Magnetic Nanocomposite Materials Based on Fe3O4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Nanocomposite Materials
2.2. Evaluation of Magnetic Properties of MNPs 1 and MNPs 2
2.3. Evaluation of the Hydrolysis of MNPs 1 and MNPs 2 Shells in Aqueous Media
2.4. MTT Cytotoxicity Assay
3. Materials and Methods
3.1. Materials
3.2. Synthesis of MNPs
3.3. Synthesis of MNPs with Iron III Glycerolate Shell (MNPs 1)
3.4. Synthesis of Silicon Tetraglycerolate Si(C3H7O3)4
3.5. Synthesis of MNPs with Iron and Silica Glycerolates Shell (MNPs 2)
3.6. Synthesis of Fe(III)Glyc
3.7. Hydrolysis of Fe(III)Glyc, MNPs 1 and MNPs 2 Shell
3.8. Characterization of Nanoparticles
3.9. Assessment of Cytotoxicity of MNPs 1 and MNPs 2
3.9.1. Cell Cultures
3.9.2. Preparation of Samples of MNPs 1 and MNPs 2
3.9.3. MTT Assay
3.9.4. Statistical Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Ye, Y.; Ye, J.; Gao, T.; Wang, D.; Chen, G.; Song, Z. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry 2023, 9, 110. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics 2020, 10, 6278−6309. [Google Scholar] [CrossRef]
- Gambhir, R.P.; Rohiwal, S.S.; Tiwari, A.P. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Appl. Surf. Sci. Adv. 2022, 11, 100303. [Google Scholar] [CrossRef]
- Yang, H.Y.; Li, Y.; Lee, D.S. Functionalization of magnetic nanoparticles with organic ligands toward biomedical applications. Adv. NanoBiomed Res. 2021, 1, 2000043–2000058. [Google Scholar] [CrossRef]
- Popescu, R.C.; Andronescu, E.; Vasile, B.S. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. Nanomaterials 2019, 9, 1791. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Rehman, A.; Hayat, A.; Andreescu, S. Magnetic Particles-based analytical platforms for food safety monitoring. Magnetochemistry 2019, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Al-Anazi, A. Iron-based magnetic nanomaterials in environmental and energy applications: A short review. Curr. Opin. Chem. Eng. 2022, 36, 100794. [Google Scholar] [CrossRef]
- Liang, C.; He, X.; Liu, Q.; Xu, Z. Adsorption-based synthesis of magnetically responsive and interfacially-active composite nano particles for dewatering of water-in-diluted bitumen emulsions. Energy Fuels 2018, 32, 8078–8089. [Google Scholar] [CrossRef]
- Bakhteeva, I.A.; Medvedeva, I.V.; Filinkova, M.S.; Byzov, I.V.; Minin, A.S.; Zhakov, S.V.; Uimin, M.A.; Patrakov, E.I.; Novikov, S.I.; Suntsov, A.Y.; et al. Removal of microplastics from water by using magnetic sedimentation. Int. J. Environ. Sci. Technol. 2023, 52, 1704–1717. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Ge, S.; Zhu, F.; Yin, F.; Gu, L.; Yang, F.; Hu, P.; Chen, G.; Wang, K.; et al. An overview of synthesis and structural regulation of magnetic nanomaterials prepared by chemical coprecipitation. Metals 2023, 13, 152. [Google Scholar] [CrossRef]
- Ibarra-Sanchez, J.J.; Delgado−Carrillo, K.J.; Ceja-Fdz, A.; Olivares-Vera, D.; Samano, A.H.; Cano, M.E. Size control, chemical kinetics, and theoretical analysis for the production of Fe3O4 nanoparticles with a high specific absorption rate. Ind. Eng. Chem. Res. 2020, 59, 16669–16683. [Google Scholar] [CrossRef]
- Gavilán, H.; Rizzo, G.M.R.; Silvestri, N.; Mai, B.T.; Pellegrino, T. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat. Protoc. 2023, 18, 783–809. [Google Scholar] [CrossRef] [PubMed]
- Neto, D.M.A.; da Costa, L.S.; de Menezes, F.L.; Fechine, L.M.U.D.; Freire, R.M.; Denardin, J.C.; Banobre-Lopez, M.; Vasconcelos, I.F.; Ribeiro, T.S.; Leal, L.K.A.M.; et al. A novel amino phosphonate-coated magnetic nanoparticle as MRI contrast agent. Appl. Surf. Sci. 2021, 543, 148824. [Google Scholar] [CrossRef]
