Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren’s Syndrome
Abstract
:1. Introduction
2. Results
2.1. Time-Dependent Leukocytic Infiltrations of the Lacrimal Gland in the C57BL/6.NOD-Aec1Aec2 Mouse Model of Primary Sjögren’s Syndrome
2.2. Time-Dependent Pathological Events and Their Appearance in the Lacrimal and Salivary Glands in the C57BL/6.NOD-Aec1Aec2 Mouse Model of Primary Sjögren’s Syndrome
2.3. Comparison of the Notch2 Receptor and Signal Transduction Pathway Gene Profiles Expressed in Lacrimal versus Salivary Gland MZB Cells during the Early Innate Immune Phase of Sjögren’s Syndrome in C57BL/6.NOD-Aec1Aec2 Mice
2.4. The Upregulated Gene Expression Profiles for the Interferon Type-1 Signal Transduction Pathways Expressed in Lacrimal and Salivary Glands of C57BL/6.NOD-Aec1Aec2 Mice Are Not Only Similar, but Expressed during Identical Time Frames
3. Discussion
4. Conclusions, Summary, and Contributions to the Field
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACH | Acetylcholine |
ANA | Antinuclear autoantibody |
APCs | Antigen-presenting cells |
BAFF | B-cell activating factor |
EGF | Epidermal growth factor |
IL | Interleukin |
KCS | Keratoconjunctivitis sicca |
KI | Knock-in (gene) |
KO | Knock-out (gene) |
LF | Lymphocytic focus |
MZB | Marginal zone B (cells) |
M3R | Muscarinic receptor-3 |
NK | Natural killer (cells) |
SS | Sjögren’s syndrome |
TSP | Thrombospondin |
TLR | Toll-like receptor |
References
- Cha, S.; Peck, A.B.; Humphreys-Beher, M.G. Progress in understanding autoimmune exocrinopathy using the non-obese diabetic mouse: An update. Crit. Rev. Oral Biol. Med. 2002, 13, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, N.P.; Illei, G.G. Pathogenesis of Sjogren’s syndrome. Curr. Opin. Rheumatol. 2009, 21, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.Q.; Peck, A.B. The Interferon-Signature of Sjogren’s Syndrome: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Diseases. Front. Immunol. 2013, 4, 142. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Ding, J.L. Natural Antibodies Bridge Innate and Adaptive Immunity. J. Immunol. 2015, 194, 13–20. [Google Scholar] [CrossRef]
- Rizzo, C.; Grasso, G.; Castaniti, G.M.D.; Ciccia, F.; Guggino, G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines 2020, 8, 272. [Google Scholar] [CrossRef]
- Sarrand, J.; Baglione, L.; Parisis, D.; Soyfoo, M. The Involvement of Alarmins in the Pathogenesis of Sjogren’s Syndrome. Int. J. Mol. Sci. 2022, 23, 22. [Google Scholar] [CrossRef]
- Humphreys-Beher, M.G.; Brayer, J.; Cha, S.; Nagashima, H.; Diggs, S.; Peck, A.B. Immunogenetics of autoimmuneexocrinopathy in the nod mouse: More than meets the eye. Adv. Exp. Med. Biol. 2002, 506, 999–1007. [Google Scholar]
- Vivino, F.B.; Bunya, V.Y.; Massaro-Giordano, G.; Johr, C.R.; Giattino, S.L.; Schorpion, A.; Shafer, B.; Peck, A.; Sivils, K.; Rasmussen, A.; et al. Sjogren’s syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin. Immunol. 2019, 203, 81–121. [Google Scholar] [CrossRef]
- Shiboski, C.H.; Baer, A.N.; Shiboski, S.C.; Lam, M.; Challacombe, S.; Lanfranchi, H.E.; Schiodt, M.; Shirlaw, P.; Srinivasan, M.; Umehara, H.; et al. Natural History and Predictors of Progression to Sjogren’s Syndrome among Participants of the Sjogren’s International Collaborative Clinical Alliance Registry. Arthritis Care Res. 2018, 70, 284–294. [Google Scholar] [CrossRef]
- Mariette, X.; Criswell, L.A. Primary Sjogren’s Syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef]
