Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells
Abstract
:1. Introduction
2. Results
2.1. Downregulation of EDEM1 Gene Expression Induced ER Stress and Apoptosis
2.2. ER Chaperone Clustering by EDEM1 siRNA KD
2.3. EDEM1 KD Resulted in ER Accumulation of TSP1
2.4. EDEM1 KD Induced EGFR Accumulation in ER
2.5. EDEM1 Facilitated EGFR Degradation through ERAD
3. Discussion
4. Materials and Methods
4.1. Antibodies, Materials, and Plasmids
4.2. Cell Culture, Transfection, siRNA, and RT-PCR
4.3. Cell Lysis, Pulldown Experiments, and Western Blotting
4.4. Glycosidase Digestion
4.5. Indirect Immunostaining
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BiP | immunoglobulin-binding protein |
CHOP | CCAAT-enhancer-binding protein homologous protein |
CNX | calnexin |
CRT | calreticulin |
DAPI | 4′,6-diamidino-2-phenylindole |
EGFR | epidermal growth factor receptor |
ER | endoplasmic reticulum |
ERAD | endoplasmic reticulum-associated degradation |
EDEM1 | ER degradation-enhancing α mannosidase-like 1 protein |
Endo H | endoglycosidase H |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
NHK | α1 antitrypsin null Hong Kong |
PNGase F | peptide-N-glycosidase F |
siRNA | small interfering RNA |
TSP1 | thrombospondin-1 |
UGGT1 | UDP-glucose:glycoprotein glucosyltransferase 1 |
WT | wildtype |
References
- Wiseman, R.L.; Mesgarzadeh, J.S.; Hendershot, L.M. Review Reshaping Endoplasmic Reticulum Quality Control through the Unfolded Protein Response. Mol. Cell 2022, 82, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, J.A.; Kopito, R.R.; Christianson, J.C. The Mammalian Endoplasmic Reticulum-Associated Degradation System. Cold Spring Harb. Perspect. Biol. 2013, 5, a013185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominska-Wojewodzka, M.; Sandvig, K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015, 20, 9816–9846. [Google Scholar] [CrossRef] [Green Version]
- Ninagawa, S.; George, G.; Mori, K. Mechanisms of Productive Folding and Endoplasmic Reticulum-Associated Degradation of Glycoproteins and Non-Glycoproteins. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129812. [Google Scholar] [CrossRef]
- Sano, R.; Reed, J.C. ER Stress-Induced Cell Death Mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Qi, L. ER-Associated Degradation in Health and Disease—From Substrate to Organism. J. Cell Sci. 2019, 132, jcs232850. [Google Scholar] [CrossRef]
- Kumari, D.; Brodsky, J.L. The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (Erad) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021, 11, 1185. [Google Scholar] [CrossRef]
- Hwang, J.; Qi, L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR Pathways. Trends Biochem. Sci. 2018, 43, 593–605. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sun, S.; Wang, H.; Liu, M.; Long, Q.; Yin, L.; Kersten, S.; Zhang, K.; Qi, L. Hepatic Sel1L-Hrd1 ER-associated Degradation (ERAD) Manages FGF21 Levels and Systemic Metabolism via CREBH. EMBO J. 2018, 37, e99277. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, X.; Peng, F.; Zhang, W.; Zheng, L.; Ding, Y.; Gu, T.; Lv, K.; Wang, J.; Ortinau, L.; et al. Protein Quality Control through Endoplasmic Reticulum-Associated Degradation Maintains Haematopoietic Stem Cell Identity and Niche Interactions. Nat. Cell Biol. 2020, 22, 1162–1169. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Wei, J.; Song, W.; Gao, B.; Tian, C.; Wu, S.A.; Wang, J.; Chen, L.; Fang, D.; Qi, L. SEL1L-HRD1 ER-Associated Degradation Suppresses Hepatocyte Hyperproliferation and Liver Cancer. iScience 2022, 25, 105183. [Google Scholar] [CrossRef]