- Hemery, G.; Keyes, A.C., Jr.; Garaio, E.; Rodrigo, I.; Garcia, J.A.; Plazaola, F.; Garanger, E.; Sandre, O. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg. Chem. 2017, 56, 8232–8243. [Google Scholar] [CrossRef] [Green Version]
- Taha, T.A.; Azab, A.A.; Sebak, M.A. Glycerol-assisted sol-gel synthesis, optical, and magnetic properties of NiFe2O4 nanoparticles. J. Mol. Struct. 2019, 1181, 14–18. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Maiorov, M.; Krumina, A.; Skaudžius, R.; Zarkov, A.; Kareiva, A.; Popov, A.I. Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method. Materials 2020, 13, 4147. [Google Scholar] [CrossRef] [PubMed]
- Bedanta, S.; Kleemann, W. Supermagnetism. J. Phys. D Appl. Phys. 2009, 42, 013001. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, L.; Gao, J.; Chen, X. Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, 1804567−1804599. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, H.; Huang, G.; Liu, J.; He, W.; Huang, Q. ES-MION-based dual-modality PET/MRI probes for acidic tumor microenvironment imaging. ACS Omega 2022, 7, 3442–3451. [Google Scholar] [CrossRef]
- Li, H.; Wang, R.; Hong, R.; Li, Y. Preparation, biocompatibility and imaging performance of ultrasmall iron oxide magnetic fluids for T1/T2-weighted MRI. Colloids Surf. A 2022, 648, 129360. [Google Scholar] [CrossRef]
- Demin, A.M.; Pershina, A.G.; Minin, A.S.; Brikunova, O.Y.; Murzakaev, A.M.; Perekucha, N.A.; Romashchenko, A.V.; Shevelev, O.B.; Uimin, M.A.; Byzov, I.V.; et al. Smart design of a pH-responsive system based on pHLIP-modified magnetite nanoparticles for tumor MRI. ACS Appl. Mater. Interfaces 2021, 13, 36800–36815. [Google Scholar] [CrossRef]
- Pershina, A.G.; Brikunova, O.Y.; Demin, A.M.; Abakumov, M.A.; Vaneev, A.N.; Naumenko, V.A.; Erofeev, A.S.; Gorelkin, P.V.; Nizamov, T.R.; Muslimov, A.R.; et al. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102317–102329. [Google Scholar] [CrossRef]
- Harvell-Smith, S.; Tung, L.D.; Thanh, N.T.K. Magnetic particle imaging: Tracer development and the biomedical applications of a radiationfree, sensitive, and quantitative imaging modality. Nanoscale 2022, 14, 3658–3697. [Google Scholar] [CrossRef]
- Dogan, N.; Caliskan, G.; Irfan, M. Synthesis and characterization of biocompatible ZnFe2O4 nanoparticles for magnetic particle imaging (MPI). J. Mater. Sci. Mater. Electron. 2023, 34, 390–408. [Google Scholar] [CrossRef]
- Jaidev, L.R.; Chellappan, D.R.; Bhavsar, D.V.; Ranganathan, R.; Sivanantham, B.; Subramanian, A.; Sharma, U.; Jagannathan, N.R.; Krishnan, U.M.; Sethuraman, S. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomater. 2017, 49, 422–433. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 2021, 50, 11614–11667. [Google Scholar] [CrossRef] [PubMed]
- Nemec, S.; Kralj, S.; Wilhelm, C.; Abou-Hassan, A.; Rols, M.-P.; Kolosnjaj-Tabi, J. Comparison of iron oxide nanoparticles in photothermia and magnetic hyperthermia: Effects of clustering and silica encapsulation on nanoparticles’ heating yield. Appl. Sci. 2020, 10, 7322. [Google Scholar] [CrossRef]
- Li, M.; Deng, L.; Li, J.; Yuan, W.; Gao, X.-L.; Ni, J.; Jiang, H.; Zeng, J.; Ren, J.; Wang, P. Actively targeted magnetothermally responsive nanocarriers/doxorubicin for thermo-chemotherapy of hepatoma. ACS Appl. Mater. Interfaces 2018, 10, 12518–12525. [Google Scholar] [CrossRef]
