Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Concentration and Temperature
2.1.1. Weight Loss Measurements
2.1.2. Adsorption Study and Standard Adsorption Free Energy
2.1.3. Electrochemical Measurements
2.2. Effect of Immersion Time
2.3. Surface Analysis
2.4. Mechanism of Inhibition
3. Materials and Methods
3.1. Materials
3.2. Weight Loss Measurements
3.3. Electrochemical Measurements
3.4. Surface Analysis
4. Conclusions
- The thickening agent guar gum was found to be an efficient corrosion inhibitor for N80 carbon steel in the tested solution, and its anticorrosive properties increased with its concentration but decreased with the temperature.
- EIS measurements performed at different immersion times have shown that the Rct did not change significantly in either temperature, which indicates that GG can protect the metal surface even after prolonged immersion times.
- Potentiodynamic polarization measurements have revealed that GG acted as a mixed-type inhibitor.
- The results obtained also proposed that the adsorption of guar gum followed Temkin and Dubinin–Radushkevich adsorption isotherms. The adsorption parameters indicated that GG was spontaneously adsorbed onto the steel surface, and that the adsorption occurred mainly via an electrostatic or physical process. The values of Ea and Qads further support this hypothesis.
- The FTIR measurements reveal that GG was strongly adsorbed on the metal surface.
- SEM-EDS confirmed the adsorption of the guar gum and the formation of an absorptive layer onto the metal surface. The AFM studies confirmed a noteworthy decrease in the roughness of the metal surface after the addition of GG to the corrosive solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Wang, Z.M.; Song, G.-L.; Zhang, J. Corrosion Control in CO2 Enhanced Oil Recovery From a Perspective of Multiphase Fluids. Front. Mater. 2019, 6, 272. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B.; Umoren, S.A. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corros. Sci. 2019, 159, 108140. [Google Scholar] [CrossRef]
- Palumbo, G.; Górny, M.; Banaś, J. Corrosion Inhibition of Pipeline Carbon Steel (N80) in CO2-Saturated Chloride (0.5 M of KCl) Solution Using Gum Arabic as a Possible Environmentally Friendly Corrosion Inhibitor for Shale Gas Industry. J. Mater. Eng. Perform. 2019, 28, 6458–6470. [Google Scholar] [CrossRef] [Green Version]
- Hornafius, K.Y.; Hornafius, J.S. Carbon negative oil: A pathway for CO2 emission reduction goals. Int. J. Greenh. Gas Control 2015, 37, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Okafor, P.C.; Liu, X.; Zheng, Y.G.; Wang, F.; Liu, C.Y. Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea. J. Solid State Electrochem. 2009, 14, 1367–1376. [Google Scholar] [CrossRef]
- Roy, P.; Karfa, P.; Adhikari, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci. 2014, 88, 246–253. [Google Scholar] [CrossRef]