- Shaukat, I.; Bakhos-Douaihy, D.; Zhu, Y.; Seaayfan, E.; Demaretz, S.; Frachon, N.; Weber, S.; Kömhoff, M.; Vargas-Poussou, R.; Laghmani, K. New Insights into the Role of Endoplasmic Reticulum-Associated Degradation in Bartter Syndrome Type 1. Hum. Mutat. 2021, 42, 947–968. [Google Scholar] [CrossRef]
- Tyler, R.E.; Pearce, M.M.P.; Shaler, T.A.; Olzmann, J.A.; Greenblatt, E.J.; Kopito, R.R. Unassembled CD147 Is an Endogenous Endoplasmic Reticulum-Associated Degradation Substrate. Mol. Biol. Cell 2012, 23, 4668–4678. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.Y.; To, M.; Tran, E.; Lorraine, T.A.D.; Cho, H.J.; Baney, K.L.M.; Pataki, C.I.; Olzmann, J.A. A VCP Inhibitor Substrate Trapping Approach (VISTA) Enables Proteomic Profiling of Endogenous ERAD Substrates. Mol. Biol. Cell 2018, 29, 1021–1030. [Google Scholar] [CrossRef]
- Munteanu, C.V.A.; Chiritoiu, G.N.; Chiritoiu, M.; Ghenea, S.; Petrescu, A.J.; Petrescu, S.M. Affinity Proteomics and Deglycoproteomics Uncover Novel Edem2 Endogenous Substrates and an Integrative Erad Network. Mol. Cell. Proteom. 2021, 20, 100125. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, N.; Wada, I.; Hasegawa, K.; Yorihuzi, T.; Tremblay, L.O.; Herscovics, A.; Nagata, K. A Novel ER α-Mannosidase-like Protein Accelerates ER-Associated Degradation. EMBO Rep. 2001, 2, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Shenkman, M.; Ron, E.; Yehuda, R.; Benyair, R.; Khalaila, I.; Lederkremer, G.Z. Mannosidase Activity of EDEM1 and EDEM2 Depends on an Unfolded State of Their Glycoprotein Substrates. Commun. Biol. 2018, 1, 172. [Google Scholar] [CrossRef] [Green Version]
- George, G.; Ninagawa, S.; Yagi, H.; Furukawa, J.; Hashii, N.; Ishii-Watabe, A.; Deng, Y.; Matsushita, K.; Ishikawa, T.; Mamahit, Y.P.; et al. Purified EDEM3 or EDEM1 Alone Produces Determinant Oligosaccharide Structures from M8B in Mammalian Glycoprotein ERAD. eLife 2021, 10, 70357. [Google Scholar] [CrossRef]
- Lamriben, L.; Oster, M.E.; Tamura, T.; Tian, W.; Yang, Z.; Clausen, H.; Hebert, D.N. EDEM1’s Mannosidase-like Domain Binds ERAD Client Proteins in a Redox-Sensitive Manner and Possesses Catalytic Activity. J. Biol. Chem. 2018, 293, 13932–13945. [Google Scholar] [CrossRef] [Green Version]
- Cormier, J.H.; Tamura, T.; Sunryd, J.C.; Hebert, D.N. EDEM1 Recognition and Delivery of Misfolded Proteins to the SEL1L-Containing ERAD Complex. Mol. Cell 2009, 34, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Cormier, J.H.; Hebert, D.N. Characterization of Early EDEM1 Protein Maturation Events and Their Functional Implications. J. Biol. Chem. 2011, 286, 24906–24915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanuka, M.; Ouchi, F.; Kato, N.; Katsuki, R.; Ito, S.; Miura, K.; Hikida, M.; Tamura, T. Endoplasmic Reticulum Associated Degradation of Spinocerebellar Ataxia-Related CD10 Cysteine Mutant. Int. J. Mol. Sci. 2020, 21, 4237. [Google Scholar] [CrossRef] [PubMed]