- Shen, L.; Suresh, L.; Malyavantham, K.; Kowal, P.; Xuan, J.X.; Lindemann, M.J.; Ambrus, J.L. Different Stages of Primary Sjogren’s Syndrome Involving Lymphotoxin and Type 1 IFN. J. Immunol. 2013, 191, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Witas, R.; Gupta, S.; Nguyen, C.Q. Contributions of Major Cell Populations to Sjogren’s Syndrome. J. Clin. Med. 2020, 9, 3057. [Google Scholar] [CrossRef] [PubMed]
- Chatzis, L.; Goules, A.V.; Pezoulas, V.; Baldini, C.; Gandolfo, S.; Skopouli, F.N.; Exarchos, T.P.; Kapsogeorgou, E.K.; Donati, V.; Voulgari, P.V.; et al. A biomarker for lymphoma development in Sjogren’s syndrome: Salivary gland focus score. J. Autoimmun. 2021, 121, 102648. [Google Scholar] [CrossRef] [PubMed]
- Gorodetskiy, V.R.; Probatova, N.A.; Vasilyev, V.I. Characteristics of diffuse large B-cell lymphoma in patients with primary Sjogren’s syndrome. Int. J. Rheum. Dis. 2020, 23, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Donate, A.; Voigt, A.; Nguyen, C.Q. The value of animal models to study immunopathology of primary human Sjogren’s syndrome symptoms. Expert Rev. Clin. Immunol. 2014, 10, 469–481. [Google Scholar] [CrossRef]
- Huang, W.; Tourmouzis, K.; Perry, H.; Honkanen, R.A.; Rigas, B. Animal models of dry eye disease: Useful, varied and evolving (Review). Exp. Ther. Med. 2021, 22, 10. [Google Scholar] [CrossRef]
- Shen, L.; He, J.; Kramer, J.M.; Bunya, V.Y. Sjogren’s Syndrome: Animal Models, Etiology, Pathogenesis, Clinical Subtypes, and Diagnosis. J. Immunol. Res. 2019, 2019, 8101503. [Google Scholar] [CrossRef]
- Xiao, F.; Han, M.; Wang, X.; Gong, X.; Huang, E.; Zhu, Z.; Zhao, F.; Zhao, Y.; Jiang, Q.; Lu, L. Animal models of Sjogren’s syndrome: An update. Clin. Exp. Rheumatol. 2019, 37, S209–S216. [Google Scholar]
- Czerwinski, S.; Mostafa, S.; Rowan, V.S.; Azzarolo, A.M. Time course of cytokine upregulation in the lacrimal gland and presence of autoantibodies in a predisposed mouse model of Sjogren’s Syndrome: The influence of sex hormones and genetic background. Exp. Eye Res. 2014, 128, 15–22. [Google Scholar] [CrossRef]
- Nguyen, C.Q.; Kim, H.; Cornelius, J.G.; Peck, A.B. Development of Sjogren’s syndrome in nonobese diabetic-derived autoimmune-prone C57BL/6.NOD-Aec1Aec2 mice is dependent on complement component-3. J. Immunol. 2007, 179, 2318–2329. [Google Scholar] [CrossRef]
- Nguyen, C.; Cornelius, J.; Singson, E.; Killedar, S.; Cha, S.H.; Peck, A.B. Role of complement and B lymphocytes in Sjogren’s syndrome-like autoimmune exocrinopathy of NOD.B10-H2(B) mice. Mol. Immunol. 2006, 43, 1332–1339. [Google Scholar] [CrossRef]
- Cha, S.; Nagashima, H.; Brown, V.B.; Peck, A.B.; Humphreys-Beher, M.G. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjogren’s syndrome) on a healthy murine background. Arthritis Rheum. 2002, 46, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Suresh, L. Autoantibodies, detection methods and panels for diagnosis of Sjogren’s syndrome. Clin. Immunol. 2017, 182, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.A.; Gerard, H.C.; Wei, Y.; Campbell, A.L.; Hudson, A.P.; Akpek, E.K.; Lee, B.; Prendergast, R.A.; Whittum-Hudson, J.A. Inflammatory mediators in autoimmune lacrimal gland disease in MRL/Mpj mice. Investig. Opthalmology Vis. Sci. 2004, 45, 2293–2298. [Google Scholar] [CrossRef]
- Baldini, C.; Giusti, L.; Ciregia, F.; Da Valle, Y.; Giacomelli, C.; Donadio, E.; Sernissi, F.; Bazzichi, L.; Giannaccini, G.; Bombardieri, S.; et al. Proteomic analysis of saliva: A unique tool to distinguish primary Sjogren’s syndrome from secondary Sjogren’s syndrome and other sicca syndromes. Arthritis Res. Ther. 2011, 13, R194. [Google Scholar] [CrossRef]