- Li, Y.; Xu, N.; Guo, X.; Zhang, G. Inhibition effect of imidazoline inhibitor on the crevice corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid. Corros. Sci. 2017, 126, 127–141. [Google Scholar] [CrossRef]
- Okafor, P.C.; Liu, C.B.; Zhu, Y.J.; Zheng, Y.G. Corrosion and Corrosion Inhibition Behavior of N80 and P110 Carbon Steels in CO2-Saturated Simulated Formation Water by Rosin Amide Imidazoline. Ind. Eng. Chem. Res. 2011, 50, 7273–7281. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.; Bedi, P.; Pramanik, T.; Ali, I.H.; Lin, Y.; Banerjee, P.; Zamindar, S. Understanding xanthone derivatives as novel and efficient corrosion inhibitors for P110 steel in acidizing fluid: Experimental and theoretical studies. J. Phys. Chem. Solids 2023, 172, 111064. [Google Scholar] [CrossRef]
- Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. Int. J. Biol. Macromol. 2018, 117, 1017–1028. [Google Scholar] [CrossRef]
- Obot, I.; Onyeachu, I.B.; Kumar, A. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium. Carbohydr. Polym. 2017, 178, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Messali, M.; Lgaz, H.; Dassanayake, R.; Salghi, R.; Jodeh, S.; Abidi, N.; Hamed, O. Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: Electrochemical, surface, DFT and MD simulations studies. J. Mol. Struct. 2017, 1145, 43–54. [Google Scholar] [CrossRef]
- Abdallah, M. Guar Gum as Corrosion Inhibitor for Carbon Steel in Sulfuric Acid Solutions. Port. Electrochim. Acta 2004, 22, 161–175. [Google Scholar] [CrossRef]
- Palumbo, G.; Berent, K.; Proniewicz, E.; Banaś, J. Guar Gum as an Eco-Friendly Corrosion Inhibitor for Pure Aluminium in 1-M HCl Solution. Materials 2019, 12, 2620. [Google Scholar] [CrossRef] [Green Version]
- Hejazian, S.; Ahmadyari-Sharamin, M. Synergistic effect of Arabic and guar gums on corrosion behavior of steel reinforced concrete in a simulator environment. Case Stud. Constr. Mater. 2022, 16, e01024. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.; Quraishi, M. Inhibition effect of natural polysaccharide composite on hydrogen evolution and P110 steel corrosion in 3.5 wt% NaCl solution saturated with CO2: Combination of experimental and surface analysis. Int. J. Hydrogen Energy 2020, 45, 25398–25408. [Google Scholar] [CrossRef]
- Peter, A.; Sharma, S.K.; Obot, I.B. Anticorrosive efficacy and adsorptive study of guar gum with mild steel in acidic medium. J. Anal. Sci. Technol. 2016, 7, 26. [Google Scholar] [CrossRef]
- Spellman, F.R. Environmental Impacts of Hydraulic Fracturing; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Casas, J.A.; Mohedano, A.F.; García-Ochoa, F. Viscosity of guar gum and xanthan/guar gum mixture solutions. J. Sci. Food Agric. 2000, 80, 1722–1727. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A Review. J. Food Sci. Technol. 2011, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-M.; Zhou, J.-F.; Hui, P.S. A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agric. 2005, 85, 2638–2644. [Google Scholar] [CrossRef]