- Demin, A.M.; Vakhrushev, A.V.; Pershina, A.G.; Valova, M.S.; Efimova, L.V.; Syomchina, A.A.; Uimin, M.A.; Minin, A.S.; Levit, G.L.; Krasnov, V.P.; et al. Magnetic-responsive doxorubicin-containing materials based on Fe3O4 nanoparticles with a SiO2/PEG shell and study of their effects on cancer cell lines. Int. J. Mol. Sci. 2022, 23, 9093. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 2013, 3, 595–615. [Google Scholar] [CrossRef] [PubMed]
- Moonshi, S.S.; Wu, Y.; Ta, H.T. Visualizing stem cells in vivo using magnetic resonance imaging. WIREs Nanomed Nanobiotechnol. 2022, 14, e1760. [Google Scholar] [CrossRef] [PubMed]
- Labusca, L.; Herea, D.-D.; Dancean, C.-M.; Minuti, A.E.; Stavila, C.; Grigoras, M.; Gherca, D.; Stoian, G.; Ababei, G.; Chiriac, H.; et al. The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Mater. Sci. Eng. C 2020, 109, 110652. [Google Scholar] [CrossRef] [PubMed]
- Kerans, F.F.A.; Lungaro, L.; Azfer, A.; Salter, D.M. The potential of intrinsically magnetic mesenchymal stem cells for tissue engineering. Int. J. Mol. Sci. 2018, 19, 3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demin, A.M.; Mekhaev, A.V.; Kandarakov, O.F.; Popenko, V.I.; Leonova, O.G.; Murzakaev, A.M.; Kuznetsov, D.K.; Uimin, M.A.; Minin, A.S.; Shur, V.Y.; et al. L-Lysine-modified Fe3O4 nanoparticles for magnetic cell labelling. Colloids Surf. B Biointerfaces 2020, 190, 110879. [Google Scholar] [CrossRef]
- Savvateeva, M.V.; Demin, A.M.; Krasnov, V.P.; Belyavsky, A.V. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal. Biochem. 2016, 509, 146–155. [Google Scholar] [CrossRef]
- Han, J.S.; An, G.S. Preparation of dual-layered core–shell Fe3O4@SiO2 nanoparticles and their properties of plasmid DNA purification. Nanomaterials 2021, 11, 3422. [Google Scholar] [CrossRef]
- Fan, Q.; Guan, Y.; Zhang, Z.; Xu, G.; Yang, Y.; Guo, C. A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem. Phys. Lett. 2019, 715, 7–13. [Google Scholar] [CrossRef]
- Ghosal, K.; Chatterjee, S.; Thomas, S.; Roy, P. A detailed review on synthesis, functionalization, application, challenges, and current status of magnetic nanoparticles in the field of drug delivery and gene delivery system. AAPS PharmSciTech 2023, 24, 25. [Google Scholar] [CrossRef]
- Demin, A.M.; Vakhrushev, A.V.; Valova, M.S.; Korolyova, M.A.; Uimin, M.A.; Minin, A.S.; Pozdina, V.A.; Byzov, I.V.; Tumashov, A.A.; Chistyakov, K.A.; et al. Effect of the silica–magnetite nanocomposite coating functionalization on the doxorubicin sorption/desorption. Pharmaceutics 2022, 14, 2271. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Chetyrkina, M.R.; Obydennyy, S.I.; Maksimov, S.V.; Stepanov, G.V.; Shtykov, S.N. Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: Implications for controlled drug-delivery application. Int. J. Mol. Sci. 2023, 24, 4480. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Jin, G.; Zhou, H.; Yang, Z.; Wang, L.; Mei, Z.; Jin, Q.; Lv, S.; Chen, X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. Med. Rev. 2023, 3, 4–30. [Google Scholar] [CrossRef]
- Cheng, R.; Santos, H.A. Smart nanoparticle-based platforms for regulating tumor microenvironment and cancer immunotherapy. Adv. Healthc. Mater. 2022, 12, 2202063. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, X.; Xiao, B.; Xu, H.; Hu, D.; Qian, Y.; Hu, H.; Zhou, Z.; Liu, X.; Gao, J.; et al. Glutathione-responsive magnetic nanoparticles for highly sensitive diagnosis of liver metastases. Nano Lett. 2021, 21, 2199–2206. [Google Scholar] [CrossRef]