- Li, H.M.; Dai, M.F.; Zhuang, Y. A T cell intrinsic role of Id3 in a mouse model for primary Sjogren’s syndrome. Immunity 2004, 21, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Nguyen, C.Q.; Ambrus, J.L. Upregulated Chemokine and Rho-GTPase Genes Define Immune Cell Emigration into Salivary Glands of Sjogren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice. Int. J. Mol. Sci. 2021, 22, 16. [Google Scholar] [CrossRef]
- Szabo, K.; Papp, G.; Dezso, B.; Zeher, M. The Histopathology of Labial Salivary Glands in Primary Sjogren’s Syndrome: Focusing on Follicular Helper T Cells in the Inflammatory Infiltrates. Mediat. Inflamm. 2014, 2014, 631787. [Google Scholar] [CrossRef]
- Karabiyik, A.; Peck, A.B.; Nguyen, C.Q. The important role of T cells and receptor expression in Sjogren’s syndrome. Scand. J. Immunol. 2013, 78, 157–166. [Google Scholar] [CrossRef]
- Shen, L.; Suresh, L.; Li, H.; Zhang, C.J.; Kumar, V.; Pankewycz, O.; Ambrus, J.L. IL-14 alpha, the nexus for primary Sjogren’s disease in mice and humans. Clin. Immunol. 2009, 130, 304–312. [Google Scholar] [CrossRef]
- Ford, R.J.; Shen, L.; Lin-Lee, Y.C.; Pham, L.V.; Multani, A.; Zhou, H.J.; Tamayo, A.T.; Zhang, C.J.; Hawthorn, L.; Cowell, J.K.; et al. Development of a murine model for blastoid variant mantle-cell lymphoma. Blood 2007, 109, 4899–4906. [Google Scholar] [CrossRef]
- Ford, R.; Tamayo, A.; Martin, B.; Niu, K.; Claypool, K.; Cabanillas, F.; Ambrus, J., Jr. Identification of B Cell Growth Factors (IL-14; HMW-BCGF) in Effusion Fluids from Patients with Aggressive B Cell Lymphomas. Blood 1995, 86, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Nguyen, C.Q. Transcriptome analysis of the interferon-signature defining the autoimmune process of Sjogren’s syndrome. Scand. J. Immunol. 2012, 76, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Nguyen, C.Q. What can Sjogren’s syndrome-like disease in mice contribute to human Sjogren’s syndrome? Clin. Immunol. 2017, 182, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Kwon, J.E.; Park, J.S.; Seo, H.B.; Jung, K.A.; Moon, Y.M.; Lee, J.; Kwok, S.K.; Cho, M.L.; Park, S.H. Achaete-scute complex homologue 2 accelerates the development of Sjogren’s syndrome-like disease in the NOD/ShiLtJ mouse. Immunol. Lett. 2017, 190, 26–33. [Google Scholar] [CrossRef]
- Terzulli, M.; Ruiz, L.C.; Kugadas, A.; Masli, S.; Gadjeva, M. TSP-1 Deficiency Alters Ocular Microbiota: Implications for Sjogren’s Syndrome Pathogenesis. J. Ocul. Pharmacol. Ther. 2015, 31, 413–418. [Google Scholar] [CrossRef]
- Campos, J.; Slocombe, T.; Nayar, S.; Iannizzotto, V.; Gardner, D.H.; Buckley, C.D.; Haynes, A.; Henderson, R.; Barone, F. Targeting B-cell activating factor (BAFF) impairs ectopic lymphoneogenesis in murine models of Sjogren’s syndrome. Clin. Exp. Rheumatol. 2018, 36, S298. [Google Scholar]
- Qian, Y.C.; Giltiay, N.; Xiao, J.H.; Wang, Y.; Tian, J.; Han, S.H.; Scott, M.; Carter, R.; Jorgensen, T.N.; Li, X.X. Deficiency of Act1, a critical modulator of B cell function, leads to development of Sjogren’s syndrome. Eur. J. Immunol. 2008, 38, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.P.; Brayer, J.; Yamachika, S.; Esch, T.R.; Peck, A.B.; Stewart, C.A.; Peen, E.; Jonsson, R.; Humphreys-Beher, M.G. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjogren’s syndrome. Proc. Natl. Acad. Sci. USA 1998, 95, 7538–7543. [Google Scholar] [CrossRef]