- Tiwari, A.; Terada, D.; Kobayash, H. Polyvinyl Modified Guar-gum Bioplastics for Packaging Applications. In Handbook of Bioplastics and Biocomposites Engineering Applications; Pilla, S., Ed.; Scrivener Publishing LLC.: Beverly, MA, USA, 2011; pp. 177–188. [Google Scholar] [CrossRef]
- Mobin, M.; Rizvi, M. Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1 M HCl. Carbohydr. Polym. 2016, 136, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Bentrah, H.; Rahali, Y.; Chala, A. Gum Arabic as an eco-friendly inhibitor for API 5L X42 pipeline steel in HCl medium. Corros. Sci. 2014, 82, 426–431. [Google Scholar] [CrossRef]
- Solomon, M.; Umoren, S.; Udosoro, I.; Udoh, A. Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros. Sci. 2010, 52, 1317–1325. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.; Ali, I.H.; Lin, Y.; Murmu, M.; Banerjee, P. Evaluation of corrosion mitigation properties of pyridinium-based ionic liquids on carbon steel in 15% HCl under the hydrodynamic condition: Experimental, surface, and computational approaches. J. Mol. Liq. 2023, 376, 121408. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.; Obot, I.; Ebenso, E.E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. J. Mol. Liq. 2016, 219, 865–874. [Google Scholar] [CrossRef]
- Umoren, S.; Obot, I.; Ebenso, E.; Okafor, P.; Ogbobe, O.; Oguzie, E. Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti-Corros. Methods Mater. 2006, 53, 277–282. [Google Scholar] [CrossRef]
- Okafor, P.C.; Brown, B.; Nesic, S. CO2 corrosion of carbon steel in the presence of acetic acid at higher temperatures. J. Appl. Electrochem. 2008, 39, 873–877. [Google Scholar] [CrossRef]
- Bayol, E.; Gurten, A.; Dursun, M.; Kayakirilmaz, K. Adsorption Behavior and Inhibition Corrosion Effect of Sodium Carboxymethyl Cellulose on Mild Steel in Acidic Medium. Acta Phys. Chim. Sin. 2008, 24, 2236–2243. [Google Scholar] [CrossRef]
- Amin, M.A.; Khaled, K.; Fadl-Allah, S.A. Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions—Experimental and theoretical studies. Corros. Sci. 2010, 52, 140–151. [Google Scholar] [CrossRef]
- Liu, D.; Fu, C.Y.; Chen, Z.Y.; Guo, X.P. Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid. Corros. Sci. Technol. 2007, 6, 227–232. [Google Scholar]
- Wu, W.; Yin, H.; Zhang, H.; Kang, J.; Li, Y.; Dan, Y. Electrochemical Investigation of Corrosion of X80 Steel under Elastic and Plastic Tensile Stress in CO2 Environment. Metals 2018, 8, 949. [Google Scholar] [CrossRef] [Green Version]
- Belarbi, Z.; Olivo, J.D.; Farelas, F.; Singer, M.; Young, D.; Nešić, S. Decanethiol as a Corrosion Inhibitor for Carbon Steels Exposed to Aqueous CO2. Corrosion 2019, 75, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Bellezze, T.; Giuliani, G.; Viceré, A.; Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 2: Anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corros. Sci. 2018, 130, 12–21. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J. Biol. Macromol. 2012, 50, 1035–1039. [Google Scholar] [CrossRef]
