A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Correlation between BMD and Plt Count
2.3. Correlation between BMD and Megakaryocyte-Produced RANKL
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Cell Culture
4.3. Flow Cytometry
4.4. Quantitative Real-Time RT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lévesque, J.P.; Helwani, F.M.; Winkler, I.G. The Endosteal Osteoblastic Niche and Its Role in Hematopoietic Stem Cell Homing and Mobilization. Leukemia 2010, 24, 1979–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristjansdottir, H.L.; Mellström, D.; Johansson, P.; Karlsson, M.; Vandenput, L.; Lorentzon, M.; Herlitz, H.; Ohlsson, C.; Lerner, U.H.; Lewerin, C. High Platelet Count Is Associated with Low Bone Mineral Density: The MrOS Sweden Cohort. Osteoporos. Int. 2021, 32, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ge, J.R.; Chen, J.; Ye, Y.J.; Xu, P.C.; Li, J.Y. Association of Bone Mineral Density with Peripheral Blood Cell Counts and Hemoglobin in Chinese Postmenopausal Women: A Retrospective Study. Medicine 2020, 99, e20906. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.S.; Lee, H.S.; Kwon, Y.J. The Relationship between Platelet Count and Bone Mineral Density: Results from Two Independent Population-Based Studies. Arch. Osteoporos. 2020, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Mödder, U.I.; Achenbach, S.J.; Amin, S.; Riggs, B.L.; Melton, L.J.; Khosla, S. Relation of Serum Serotonin Levels to Bone Density and Structural Parameters in Women. J. Bone Miner. Res. 2010, 25, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Bader, M. Inhibition of Serotonin Synthesis: A Novel Therapeutic Paradigm. Pharmacol. Ther. 2020, 205, 107423. [Google Scholar] [CrossRef] [PubMed]
- Valderrábano, R.J.; Lui, L.Y.; Lee, J.; Cummings, S.R.; Orwoll, E.S.; Hoffman, A.R.; Wu, J.Y. Bone Density Loss Is Associated with Blood Cell Counts. J. Bone Miner. Res. 2017, 32, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Valderrábano, R.J.; Buzkova, P.; Chang, P.Y.; Zakai, N.A.; Fink, H.A.; Robbins, J.A.; Lee, J.S.; Wu, J.Y. Association of Bone Mineral Density with Hemoglobin and Change in Hemoglobin among Older Men and Women: The Cardiovascular Health Study. Bone 2019, 120, 321–326. [Google Scholar] [CrossRef]
- Schyrr, F.; Wolfer, A.; Pasquier, J.; Nicoulaz, A.L.; Lamy, O.; Naveiras, O. Correlation Study between Osteoporosis and Hematopoiesis in the Context of Adjuvant Chemotherapy for Breast Cancer. Ann. Hematol. 2018, 97, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.L.; Cho, H.Y.; Park, I.Y.; Choi, J.M.; Kim, M.; Jang, H.J.; Hwang, S.M. The Positive Association between Peripheral Blood Cell Counts and Bone Mineral Density in Postmenopausal Women. Yonsei Med. J. 2011, 52, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauley, J.A. Estrogen and Bone Health in Men and Women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Levin, V.A.; Jiang, X.; Kagan, R. Estrogen Therapy for Osteoporosis in the Modern Era. Osteoporos. Int. 2018, 29, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Lu, L.; Yu, X. The Relationship between Bone Marrow Adipose Tissue and Bone Metabolism in Postmenopausal Osteoporosis. Cytokine Growth Factor Rev. 2020, 52, 88–98. [Google Scholar] [CrossRef]