- Shen, L.; Suresh, L.; Wu, J.; Xuan, J.X.; Li, H.; Zhang, C.J.; Pankewycz, O.; Ambrus, J.L. A Role for Lymphotoxin in Primary Sjogren’s Disease. J. Immunol. 2010, 185, 6355–6363. [Google Scholar] [CrossRef]
- Shen, L.; Gao, C.; Suresh, L.; Xian, Z.; Song, N.; Chaves, L.D.; Yu, M.; Ambrus, J.L., Jr. Central role for marginal zone B cells in an animal model of Sjogren’s syndrome. Clin. Immunol. 2016, 168, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Baimpa, E.; Dahabreh, I.J.; Voulgarelis, M.; Moutsopoulos, H.M. Hematologic manifestations and predictors of lymphoma development in primary Sjogren syndrome: Clinical and pathophysiologic aspects. Medicine 2009, 88, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Nguyen, C.Q.; Ambrus, J. Early Covert Appearance of Marginal Zone B Cells in Salivary Glands of Sjogren’s Syndrome-Susceptible Mice: Initiators of Subsequent Overt Clinical Disease. Int. J. Mol. Sci. 2021, 22, 1919. [Google Scholar] [CrossRef]
- Peck, A.B.; Nguyen, C.Q.; Ambrus, J.L. A MZB Cell Activation Profile Present in the Lacrimal Glands of Sjogren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mice Defined by Global RNA Transcriptomic Analyses. Int. J. Mol. Sci. 2022, 23, 20. [Google Scholar] [CrossRef]
- Singh, N.; Chin, I.; Gabriel, P.; Blaum, E.; Masli, S. Dysregulated Marginal Zone B Cell Compartment in a Mouse Model of Sjogren’s Syndrome with Ocular Inflammation. Int. J. Mol. Sci. 2018, 19, 3117. [Google Scholar] [CrossRef]
- Bjordal, O.; Norheim, K.B.; Rodahl, E.; Jonsson, R.; Omdal, R. Primary Sjogren’s syndrome and the eye. Surv. Ophthalmol. 2020, 65, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Saylor, B.T.; Nguyen, L.; Sharma, A.; She, J.X.; Nguyen, C.Q.; McIndoe, R.A. Gene expression profiling of early-phase Sjogren´s syndrome in C57BL/6.NOD-Aec1Aec2 mice identifies focal adhesion maturation associated with infiltrating leukocytes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5647–5655. [Google Scholar] [CrossRef]
- Roescher, N.; Lodde, B.M.; Vosters, J.L.; Tak, P.P.; Catalan, M.A.; Illei, G.G.; Chiorini, J.A. Temporal changes in salivary glands of non-obese diabetic mice as a model for Sjogren’s syndrome. Oral Dis. 2012, 18, 96–106. [Google Scholar] [CrossRef]
- Wang, B.; Chen, S.J.; Zheng, Q.; Li, Y.; Zhang, X.W.; Xuan, J.X.; Liu, Y.; Shi, G.X. Early diagnosis and treatment for Sjogren’s syndrome: Current challenges, redefined disease stages and future prospects. J. Autoimmun. 2021, 117, 102590. [Google Scholar] [CrossRef]
- De Vita, S.; Gandolfo, S. Predicting lymphoma development in patients with Sjogren’s syndrome. Expert Rev. Clin. Immunol. 2019, 15, 929–938. [Google Scholar] [CrossRef]
- Du, W.H.; Han, M.; Zhu, X.X.; Xiao, F.; Huang, E.Y.; Che, N.; Tang, X.P.; Zou, H.J.; Jiang, Q.; Lu, L.W. The Multiple Roles of B Cells in the Pathogenesis of Sjogren’s Syndrome. Front. Immunol. 2021, 12, 684999. [Google Scholar] [CrossRef] [PubMed]
- Voulgarelis, M.; Dafni, U.G.; Isenberg, K.A.; Moutsopoulos, H.M. Malignant lymphoma in primary Sjogren’s syndrome—A multicenter, retrospective, clinical study by the European concerted action on Sjogren’s syndrome. Arthritis Rheum. 1999, 42, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Gervais, E.M.; Desantis, K.A.; Pagendarm, N.; Nelson, D.A.; Enger, T.; Skarstein, K.; Jensen, J.L.; Larsen, M. Changes in the Submandibular Salivary Gland Epithelial Cell Subpopulations During Progression of Sjogren’s Syndrome-Like Disease in the NOD/ ShiLtJ Mouse Model. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2015, 298, 1622–1634. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kiripolsky, J.; Klimatcheva, E.; Howell, A.; Fereidouni, F.; Levenson, R.; Rothstein, T.L.; Kramer, J.M. Early BAFF receptor blockade mitigates murine Sjogren’s syndrome: Concomitant targeting of CXCL13 and the BAFF receptor prevents salivary hypofunction. Clin. Immunol. 2016, 164, 85–94. [Google Scholar] [CrossRef]