- Biswas, A.; Pal, S.; Udayabhanu, G. Effect of chemical modification of a natural polysaccharide on its inhibitory action on mild steel in 15% HCl solution. J. Adhes. Sci. Technol. 2017, 31, 2468–2489. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Malyar, Y.N.; Vasilyeva, N.Y.; Borovkova, V.S.; Issaoui, N. Optimization of guar gum galactomannan sulfation process with sulfamic acid. Biomass Convers. Biorefin. 2021, 13, 10041–10050. [Google Scholar] [CrossRef]
- Sánchez-Eleuterio, A.; Mendoza-Merlos, C.; Corona Sánchez, R.; Navarrete-López, A.M.; Martínez Jiménez, A.; Ramírez-Domínguez, E.; Lomas Romero, L.; Orozco Cruz, R.; Espinoza Vázquez, A.; Negrón-Silva, G.E. Experimental and Theoretical Studies on Acid Corrosion Inhibition of API 5L X70 Steel with Novel 1-N-α-d-Glucopyranosyl-1H-1,2,3-Triazole Xanthines. Molecules 2023, 28, 460. [Google Scholar] [CrossRef]
- Mora-Mendoza, J.; Turgoose, S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corros. Sci. 2002, 44, 1223–1246. [Google Scholar] [CrossRef]
- Forero, A.B.; Núñez, M.M.; Bott, I.S. Analysis of the corrosion scales formed on API 5L X70 and X80 steel pipe in the presence of CO2. Mater. Res. 2013, 17, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Heuer, J.; Stubbins, J. An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 1999, 41, 1231–1243. [Google Scholar] [CrossRef]
Inhibitors Derived from Natural Products | Metal Substrate | Corrosive Media | Inhibitor Conc. at Which Maximum Inhibition Efficiency Is Observed | Temperature (°C) | IE (%) | Time of Exposure (h) | Reference |
---|---|---|---|---|---|---|---|
Guar Gum | Carbon Steel | 1 M H2SO4 containing NaCl | 1.5 g L−1 | 25 | 93.88 | 24 | [14] |
Guar Gum | Carbon Steel | 2.0 M H3PO4 | 1 g L−1 | 25 | 92.8 | 6 | [13] |
Xanthan gum | A1020 Carbon Steel | 1 M HCl | 1 g L−1 | 30 | 74.24 | 6 | [24] |
Gum Arabic | API 5L X42 steel | 1 M HCl | 2 g L−1 | 25 | 92 | 1 | [25] |
Gum Arabic | N80 Carbon Steel | 0.5 M KCl (saturated in CO2) | 0.5 g L−1 | 25 | 70.27 | 24 | [4] |
Chitosan | API 5L X60 | 3.5% NaCl (saturated in CO2) | 0.1 g L−1 | 25 | 45.00 | 1 | [11] |
carboxymethyl cellulose | API 5L X60 | 3.5% NaCl (saturated in CO2) | 0.1 g L−1 | 25 | 39.00 | 1 | [11] |
Temperature (°C) | R2 | a | Kads (g L−1) | (kJ mol−1) | ε (mol2 kJ−1) | E (kJ mol−1) |
---|---|---|---|---|---|---|
Langmuir | ||||||
25 | 0.998 | - | 34.48 | −25.90 | - | - |
50 | 0.992 | - | 7.41 | −23.94 | - | - |
Temkin | ||||||
25 | 0.885 | −4.38 | 2179.73 | −36.18 | - | - |
50 | 0.977 | −2.59 | 74.45 | −30.14 | - | - |
Dubinin–Radushkevich | ||||||
25 | 0.951 | - | - | - | 0.008 | 7.76 |
50 | 0.982 | - | - | - | 0.018 | 5.27 |
Cinh (g L−1) | Ea (kJ mol−1) | Qads (kJ mol−1) |
---|---|---|
Blank | 40.67 | - |
0.05 | 55.06 | −39.90 |
0.1 | 55.55 | −28.30 |
0.2 | 59.51 | −29.06 |
0.3 | 53.10 | −18.56 |
0.4 | 52.04 | −16.52 |
Cinh (g L−1) | βc (mV dec−1) | icorr (µA cm−2) | −Ecorr (mV SCE−1) | IE (%) |
---|---|---|---|---|
25 °C | ||||