- Javanbakht, S.; Shadi, M.; Mohammadian, R.; Shaabani, A.; Ghorbani, M.; Rabiee, G.; Amini, M.M. Preparation of Fe3O4@SiO2@Tannic acid double core-shell magnetic nanoparticles via the Ugi multicomponent reaction strategy as a pH-responsive co-delivery of doxorubicin and methotrexate. Mater. Chem. Phys. 2020, 247, 122857. [Google Scholar] [CrossRef]
- Zaaeri, F.; Khoobi, M.; Rouini, M.; Javar, H.A. pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 967–977. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Wang, Z.-X.; Pan, J.-Y.; Wang, L.-Q.; Dai, X.-Y.; Wu, K.-F.; Ye, X.-W.; Xu, X.-L. Recent advances in imaging agents anchored with pH (Low) Insertion Peptides for cancer theranostics. Molecules 2023, 28, 2175. [Google Scholar] [CrossRef]
- Novoselova, M.V.; German, S.V.; Abakumova, T.O.; Perevoschikov, S.V.; Sergeeva, O.V.; Nesterchuk, M.V.; Efimova, O.I.; Petrov, K.S.; Chernyshev, V.S.; Zatsepin, T.S.; et al. Multifunctional nanostructured drug delivery carriers for cancer therapy: Multimodal imaging and ultrasound-induced drug release. Colloids Surf. B 2021, 200, 111576. [Google Scholar] [CrossRef]
- Jabalera, Y.; Sola-Leyva, A.; Carrasco-Jiménez, M.P.; Iglesias, G.R.; Jimenez-Lopez, C. Synergistic photothermal-chemotherapy based on the use of biomimetic magnetic nanoparticles. Pharmaceutics 2021, 13, 625. [Google Scholar] [CrossRef]
- Khonina, T.G.; Nikitina, E.Y.; Germov, A.Y.; Goloborodsky, B.Y.; Mikhalev, K.N.; Bogdanova, E.A.; Tishin, D.S.; Demin, A.M.; Krasnov, V.P.; Chupakhin, O.N.; et al. Individual iron(III) glycerolate: Synthesis and characterization. RSC Adv. 2022, 12, 4042–4046. [Google Scholar] [CrossRef]
- Demin, A.M.; Khonina, T.G.; Shadrina, E.V.; Bogdanova, E.A.; Kuznetsov, D.K.; Shur, V.Y.; Krasnov, V.P. Synthesis of nanocomposite with a core-shell structure based on Fe3O4 magnetic nanoparticles and iron glycerolate. Russ. Chem. Bull. 2019, 6, 1178–1182. [Google Scholar] [CrossRef]
- Lau, P.C.; Kwong, T.L.; Yung, K.F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Sci. Rep. 2016, 6, 23822. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, J.; Ai, L. Layered bimetallic iron-nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Sustain. Chem. Eng. 2018, 6, 6117–6125. [Google Scholar] [CrossRef]
- Puzyrev, I.S.; Andreikov, E.I.; Zakharova, G.S.; Podval’naya, N.V.; Osipova, V.A. Adsorption properties of mesoporous carbon synthesized by pyrolysis of zinc glycerolate. Russ. Chem. Bull. 2021, 70, 805. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Hennemann, A.L.; Ruiz-Montoya, J.G.; Martins, P.R.; Araki, K.; Angnes, L.; Shahbazian-Yassar, R. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord. Chem. Rev. 2023, 477, 214954. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Ghorbani, A.; Ritter, T.G.; Lima, I.S.; Saray, M.T.; Phakatkar, A.H.; Silva, V.D.; Pereira, R.S.; Yarin, A.L.; Angnes, L.; et al. Multimetallic glycerolate as a precursor template of spherical porous high-entropy oxide microparticles. J. Colloid Interface Sci. 2023, 641, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Skrbek, K.; Jankovský, O.; Lojka, M.; Antončík, F.; Bartůněk, V. Synthesis of nanosized LaFeAl11O19 hexaaluminate by mixed metal glycerolate method. Ceram. Int. 2021, 47, 29653–29659. [Google Scholar] [CrossRef]
- Bartůněk, V.; Sedmidubský, D.; Huber, Š.; Švecová, M.; Ulbrich, P.; Jankovský, O. Synthesis and properties of nanosized stoichiometric cobalt ferrite spinel. Materials 2018, 11, 1241. [Google Scholar] [CrossRef] [Green Version]
