A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. GWAS, eQTL, and Drug Targeting Analysis
4.2. GO Enrichment and Drug Targeting
4.3. C. elegans Motility Assays
4.4. AD Model Mice
4.5. Behavioral Testing
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirtz, D.; Thurman, D.J.; Gwinn-Hardy, K.; Mohamed, M.; Chaudhuri, A.R.; Zalutsky, R. How common are the “common” neurologic disorders? Neurology 2007, 68, 326–337. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-D.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, R.E. The Genetics of Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006296. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimer’s Dement. 2021, 17, 696–701. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Rahman, A.; Hossen, A.; Chowdhury, M.F.I.; Bari, S.; Tamanna, N.; Sultana, S.S.; Haque, S.N.; Al Masud, A.; Saif-Ur-Rahman, K. Aducanumab for the treatment of Alzheimer’s disease: A systematic review. Psychogeriatrics 2023, 23, 512–522. [Google Scholar] [CrossRef]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef] [PubMed]
- Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021, 49, D1144–D1151. [Google Scholar] [CrossRef]
- Zhao, W.; Marchani, E.E.; Cheung, C.Y.; Steinbart, E.J.; Schellenberg, G.D.; Bird, T.D.; Wijsman, E.M. Genome scan in familial late-onset Alzheimer’s disease: A locus on chromosome 6 contributes to age-at-onset. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekris, L.M.; Yu, C.-E.; Bird, T.D.; Tsuang, D.W. Review Article: Genetics of Alzheimer Disease. J. Geriatr. Psychiatry Neurol. 2010, 23, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Gustafsson, E.; Svensson, A.; Nilsson, M.; Berg, M.; Sunnemark, D.; von Euler, G. MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies. Acta Neuropathol. Commun. 2014, 2, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Xu, Y.; Lin, L.; Ou-Yang, F.; Wu, K.; Tsao, L.; Yu, T.; Huang, H.; Wang, H.; Liu, W.; et al. LY303511 displays antiproliferation potential against oral cancer cells in vitro and in vivo. Environ. Toxicol. 2019, 34, 958–967. [Google Scholar] [CrossRef]
- Xu, X.; Recanatini, M.; Roberti, M.; Tseng, G.-N. Probing the Binding Sites and Mechanisms of Action of Two HumanEther-a-go-go-Related Gene Channel Activators, 1,3-bis-(2-Hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) and 2-[2-(3,4-Dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD307243). Mol. Pharmacol. 2008, 73, 1709–1721. [Google Scholar] [CrossRef] [Green Version]
- Draskau, M.K.; Rosenmai, A.K.; Scholze, M.; Pedersen, M.; Boberg, J.; Christiansen, S.; Svingen, T. Human-relevant concentrations of the antifungal drug clotrimazole disrupt maternal and fetal steroid hormone profiles in rats. Toxicol. Appl. Pharmacol. 2021, 422, 115554. [Google Scholar] [CrossRef]
- National Center for Advancing Translational Sciences (NCATS). PubChem Bioassay Record for AID 1345084. National Center for Biotechnology Information. 1 January 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/1345084 (accessed on 5 July 2023).