- Zinszner, H.; Kuroda, M.; Wang, X.Z.; Batchvarova, N.; Lightfoot, R.T.; Remotti, H.; Stevens, J.L.; Ron, D. CHOP Is Implicated in Programmed Cell Death in Response to Impaired Function of the Endoplasmic Reticulum. Genes Dev. 1998, 12, 982–995. [Google Scholar] [CrossRef]
- Jeong, W.; Lee, D.Y.; Park, S.; Rhee, S.G. ERp16, an Endoplasmic Reticulum-Resident Thiol-Disulfide Oxidoreductase: Biochemical Properties and Role in Apoptosis Induced by Endoplasmic Reticulum Stress. J. Biol. Chem. 2008, 283, 25557–25566. [Google Scholar] [CrossRef] [Green Version]
- Tannous, A.; Patel, N.; Tamura, T.; Hebert, D.N. Reglucosylation by UDP-Glucose: Glycoprotein Glucosyltransferase 1 Delays Glycoprotein Secretion but Not Degradation. Mol. Biol. Cell 2015, 26, 390–405. [Google Scholar] [CrossRef]
- Carlson, C.B.; Lawler, J.; Mosher, D.F. Thrombospondins: From Structure to Therapeutics—Structures of Thrombospondins. Cell. Mol. Life Sci. 2008, 65, 672–686. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Duquette, M.; Liu, J.H.; Dong, Y.; Zhang, R.; Joachimiak, A.; Lawler, J.; Wang, J.H. Crystal Structure of the TSP-1 Type 1 Repeats: A Novel Layered Fold and Its Biological Implication. J. Cell Biol. 2002, 159, 373–382. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Chen, C.; Nie, J.; Jiao, B. Can EGFR Be a Therapeutic Target in Breast Cancer? Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188789. [Google Scholar] [CrossRef]
- Chen, H.; Herndon, M.E.; Lawler, J. The Cell Biology of Thrombospondin-1. Matrix Biol. 2000, 597, 614. [Google Scholar] [CrossRef]
- Sun, S.; Dong, H.; Yan, T.; Li, J.; Liu, B.; Shao, P.; Li, J.; Liang, C. Role of TSP-1 as Prognostic Marker in Various Cancers: A Systematic Review and Meta-Analysis. BMC Med. Genet. 2020, 21, 139. [Google Scholar] [CrossRef]
- Kaur, S.; Bronson, S.M.; Pal-Nath, D.; Miller, T.W.; Soto-Pantoja, D.R.; Roberts, D.D. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4570. [Google Scholar] [CrossRef]
- Kale, A.; Rogers, N.M.; Ghimire, K. Thrombospondin-1 Cd47 Signalling: From Mechanisms to Medicine. Int. J. Mol. Sci. 2021, 22, 4062. [Google Scholar] [CrossRef]
- Bakker, J.; Spits, M.; Neefjes, J.; Berlin, I. The EGFR Odyssey—From Activation to Destruction in Space and Time. J. Cell Sci. 2017, 130, 4087–4096. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Darowski, K.; St-Denis, N.; Wong, V.; Offensperger, F.; Villedieu, A.; Amin, S.; Malty, R.; Aoki, H.; Guo, H.; et al. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol. Cell 2017, 65, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Molinari, M.; Calanca, V.; Galli, C.; Lucca, P.; Paganetti, P. Role of EDEM in the Release of Misfolded Glycoproteins from the Calnexin Cycle. Science 2003, 299, 1397–1400. [Google Scholar] [CrossRef]
- Papaioannou, A.; Higa, A.; Jégou, G.; Jouan, F.; Pineau, R.; Saas, L.; Avril, T.; Pluquet, O.; Chevet, E. Alterations of EDEM1 Functions Enhance ATF6 Pro-Survival Signaling. FEBS J. 2018, 285, 4146–4164. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Suzuki, R.; Watanabe, N.; Masaki, T.; Tomonaga, M.; Muhammad, A.; Kato, T.; Matsuura, Y.; Watanabe, H.; Wakita, T.; et al. Role of the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway in Degradation of Hepatitis C Virus Envelope Proteins and Production of Virus Particles. J. Biol. Chem. 2011, 286, 37264–37273. [Google Scholar] [CrossRef] [Green Version]