- Bartůněk, V.; Ulbrich, P.; Paterová, I. Facile synthesis of the magnetic Ni-Cr-Fe alloy nanoparticles and its catalytic properties. Mater. Sci. Eng. B 2021, 267, 115117. [Google Scholar] [CrossRef]
- Khonina, T.G.; Safronov, A.P.; Shadrina, E.V.; Ivanenko, M.V.; Suvorova, A.I.; Chupakhin, O.N. Mechanism of structural networking in hydrogels based on silicon and titanium glycerolates. J. Colloid Interface Sci. 2012, 365, 81–89. [Google Scholar] [CrossRef]
- Khonina, T.G.; Tishin, D.S.; Larionov, L.P.; Dobrinskaya, M.N.; Antropova, I.P.; Izmozherova, N.V.; Osipenko, A.V.; Shadrina, E.V.; Nikitina, E.Y.; Bogdanova, E.A.; et al. Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—Gel method in the presence of chitosan. Russ. Chem. Bull. 2022, 71, 2342. [Google Scholar] [CrossRef]
- Demin, A.M.; Pershina, A.G.; Ivanov, V.V.; Nevskaya, K.V.; Shevelev, O.B.; Minin, A.S.; Byzov, I.V.; Sazonov, A.E.; Krasnov, V.P.; Ogorodova, L.M. 3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus. Inter. J. Nanomed. 2016, 11, 4451–4463. [Google Scholar] [CrossRef] [Green Version]
- Novala, V.E.; Carriazo, J.G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mat. Res. 2019, 22, e20180660. [Google Scholar] [CrossRef] [Green Version]
- Hien-Yoong, H. Mössbauer Spectroscopy of Iron Oxide Nanoparticles: Materials for Biomedical Applications. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2018. Available online: https://trace.tennessee.edu/utk_graddiss/5232 (accessed on 28 July 2023).
- Roca, A.G.; Marco, J.F.; del Puerto Morales, M.; Serna, C.J. Effect of Nature and Particle size on Properties of Uniform Magnetite and Maghemite Nanoparticles. J. Phys. Chem. C 2007, 111, 18577–18584. [Google Scholar] [CrossRef]
- Da Costa, G.M.; Blanco-Andujar, C.; De Grave, E.; Pankhurst, Q.A. Magnetic Nanoparticles for in Vivo Use: A Critical Assessment of Their Composition. J. Phys. Chem. B 2014, 118, 11738–11746. [Google Scholar] [CrossRef]
- Demin, A.M.; Vakhrushev, A.V.; Mekhaev, A.V.; Minin, A.S.; Uimin, M.A.; Krasnov, V.P. Modification of Fe3O4 magnetic nanoparticles with a GRGD peptide. Russ. Chem. Bull. 2021, 70, 449–456. [Google Scholar] [CrossRef]
- Demin, A.M.; Mekhaev, A.V.; Esin, A.A.; Kuznetsov, D.K.; Zelenovskiy, P.S.; Shur, V.Y.; Krasnov, V.P. Immobilization of PMIDA on Fe3O4 magnetic nanoparticles surface: Mechanism of bonding. Appl. Surf. Sci. 2018, 440, 1196–1203. [Google Scholar] [CrossRef]
- Baaziz, W.; Pichon, B.P.; Fleutot, S.; Liu, Y.; Lefevre, C.; Greneche, J.-M.; Toumi, M.; Mhiri, T.; Begin-Colin, S. Magnetic iron oxide nanoparticles: Reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C 2014, 118, 795–810. [Google Scholar] [CrossRef]
- Kataby, G.; Koltypin, Y.; Ulman, A.; Felner, I.; Gedanken, A. Blocking temperatures of amorphous iron nanoparticles coated by various surfactants. Appl. Surf. Sci. 2002, 201, 191–195. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khonina, T.G.; Safronov, A.P.; Ivanenko, M.V.; Shadrina, E.V.; Chupakhin, O.N. Features of silicon– and titanium–polyethylene glycol precursors in sol–gel synthesis of new hydrogels. J. Mater. Chem. B 2015, 27, 5490–5550. [Google Scholar] [CrossRef] [PubMed]
- Cheong, M.Y.; Hazimah, A.H.; Zafarizal, A.A.H.; Rosnah, I. Zinc glycerolate: Potential active for topical application. J. Oil Palm Res. 2012, 24, 1287–1295. [Google Scholar]
- Demin, A.M.; Maksimovskikh, A.V.; Mekhaev, A.V.; Kuznetsov, D.K.; Minin, A.S.; Pershina, A.G.; Uimin, M.A.; Shur, V.Y.; Krasnov, V.P. Silica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhancepeptide immobilization efficiency. Ceram. Int. 2021, 47, 23078–23087. [Google Scholar] [CrossRef]