- Contreras-Ruiz, L.; Mir, F.A.; Turpie, B.; Krauss, A.H.; Masli, S. Sjogren’s syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin alpha 4 antagonist GW559090. Exp. Eye Res. 2016, 143, 1–8. [Google Scholar] [CrossRef]
- Pillai, S.; Cariappa, A.; Moran, S.T. Marginal zone B cells. Annu. Rev. Immunol. 2005, 23, 161–196. [Google Scholar] [CrossRef]
- Weill, J.C.; Weller, S.; Reynaud, C.A. Human Marginal Zone B Cells. Annu. Rev. Immunol. 2009, 27, 267–285. [Google Scholar] [CrossRef]
- Cerutti, A.; Cols, M.; Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 2013, 13, 118–132. [Google Scholar] [CrossRef]
- Palm, A.K.E.; Kleinau, S. Marginal zone B cells: From housekeeping function to autoimmunity? J. Autoimmun. 2021, 119, 102627. [Google Scholar] [CrossRef]
- Fletcher, C.A.; Sutherland, A.P.; Groom, J.R.; Batten, M.L.; Ng, L.G.; Gommerman, J.; Mackay, F. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur. J. Immunol. 2006, 36, 2504–2514. [Google Scholar] [CrossRef]
- Lorenz, R.G.; Chaplin, D.D.; McDonald, K.G.; McDonough, J.S.; Newderry, R.D. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J. Immunol. 2003, 170, 5475–5482. [Google Scholar] [CrossRef] [PubMed]
- Mackay, F.; Bourdon, P.R.; Griffiths, D.A.; Lawton, P.; Zafari, M.; Sizing, I.D.; Miatkowski, K.; Ngam-ek, A.; Benjamin, C.D.; Hession, C.; et al. Cytotoxic activities of recombinant soluble murine lymphotoxin-alpha and lymphotoxin-alpha beta complexes. J. Immunol. 1997, 159, 3299–3310. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Niu, H.; Zheng, Y.Y.; Morel, L. Autoreactive marginal zone B cells enter the follicles and interact with CD4+ T cells in lupus-prone mice. BMC Immunol. 2011, 12, 7. [Google Scholar] [CrossRef]
- Killedar, S.J.; Eckenrode, S.E.; McIndoe, R.A.; She, J.X.; Nguyen, C.Q.; Peck, A.B.; Cha, S. Early pathogenic events associated with Sjogren’s syndrome (SjS)-like disease of the NOD mouse using microarray analysis. Lab. Investig. 2006, 86, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.B.; Ambrus, J.L. A Temporal Comparative RNA Transcriptome Profile of the Annexin Gene Family in the Salivary versus Lacrimal Glands of the Sjogren’s Syndrome-Susceptible C57BL/6.NOD-Aec1Aec2 Mouse. Int. J. Mol. Sci. 2022, 23, 14. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.C.; Kim, S.; Oh, S.H.; Lee, M.K.; Kim, K.W.; Lee, M.S. Inhibition of Autoimmune Diabetes by TLR2 Tolerance. J. Immunol. 2011, 187, 5211–5220. [Google Scholar] [CrossRef]
- Ambrus, J.L.; Suresh, L.; Peck, A. Multiple Roles for B-Lymphocytes in Sjogren’s Syndrome. J. Clin. Med. 2016, 5, 87. [Google Scholar] [CrossRef]
- Rubtsov, A.V.; Swanson, C.L.; Troy, S.; Strauch, P.; Pelanda, R.; Torres, R.M. TLR agonists promote marginal zone B cell activation and facilitate T-dependent IgM responses. J. Immunol. 2008, 180, 3882–3888. [Google Scholar] [CrossRef]
- Guay, H.M.; Mishra, R.; Garcea, R.L.; Welsh, R.M.; Szomolanyi-Tsuda, E. Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells. J. Immunol. 2009, 183, 518–523. [Google Scholar] [CrossRef]
- LopesCarvalho, T.; Foote, J.; Kearney, J.F. Marginal zone B cells in lymphocyte activation and regulation. Curr. Opin. Immunol. 2005, 17, 244–250. [Google Scholar] [CrossRef]
