cancer patients |
| Research article | [8] |
Wise P. et al. | Prolonged exposure to simulated microgravity changes release of small extracellular vesicle in breast cancer cells |
| Research article | [13] |
Brcic I. et al. | Tumor microenvironment in male breast carcinoma with emphasis on tumor-infiltrating lymphocytes and PD-L1 expression |
| Research Article | [9] |
Sahana J. et al. | Long-term simulation of microgravity induces changes in gene expression in breast cancer cells |
| Research Article | [14] |
Sokolenko A. P. et al. | Discrimination between complete and non-complete pathologic responses to neoadjuvant therapy using ultrasensitive mutation analysis: a proof-of-concept study in BRCA1-driven breast cancer patients |
| Research Article | [10] |
Zaib T. et al. | Expression of CD22 in triple-negative breast cancer: A novel prognostic biomarker and potential target for CAR Therapy |
| Research Article | [11] |
Wang Z. et al. | GRHL2 Regulation of growth/motility balance in luminal versus basal breast cancer |
| Research Article | [15] |
Meligova A. K. et al. | ERß1 sensitizes and ERß2 desensitizes ER-Positive breast cancer cells to the inhibitory effects of tamoxifen, fulvestrant, and their combination with all-trans retinoic acid |
| Research Article | [16] |
Deng Y. et al. | NUF2 promotes breast cancer development as a new tumor stem cell indicator |
| Research Article | [17] |
Piasna-Słupecka E. et al. | Young shoots of red beet and the root at full maturity inhibit proliferation and induce apoptosis in breast cancer cell lines |
| Research Article | [18] |
Archer M. et al. | CCL2-mediated stromal interactions drive macrophage polarization to increase breast tumorigenesis |
| Research Article | [19] |
Li X. et al. | Gene expression profiling of fibro-epithelial lesions of the breast |
| Communication | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimm, D. Recent Advances in Breast Cancer Research. Int. J. Mol. Sci. 2023, 24, 11990. https://doi.org/10.3390/ijms241511990
Grimm D. Recent Advances in Breast Cancer Research. International Journal of Molecular Sciences. 2023; 24(15):11990. https://doi.org/10.3390/ijms241511990
Chicago/Turabian StyleGrimm, Daniela. 2023. "Recent Advances in Breast Cancer Research" International Journal of Molecular Sciences 24, no. 15: 11990. https://doi.org/10.3390/ijms241511990
APA StyleGrimm, D. (2023). Recent Advances in Breast Cancer Research. International Journal of Molecular Sciences, 24(15), 11990. https://doi.org/10.3390/ijms241511990