- Kamada, M.; Irahara, M.; Maegawa, M.; Yasui, T.; Takeji, T.; Yamada, M.; Tezuka, M.; Kasai, Y.; Aono, T. Effect of Hormone Replacement Therapy on Post-Menopausal Changes of Lymphocytes and T Cell Subsets. J. Endocrinol. Investig. 2000, 23, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Kanagasabapathy, D.; Blosser, R.J.; Maupin, K.A.; Hong, J.M.; Alvarez, M.; Ghosh, J.; Mohamad, S.F.; Aguilar-Perez, A.; Srour, E.F.; Kacena, M.A.; et al. Megakaryocytes Promote Osteoclastogenesis in Aging. Aging 2020, 12, 15121–15133. [Google Scholar] [CrossRef] [PubMed]
- Kandahari, A.M.; Yang, X.; Laroche, K.A.; Dighe, A.S.; Pan, D.; Cui, Q. A Review of UHMWPE Wear-Induced Osteolysis: The Role for Early Detection of the Immune Response. Bone Res. 2016, 4, 16014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.L.; Sun, Y.; Xu, W.; Lin, T.; Zeng, H. Expression of RANKL by Peripheral Neutrophils and Its Association with Bone Mineral Density in COPD. Respirology 2017, 22, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Hull, H.; He, Q.; Thornton, J.; Javed, F.; Allen, L.; Wang, J.; Pierson, R.N.; Gallagher, D. IDXA, Prodigy, and DPXL Dual-Energy X-Ray Absorptiometry Whole-Body Scans: A Cross-Calibration Study. J. Clin. Densitom. 2009, 12, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulhaber, M.; Wörmann, B.; Ganser, A.; Verbeek, W. In Vitro Response of Myelodysplastic Megakaryocytopoiesis to Megakaryocyte Growth and Development Factor (MGDF). Ann. Hematol. 2002, 81, 695–700. [Google Scholar] [CrossRef] [PubMed]
Female (n = 33) | Male (n = 32) | p | |
---|---|---|---|
Age (years) | 73 (53–87) | 72 (39–84) | 0.449 |
DLBCL/Others | 21/12 | 25/7 | 0.199 |
CS I, II/III, IV | 18/15 | 9/23 | 0.031 |
L2-L4 BMD (g/m2) | 1.025 ± 0.147 | 1.258 ± 0.21 | <0.001 |
L1-L4 BMD (g/m2) | 0.99 ± 0.143 | 1.211 ± 0.197 | <0.001 |
Total hip BMD (g/m2) | 0.775 ± 0.115 | 0.914 ± 0.123 | <0.001 |
Femur neck BMD (g/m2) | 0.724 ± 0.113 | 0.852 ± 0.107 | <0.001 |
WBC (×109 L) | 6.2 (2.5–16.5) | 6.8 (3.6–12.0) | 0.335 |
Neu (×109 L) | 3.7 (1.1–14.1) | 4.3 (1.8–9.7) | 0.503 |
Lymph (×109 L) | 0.9 (0.3–1.6) | 0.9 (0.2–1.7) | 0.870 |
RBC (×1012 L) | 4.2 (2.4–5.0) | 4.1 (2.8–5.4) | 0.707 |
Hb (g/L) | 122 (80–166) | 125 (81–156) | 0.798 |
Ret (×109 L) | 54 (29–150) | 59 (33–130) | 0.772 |
Plt (×109 L) | 246 (164–492) | 258 (68–420) | 0.644 |
TRACP-5b (mU/dL) | 419 ± 152 | 410 ± 166 | 0.827 |
BMD | L2-L4 | L1-L4 | Total Hip | Femur Neck | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Age | −0.283 | 0.022 | −0.288 | 0.020 | −0.491 | <0.001 | −0.576 | <0.001 |