Bank | 390 ± 21 | 27.42 ± 0.03 | 694 ± 15 | - |
0.05 | 277 ± 17 | 15.50 ± 0.01 | 679 ± 11 | 43.47 |
0.1 | 221 ± 22 | 7.02 ± 0.02 | 709 ± 11 | 74.40 |
0.2 | 190 ± 11 | 4.69 ± 0.01 | 701 ± 16 | 82.90 |
0.3 | 207 ± 11 | 3.70 ± 0.01 | 693 ± 12 | 86.51 |
0.4 | 215 ± 9 | 4.20 ± 0.02 | 700 ± 10 | 84.68 |
50 °C | ||||
Bank | 414 ± 25 | 129.6 ± 0.12 | 696 ± 12 | - |
0.05 | 387 ± 12 | 99.96 ± 0.09 | 699 ± 16 | 22.86 |
0.1 | 318 ± 15 | 64.35 ± 0.03 | 704 ± 11 | 50.35 |
0.2 | 362 ± 15 | 32.10 ± 0.01 | 707 ± 11 | 75.23 |
0.3 | 349 ± 11 | 30.31 ± 0.02 | 699 ± 13 | 76.61 |
0.4 | 288 ± 12 | 24.57 ± 0.01 | 692 ± 12 | 81.04 |
Cinh (g L−1) | Rs (Ω cm2) | CPEf | Rf (Ω cm2) | CPEdl | Rct (Ω cm2) | L (H cm2) | RL (Ω cm2) | Cdl (mF cm−2) | χ2 (×10−4) | IE (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yf (sn mΩ−1 cm−2) | nf | Ydl (sn mΩ−1 cm−2) | ndl | |||||||||
25 °C | ||||||||||||
Bank | 10.36 ± 0.95 | - | - | - | 0.770 ± 0.20 | 0.799 ± 0.12 | 617 ± 25 | 771 ± 105 | 105.40 ± 24.01 | 0.631 | 1.05 | - |
0.05 | 10.09 ± 0.98 | - | - | - | 0.440 ± 0.42 | 0.801 ± 0.11 | 929 ± 55 | 505 ± 50 | 95.51 ± 15.11 | 0.352 | 7.21 | 29.49 |
0.1 | 10.12 ± 0.91 | - | - | - | 0.286 ± 0.24 | 0.811 ± 0.12 | 1629 ± 89 | 2301 ± 200 | 580 ± 89.55 | 0.230 | 5.69 | 67.30 |
0.2 | 9.36 ± 0.56 | 0.04 ± 0.01 | 0.841 ± 0.12 | 13.43 ± 1.50 | 0.114 ± 0.13 | 0.833 ± 0.13 | 2755 ± 80 | - | - | 0.086 | 9.11 | 73.90 |
0.3 | 10.38 ± 0.88 | 0.09 ± 0.01 | 0.855 ± 0.11 | 46.38 ± 5.11 | 0.054 ± 0.01 | 0.843 ± 0.12 | 2986 ± 111 | - | - | 0.035 | 10.01 | 76.18 |
0.4 | 9.49 ± 0.78 | 0.064 ± 0.01 | 0.862 ± 0.15 | 34.62 ± 6.29 | 0.062 ± 0.02 | 0.862 ± 0.15 | 2761 ± 105 | - | - | 0.047 | 5.74 | 74.16 |
50 °C | ||||||||||||
Bank | 6.12 ± 0.25 | - | - | - | 1.645 ± 0.55 | 0.800 ± 0.05 | 139.90 ± 32.28 | 121.6 ± 10.12 | 18.35 ± 1.74 | 1.139 | 4.65 | - |
0.05 | 6.17 ± 0.36 | - | - | - | 0.776 ± 0.81 | 0.895 ± 0.61 | 168.20 ± 20.15 | 113.5 ± 11.00 | 41.94 ± 19.21 | 0.603 | 1.72 | 24.69 |
0.1 | 6.17 ± 0.59 | - | - | - | 0.697 ± 0.48 | 0.905 ± 0.19 | 302.50 ± 18.50 | 75.33 ± 35.17 | 39.69 ± 15.26 | 0.589 | 1.99 | 58.73 |
0.2 | 5.60± 0.48 | 0.39 ± 0.10 | 0.839 ± 0.25 | 4.49 ± 0.55 | 0.225 ± 0.13 | 0.900 ± 0.15 | 494.71 ± 30.51 | - | - | 0.176 | 5.39 | 68.30 |
0.3 | 5.65 ± 0.55 | 0.08 ± 0.01 | 0.910 ± 0.15 | 3.46 ± 0.31 | 0.292 ± 0.22 | 0.886 ± 0.27 | 599.00 ± 38.35 | - | - | 0.235 | 5.38 | 73.78 |
0.4 | 6.25 ± 0.57 | 0.12 ± 0.01 | 0.929 ± 0.11 | 4.49 ± 0.47 | 0.176 ± 0.19 | 0.906 ± 0.13 | 651.30 ± 20.88 | - | - | 0.142 | 2.96 | 75.87 |
Cinh (g L−1) | Time (h) | Rs (Ω cm2) | CPEf | Rf (Ω cm2) | CPEdl | Rct (Ω cm2) | L (H cm2) | RL (Ω cm2) | Cdl (mF cm−2) | χ2 (×10−4) | IE (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yf (sn mΩ−1 cm−2) | nf | Ydl (sn mΩ−1 cm−2) | ndl | ||||||||||
25 °C | |||||||||||||
Bank | 6 | 10.31 ± 1.25 | - | - | - | 0.642 ± 0.25 | 0.733 ± 0.05 | 462.90 ± 23 | 118.40 ± 40 | 117.60 ± 44.31 | 0.412 | 1.19 | - |
12 | 10.25 ± 1.05 | - | - | - | 0.692 ± 0.26 | 0.766 ± 0.02 | 549.20 ± 33 | 910.90 ± 88 | 107.60 ± 24.55 | 0.515 | 1.42 | - | |