- Ron, E.; Shenkman, M.; Groisman, B.; Izenshtein, Y.; Leitman, J.; Lederkremer, G.Z. Bypass of Glycan-Dependent Glycoprotein Delivery to ERAD by up-Regulated EDEM1. Mol. Biol. Cell 2011, 22, 3945–3954. [Google Scholar] [CrossRef]
- Olivari, S.; Galli, C.; Alanen, H.; Ruddock, L.; Molinari, M. A Novel Stress-Induced EDEM Variant Regulating Endoplasmic Reticulum-Associated Glycoprotein Degradation. J. Biol. Chem. 2005, 280, 2424–2428. [Google Scholar] [CrossRef] [Green Version]
- Mast, S.W.; Diekman, K.; Karaveg, K.; Davis, A.; Sifers, R.N.; Moremen, K.W. Human EDEM2, a Novel Homolog of Family 47 Glycosidases, Is Involved in ER-Associated Degradation of Glycoproteins. Glycobiology 2005, 15, 421–436. [Google Scholar] [CrossRef] [Green Version]
- Hirao, K.; Natsuka, Y.; Tamura, T.; Wada, I.; Morito, D.; Natsuka, S.; Romero, P.; Sleno, B.; Tremblay, L.O.; Herscovics, A.; et al. EDEM3, a Soluble EDEM Homolog, Enhances Glycoprotein Endoplasmic Reticulum-Associated Degradation and Mannose Trimming. J. Biol. Chem. 2006, 281, 9650–9658. [Google Scholar] [CrossRef] [Green Version]
- Adams, B.M.; Canniff, N.P.; Guay, K.P.; Larsen, I.S.B.; Hebert, D.N. Quantitative Glycoproteomics Reveals Cellular Substrate Selectivity of the Er Protein Quality Control Sensors Uggt1 and Uggt2. eLife 2020, 9, e63997. [Google Scholar] [CrossRef]
- Di, X.J.; Wang, Y.J.; Han, D.Y.; Fu, Y.L.; Duerfeldt, A.S.; Blagg, B.S.J.; Mu, T.W. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-Mediated Endoplasmic Reticulumassociated Degradation. J. Biol. Chem. 2016, 291, 9526–9539. [Google Scholar] [CrossRef] [Green Version]
- Christianson, J.C.; Shaler, T.A.; Tyler, R.E.; Kopito, R.R. OS-9 and GRP94 Deliver Mutant A1-Antitrypsin to the Hrd1-SEL1L Ubiquitin Ligase Complex for ERAD. Nat. Cell Biol. 2008, 10, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Dersh, D.; Jones, S.M.; Eletto, D.; Christianson, J.C.; Argon, Y. OS-9 Facilitates Turnover of Nonnative GRP94 Marked by Hyperglycosylation. Mol. Biol. Cell 2014, 25, 2220–2234. [Google Scholar] [CrossRef]
- Tamura, T.; Arai, S.; Nagaya, H.; Mizuguchi, J.; Wada, I. Stepwise Assembly of Fibrinogen Is Assisted by the Endoplasmic Reticulum Lectin-Chaperone System in HepG2 Cells. PLoS ONE 2013, 8, e74580. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, K.; Katsuki, R.; Yoshida, S.; Ohta, R.; Tamura, T. Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells. Int. J. Mol. Sci. 2023, 24, 12171. https://doi.org/10.3390/ijms241512171
Miura K, Katsuki R, Yoshida S, Ohta R, Tamura T. Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells. International Journal of Molecular Sciences. 2023; 24(15):12171. https://doi.org/10.3390/ijms241512171
Chicago/Turabian StyleMiura, Kohta, Riko Katsuki, Shusei Yoshida, Ren Ohta, and Taku Tamura. 2023. "Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells" International Journal of Molecular Sciences 24, no. 15: 12171. https://doi.org/10.3390/ijms241512171
APA StyleMiura, K., Katsuki, R., Yoshida, S., Ohta, R., & Tamura, T. (2023). Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells. International Journal of Molecular Sciences, 24(15), 12171. https://doi.org/10.3390/ijms241512171