- Pilarczyk, M.; Fazel-Najafabadi, M.; Kouril, M.; Shamsaei, B.; Vasiliauskas, J.; Niu, W.; Mahi, N.; Zhang, L.; Clark, N.A.; Ren, Y.; et al. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat. Commun. 2022, 13, 4678. [Google Scholar] [CrossRef] [PubMed]
- Gnilopyat, S.; DePietro, P.J.; Parry, T.K.; McLaughlin, W.A. The Pharmacorank Search Tool for the Retrieval of Prioritized Protein Drug Targets and Drug Repositioning Candidates According to Selected Diseases. Biomolecules 2022, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, Y.; Zeng, L.; An, X.; Su, D.; Qu, Y.; Ma, J.; Tang, X.; Wang, X.; Yang, J.; et al. Epigallocatechin-3-Gallate Allosterically Activates Protein Kinase C-α and Improves the Cognition of Estrogen Deficiency Mice. ACS Chem. Neurosci. 2021, 12, 3672–3682. [Google Scholar] [CrossRef]
- Morin, A.; Mouzon, B.; Ferguson, S.; Paris, D.; Browning, M.; Stewart, W.; Mullan, M.; Crawford, F. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathol. Commun. 2020, 8, 166. [Google Scholar] [CrossRef]
- Gerring, Z.F.; Lupton, M.K.; Edey, D.; Gamazon, E.R.; Derks, E.M. An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Barbeira, A.N.; Dickinson, S.P.; Bonazzola, R.; Zheng, J.; Wheeler, H.E.; Torres, J.M.; Torstenson, E.S.; Shah, K.P.; Garcia, T.; Edwards, T.L.; et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 2018, 9, 1825. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, F.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M.; et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481–487. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 14 December 2022).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2019. Available online: https://CRAN.R-project.org/package=stringr (accessed on 14 December 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Part of the Use R Series; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Carithers, L.J.; Ardlie, K.; Barcus, M.; Branton, P.A.; Britton, A.; Buia, S.A.; Compton, C.C.; DeLuca, D.S.; Peter-Demchok, J.; Gelfand, E.T.; et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv. Biobank. 2015, 13, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Therapeutics | ALZFORUM. Available online: https://www.alzforum.org/therapeutics (accessed on 14 December 2022).
- Cunningham, F.; E Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- McColl, G.; Roberts, B.R.; Pukala, T.L.; Kenche, V.B.; Roberts, C.M.; Link, C.D.; Ryan, T.M.; Masters, C.L.; Barnham, K.J.; Bush, A.I.; et al. Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease. Mol. Neurodegener. 2012, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Mao, L.; Xing, H.; Xu, L.; Fu, X.; Huang, L.; Huang, D.; Pu, Z.; Li, Q. Lycopene attenuates Aβ1–42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease. Neurosci. Lett. 2015, 608, 28–33. [Google Scholar] [CrossRef]
- Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-Transgenic Model of Alzheimer’s Disease with Plaques and Tangles: Intracellular Abeta and Synaptic Dysfunction. Neuron 2003, 39, 409–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mañas-Padilla, M.C.; Gil-Rodríguez, S.; Sampedro-Piquero, P.; Ávila-Gámiz, F.; de Fonseca, F.R.; Santín, L.J.; Castilla-Ortega, E. Remote memory of drug experiences coexists with cognitive decline and abnormal adult neurogenesis in an animal model of cocaine-altered cognition. Addict. Biol. 2021, 26, e12886. [Google Scholar] [CrossRef]