18 | 10.24 ± 1.15 | - | - | - | 0.741 ± 0.29 | 0.784 ± 0.03 | 588.60 ± 29 | 786.30 ± 110 | 117.40 ± 21.21 | 0.589 | 1.52 | - | |
24 | 10.36 ± 0.95 | - | - | - | 0.770 ± 0.20 | 0.799 ± 0.02 | 617.00 ± 25 | 771 ± 105 | 105.40 ± 24.01 | 0.631 | 1.05 | - | |
0.4 | 6 | 10.73 ± 1.18 | 0.125 ± 0.25 | 0.794 ± 0.19 | 33.65 ± 5.55 | 0.112± 0.52 | 0.827 ± 0.15 | 2582 ± 175 | - | - | 0.086 | 9.84 | 77.81 |
12 | 9.84 ± 1.08 | 0.661 ± 0.02 | 0.855 ± 0.11 | 46.65 ± 5.13 | 0.044 ± 0.02 | 0.859 ± 0.25 | 2876 ± 125 | - | - | 0.031 | 3.37 | 77.53 | |
18 | 9.53 ± 0.95 | 0.633 ± 0.01 | 0.864 ± 0.01 | 41.78 ± 5.24 | 0.054 ± 0.02 | 0.864 ± 0.17 | 2795 ± 135 | - | - | 0.040 | 5.33 | 75.11 | |
24 | 9.49 ± 0.78 | 0.064 ± 0.01 | 0.862 ± 0.15 | 34.62 ± 6.29 | 0.062 ± 0.02 | 0.862 ± 0.15 | 2761 ± 105 | - | - | 0.047 | 5.74 | 74.16 | |
50 °C | |||||||||||||
Bank | 6 | 5.96 ± 0.21 | - | - | - | 0.914 ± 0.20 | 0.76 ± 0.12 | 192.30 ± 12.28 | 123.10 ± 30.11 | 19.59 ± 1.21 | 0.526 | 9.55 | - |
12 | 6.04 ± 0.15 | - | - | - | 1.168 ± 0.033 | 0.79 ± 0.11 | 200.90 ± 29.45 | 148.60 ± 26.25 | 18.38 ± 1.38 | 0.809 | 9.01 | - | |
18 | 6.00 ± 0.18 | - | - | - | 1.426 ± 0.67 | 0.82 ± 0.09 | 166.80 ± 23.22 | 126.60 ± 19.02 | 20.31 ± 1.55 | 0.996 | 5.55 | - | |
24 | 6.12 ± 0.25 | - | - | - | 1.645 ± 0.55 | 0.800 ± 0.05 | 139.90 ± 32.28 | 121.6 ± 10.12 | 18.35 ± 1.74 | 1.139 | 4.65 | - | |
0.4 | 6 | 6.82 ± 0.75 | 0.131 ± 0.01 | 0.905 ± 0.16 | 6.31 ± 0.77 | 0.056 ± 0.05 | 0.879 ± 0.11 | 368.30 ± 32.41 | - | - | 0.035 | 9.62 | 43.44 |
12 | 6.34 ± 0.30 | 0.128 ± 0.02 | 0.916 ± 0.10 | 4.43 ± 0.59 | 0.097 ± 0.09 | 0.895 ± 0.16 | 687.40 ± 29.26 | - | - | 0.041 | 4.50 | 68.33 | |
18 | 6.55 ± 0.48 | 0.139 ± 0.02 | 0.925 ± 0.09 | 4.18 ± 0.31 | 0.123 ± 0.11 | 0.900 ± 0.11 | 689.70 ± 25.77 | - | - | 0.093 | 3.00 | 73.03 | |
24 | 6.25 ± 0.57 | 0.123 ± 0.01 | 0.929 ± 0.11 | 4.49 ± 0.47 | 0.176 ± 0.19 | 0.906 ± 0.13 | 651.30 ± 20.88 | - | - | 0.141 | 2.96 | 75.87 |
Cinh (g L−1) | Ra (nm) | Rq (nm) |
---|---|---|
25 °C | ||
Blank | 97.41 | 149 |
0.4 | 5.62 | 7.95 |
50 °C | ||
Blank | 156.14 | 198.55 |
0.4 | 116.88 | 154.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, G.; Święch, D.; Górny, M. Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies. Int. J. Mol. Sci. 2023, 24, 12269. https://doi.org/10.3390/ijms241512269
Palumbo G, Święch D, Górny M. Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies. International Journal of Molecular Sciences. 2023; 24(15):12269. https://doi.org/10.3390/ijms241512269
Chicago/Turabian StylePalumbo, Gaetano, Dominika Święch, and Marcin Górny. 2023. "Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies" International Journal of Molecular Sciences 24, no. 15: 12269. https://doi.org/10.3390/ijms241512269
APA StylePalumbo, G., Święch, D., & Górny, M. (2023). Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies. International Journal of Molecular Sciences, 24(15), 12269. https://doi.org/10.3390/ijms241512269