- Peck, A.; Nguyen, C.; Ambrus, J. Global RNA Transcriptomic Analyses Reveal a Critical Role for Marginal Zone B cells in the Development of Sjogren’s Syndrome using the C57BL.6.NODAec1Aec2 Mouse Model. Clin. Immunol. 2020. submitted. [Google Scholar]
- Barrera, M.J.; Aguilera, S.; Castro, I.; Carvajal, P.; Jara, D.; Molina, C.; Gonzalez, S.; Gonzalez, M.J. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjo & uml;gren & rsquo;s syndrome. Autoimmun. Rev. 2021, 20, 12. [Google Scholar]
- Doherty, E.; Oaks, Z.; Perl, A. Increased Mitochondrial Electron Transport Chain Activity at Complex I Is Regulated by N-Acetylcysteine in Lymphocytes of Patients with Systemic Lupus Erythematosus. Antioxid. Redox Signal. 2014, 21, 56–65. [Google Scholar] [CrossRef]
- Caielli, S.; Wan, Z.R.; Pascual, V. Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Annu. Rev. Immunol. 2023, 41, 533–560. [Google Scholar] [CrossRef] [PubMed]
- Ryo, K.; Yamada, H.; Nakagawa, Y.; Tai, Y.; Obara, K.; Inoue, H.; Mishima, K.; Saito, I. Possible involvement of oxidative stress in salivary gland of patients with Sjogren’s syndrome. Pathobiology 2006, 73, 252–260. [Google Scholar] [CrossRef]
- Pagano, G.; Castello, G.; Pallardo, F.V. Sjogren’s syndrome-associated oxidative stress and mitochondrial dysfunction: Prospects for chemoprevention trials. Free. Radic. Res. 2013, 47, 71–73. [Google Scholar] [CrossRef]
- Bax, K.; Isackson, P.J.; Moore, M.; Ambrus, J.L. Carnitine Palmitoyl Transferase Deficiency in a University Immunology Practice. Curr. Rheumatol. Rep. 2020, 22, 8. [Google Scholar] [CrossRef]
- Ambrus, J.J.; Isackson, P.J.; Moore, M.; Butsch, J.; Balos, L. Investigating Fatigue and Exercise Inotolerance in a University Immunology Clinic. Arch. Rheumatol. Arthritis Res. 2020, 1, 1–8. [Google Scholar] [CrossRef]
Sjogren’s Syndrome | ||
---|---|---|
Pathological Characteristics | Humans | Mice |
Dacryoadentitis/Meibomian Gland Disease | (Yes) | (Yes) |
Sialadenitis | Yes | Yes |
Decreased tear flow rates | Yes | Variable |
Keratoconjunctivitis sicca (KCS) | Yes | Variable |
Ocular epithelium dessication | Yes | Yes |
Decreased break-up time | Yes | (?) |
Altered proteins in tears | (Yes) | Yes |
Decreased Lysozyme & Lactoferrin activity | Yes | (?) |
Decreased saliva flow rates | Yes | Yes |
Stomatitis sicca | Yes | Yes |
Altered proteins in saliva | Yes | Yes |
Decreased Amylase & EGF activity | Yes | Yes |
Inflammatory cytokine/chemokine production | Yes | Yes |
Autoantibodies & Theumatoid Factor | Yes | Variable |
Anti-Ro/SS-A, Anti-La/SS-B, Anti-DNA (ANAs), Anti-α-fodrin, Anti-β-adrenergic receptor, Anti-type-3 muscarinic ACh receptor | ||
Lymphomagenesis | Yes | Variable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peck, A.B.; Ambrus, J.L., Jr. Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren’s Syndrome. Int. J. Mol. Sci. 2023, 24, 12209. https://doi.org/10.3390/ijms241512209
Peck AB, Ambrus JL Jr. Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren’s Syndrome. International Journal of Molecular Sciences. 2023; 24(15):12209. https://doi.org/10.3390/ijms241512209
Chicago/Turabian StylePeck, Ammon B., and Julian L. Ambrus, Jr. 2023. "Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren’s Syndrome" International Journal of Molecular Sciences 24, no. 15: 12209. https://doi.org/10.3390/ijms241512209
APA StylePeck, A. B., & Ambrus, J. L., Jr. (2023). Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren’s Syndrome. International Journal of Molecular Sciences, 24(15), 12209. https://doi.org/10.3390/ijms241512209