WBC | 0.017 | 0.892 | 0.037 | 0.771 | −0.012 | 0.927 | −0.172 | 0.170 |
Neu | −0.087 | 0.492 | −0.049 | 0.697 | −0.126 | 0.316 | −0.204 | 0.103 |
Lymph | 0.257 | 0.039 | 0.254 | 0.041 | 0.263 | 0.034 | 0.040 | 0.752 |
RBC | 0.046 | 0.715 | 0.004 | 0.975 | −0.021 | 0.866 | −0.076 | 0.545 |
Hb | −0.079 | 0.531 | −0.129 | 0.306 | −0.014 | 0.914 | 0.001 | 0.996 |
Ret | 0.100 | 0.429 | 0.064 | 0.614 | 0.115 | 0.362 | −0.065 | 0.606 |
Plt | 0.169 | 0.354 | 0.165 | 0.376 | −0.050 | 0.784 | −0.079 | 0.667 |
TRACP-5b | −0.302 | 0.015 | −0.302 | 0.014 | −0.292 | 0.018 | −0.022 | 0.862 |
BMD | L2-L4 | L1-L4 | TOTAL HIP | Femur Neck | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Age | 0.310 | 0.012 | 0.314 | 0.011 | 0.111 | 0.381 | −0.047 | 0.709 |
WBC | −0.188 | 0.134 | −0.208 | 0.096 | −0.314 | 0.011 | −0.324 | 0.008 |
Neu | −0.215 | 0.086 | −0.236 | 0.059 | −0.374 | 0.002 | −0.328 | 0.008 |
Lymph | 0.079 | 0.532 | 0.048 | 0.706 | −0.009 | 0.941 | −0.063 | 0.618 |
RBC | −0.168 | 0.182 | −0.195 | 0.120 | −0.055 | 0.666 | −0.049 | 0.699 |
Hb | −0.053 | 0.673 | −0.072 | 0.567 | 0.123 | 0.330 | 0.091 | 0.471 |
Ret | 0.220 | 0.078 | 0.212 | 0.091 | 0.132 | 0.293 | 0.222 | 0.075 |
Plt | −0.254 | 0.160 | −0.284 | 0.115 | −0.365 | 0.040 | −0.365 | 0.040 |
TRACP5b | −0.216 | 0.084 | −0.250 | 0.045 | −0.312 | 0.011 | −0.214 | 0.087 |
BMD | L2-L4 | L1-L4 | Total Hip | Femur Neck | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
RANKL | −0.266 | 0.286 | −0.330 | 0.181 | −0.399 | 0.101 | −0.502 | 0.034 |
OPG | −0.108 | 0.670 | −0.138 | 0.586 | −0.216 | 0.390 | −0.425 | 0.079 |
M-CSF | −0.010 | 0.968 | −0.013 | 0.958 | −0.124 | 0.623 | −0.056 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, S.; Wada, A.; Kamihara, Y.; Yamamoto, I.; Kirigaya, D.; Kunimoto, K.; Horaguchi, R.; Fujihira, T.; Nabe, Y.; Minemura, T.; et al. A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL. Int. J. Mol. Sci. 2023, 24, 12150. https://doi.org/10.3390/ijms241512150
Kikuchi S, Wada A, Kamihara Y, Yamamoto I, Kirigaya D, Kunimoto K, Horaguchi R, Fujihira T, Nabe Y, Minemura T, et al. A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL. International Journal of Molecular Sciences. 2023; 24(15):12150. https://doi.org/10.3390/ijms241512150
Chicago/Turabian StyleKikuchi, Shohei, Akinori Wada, Yusuke Kamihara, Imari Yamamoto, Daiki Kirigaya, Kohei Kunimoto, Ryusuke Horaguchi, Takuma Fujihira, Yoshimi Nabe, Tomoki Minemura, and et al. 2023. "A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL" International Journal of Molecular Sciences 24, no. 15: 12150. https://doi.org/10.3390/ijms241512150
APA StyleKikuchi, S., Wada, A., Kamihara, Y., Yamamoto, I., Kirigaya, D., Kunimoto, K., Horaguchi, R., Fujihira, T., Nabe, Y., Minemura, T., Dang, N. H., & Sato, T. (2023). A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL. International Journal of Molecular Sciences, 24(15), 12150. https://doi.org/10.3390/ijms241512150