- Khonina, T.G.; Chupakhin, O.N.; Larionov, L.P.; Boyakovskaya, T.G.; Suvorov, A.L.; Shadrina, E.V. Synthesis, toxicity, and percutaneous activity of silicon glycerolates and related hydrogels. Pharm. Chem. J. 2008, 42, 609–613. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Semionkin, V.A.; Milder, O.B.; Novikov, E.G. Possibilities of Mössbauer spectroscopy with a high velocity resolution in studying small variations in 57Fe hyperfine parameters of iron-containing proteins. Bull. Russ. Acad. Sci. Physics 2010, 74, 407. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sazonova, E.V.; Chesnokov, M.S.; Zhivotovsky, B.; Kopeina, G.S. Drug toxicity assessment: Cell proliferation versus cell death. Cell Death Discov. 2022, 8, 417. [Google Scholar] [CrossRef]
Phase | Spectral Components | Isomeric Shift, mm/s | Quadrupole Splitting, mm/s | Hyperfine Field, kOe | Relative Intensity, % | Line Width, mm/s | |
---|---|---|---|---|---|---|---|
MNPs 1 | MNPs 2 | ||||||
Fe3O4 | Fe3+ | 0.37 (5) | 0.04 (2) | 462 (6) | 31 | 34 | 0.4 |
Fe2+ | 0.44 (5) | 0.02 (2) | 420 (6) | 25 | 17 | 0.4 | |
Fe(III)Glyc | Fe3+ | 0.39 (2) | 0.51 (2) | - | 44 | 49 | 0.3 |
MNPs | ICP AES Data | Elemental Analysis Data | Fractions of Fe in Shell and Core, at.% | Weight Ratio Shell: Core, wt.% | Number of Glyc-Residues in MNPs, mmol/g ** | ||||
---|---|---|---|---|---|---|---|---|---|
Fe, % | Si, % | C, % | H, % | * | ** | * | ** | ||
MNPs 1 | 57.56 | 0 | 10.36 | 1.60 | 27:73 | 28:72 | 41:59 | 42:58 | 2.56 |
MNPs 2 | 35.88 | 5.33 | 15.16 | 2.80 | 32:68 | - | 66 ***:34 | - | 3.75 |
Sample | Concentration, mg/mL | Elemental Analysis Data | |
---|---|---|---|
C, % | H, % | ||
H2O:glycerol | |||
Fe(III)Glyc | 1.0 | 24.68 | 3.35 |
MNPs 1 | 11.04 | 1.82 | |
MNPs 2 | 10.94 | 2.52 | |
Fe(III)Glyc | 10 | 24.16 | 3.66 |
MNPs 1 | 10.71 | 1.43 | |
MNPs 2 | 11.42 | 3.05 | |
H2O | |||
Fe(III)Glyc | 1.0 | 24.28 | 3.46 |
MNPs 1 | 10.83 | 1.98 | |
MNPs 2 | 11.00 | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, T.G.; Demin, A.M.; Tishin, D.S.; Germov, A.Y.; Uimin, M.A.; Mekhaev, A.V.; Minin, A.S.; Karabanalov, M.S.; Mysik, A.A.; Bogdanova, E.A.; et al. Magnetic Nanocomposite Materials Based on Fe3O4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int. J. Mol. Sci. 2023, 24, 12178. https://doi.org/10.3390/ijms241512178
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, et al. Magnetic Nanocomposite Materials Based on Fe3O4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. International Journal of Molecular Sciences. 2023; 24(15):12178. https://doi.org/10.3390/ijms241512178
Chicago/Turabian StyleKhonina, Tat’yana G., Alexander M. Demin, Denis S. Tishin, Alexander Yu. Germov, Mikhail A. Uimin, Alexander V. Mekhaev, Artem S. Minin, Maxim S. Karabanalov, Alexey A. Mysik, Ekaterina A. Bogdanova, and et al. 2023. "Magnetic Nanocomposite Materials Based on Fe3O4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization" International Journal of Molecular Sciences 24, no. 15: 12178. https://doi.org/10.3390/ijms241512178
APA StyleKhonina, T. G., Demin, A. M., Tishin, D. S., Germov, A. Y., Uimin, M. A., Mekhaev, A. V., Minin, A. S., Karabanalov, M. S., Mysik, A. A., Bogdanova, E. A., & Krasnov, V. P. (2023). Magnetic Nanocomposite Materials Based on Fe3O4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. International Journal of Molecular Sciences, 24(15), 12178. https://doi.org/10.3390/ijms241512178