- de Guevara-Miranda, D.L.; Millón, C.; Rosell-Valle, C.; Pérez-Fernández, M.; Missiroli, M.; Serrano, A.; Pavón, F.J.; de Fonseca, F.R.; Martínez-Losa, M.; Álvarez-Dolado, M.; et al. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant to neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis. Model. Mech. 2017, 10, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Carobrez, A.; Bertoglio, L. Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 2005, 29, 1193–1205. [Google Scholar] [CrossRef]
- Carola, V.; D’Olimpio, F.; Brunamonti, E.; Mangia, F.; Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002, 134, 49–57. [Google Scholar] [CrossRef]
- Mañas-Padilla, M.C.; Melgar-Locatelli, S.; Vicente, L.; Gil-Rodríguez, S.; Rivera, P.; Rodríguez-Pérez, C.; Castilla-Ortega, E. Temozolomide treatment inhibits spontaneous motivation for exploring a complex object in mice: A potential role of adult hippocampal neurogenesis in “curiosity”. J. Comp. Neurol. 2023, 531, 548–560. [Google Scholar] [CrossRef] [PubMed]
SNP Information | GWAS | GTEx | |||||||
---|---|---|---|---|---|---|---|---|---|
Gene Name | Tissue | rs | Chr | Ref | Alt | O. R | p-Value | Slope | Q-Value |
CYP21A2 | Putamen | rs1044506 | 6 | T | G | 1.12 | 3.49 × 10−4 | 0.66 | 1.87 × 10−4 |
DMPK | Cerebellum | rs2014576 | 19 | G | A | 1.10 | 7.32 × 10−3 | 0.22 | 4.26 × 10−4 |
EGFR | Caudate | rs149352678 | 7 | C | T | 0.86 | 2.59 × 10−2 | −0.37 | 1.85 × 10−3 |
KCNH6 a | Thyroid | rs1386502 | 17 | T | C | 0.92 | 1.13 × 10−4 | −0.54 | 1.70 × 10−3 |
KCNN4 | Substantia nigra | rs1386502 | 19 | G | C | 0.91 | 2.93 × 10−5 | 0.63 | 9.92 × 10−4 |
KCNN4 | Amygdala | rs62116961 b | 19 | T | C | 0.92 | 1.13 × 10−4 | −0.54 | 1.70 × 10−3 |
MARK3 | Cortex | rs2296486 | 14 | A | G | 1.08 | 3.96 × 10−4 | 0.35 | 1.30 × 10−3 |
NDUFS2 | Frontal cortex (BA9) | rs1136224 | 1 | A | G | 1.11 | 7.19 × 10−4 | 0.27 | 2.28 × 10−4 |
PRKD3 | Putamen | rs2540974 | 2 | A | G | 0.91 | 1.12 × 10−4 | −0.22 | 1.02 × 10−4 |
VKORC1 | Cortex | rs881929 | 16 | G | T | 1.10 | 2.89 × 10−2 | 0.27 | 3.96 × 10−4 |
Gene | Drug | Interaction | PCID |
---|---|---|---|
DMPK | RKI-1447 | Inhibitor | 60138149 |
KCNH6 | NS1643 | Activator | 10177784 |
KCNN4 | Clotrimazole | Inhibitor | 2812 |
NDUFS2 | NV-128 | Inhibitor | 78357796 |
PRKD3 | Midostaurin | Inhibitor | 9829523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-Martos, A.; Brokate-Llanos, A.M.; Real, L.M.; Melgar-Locatelli, S.; de Rojas, I.; Castro-Zavala, A.; Bravo, M.J.; Mañas-Padilla, M.d.C.; García-González, P.; Ruiz-Galdon, M.; et al. A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 12079. https://doi.org/10.3390/ijms241512079
Esteban-Martos A, Brokate-Llanos AM, Real LM, Melgar-Locatelli S, de Rojas I, Castro-Zavala A, Bravo MJ, Mañas-Padilla MdC, García-González P, Ruiz-Galdon M, et al. A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(15):12079. https://doi.org/10.3390/ijms241512079
Chicago/Turabian StyleEsteban-Martos, Alvaro, Ana Maria Brokate-Llanos, Luis Miguel Real, Sonia Melgar-Locatelli, Itziar de Rojas, Adriana Castro-Zavala, Maria Jose Bravo, Maria del Carmen Mañas-Padilla, Pablo García-González, Maximiliano Ruiz-Galdon, and et al. 2023. "A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 15: 12079. https://doi.org/10.3390/ijms241512079
APA StyleEsteban-Martos, A., Brokate-Llanos, A. M., Real, L. M., Melgar-Locatelli, S., de Rojas, I., Castro-Zavala, A., Bravo, M. J., Mañas-Padilla, M. d. C., García-González, P., Ruiz-Galdon, M., Pacheco-Sánchez, B., Polvillo, R., Rodriguez de Fonseca, F., González, I., Castilla-Ortega, E., Muñoz, M. J., Rivera, P., Reyes-Engel, A., Ruiz, A., & Royo, J. L. (2023). A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer’s Disease. International Journal of Molecular Sciences, 24(15), 12079. https://doi.org/10.3390/ijms241512079