New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo
Abstract
:1. Introduction
2. Results
2.1. IC50 of BACE1 and BACE2 in Biochemical Enzymatic Assays
2.2. BACE Inhibition Reduces Aβ and sSez6 Levels
2.3. Shionogi 2 Treatment Does Not Alter Dendritic Spine Plasticity
3. Discussion
4. Material and Methods
4.1. BACE1 Inhibitors
4.2. Animals
4.3. Biochemical Enzymatic Assays
4.4. Brain Sample Preparation and Measurement of Aβ Levels
4.5. Measurement of Soluble Sez6 Levels in the Mouse Brain
4.6. Cranial Window Implantation
4.7. Longitudinal In Vivo Two-Photon Spine Imaging
4.8. Dendritic Spine Data Analysis
4.9. Experimental Timeline
4.10. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.; Vassar, R. The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimers Disease. Curr. Genom. 2007, 8, 509–530. [Google Scholar] [CrossRef] [Green Version]
- Vassar, R.; Kuhn, P.-H.; Haass, C.; Kennedy, M.E.; Rajendran, L.; Wong, P.C.; Lichtenthaler, S.F. Function, Therapeutic Potential and Cell Biology of BACE Proteases: Current Status and Future Prospects. J. Neurochem. 2014, 130, 4–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, A.M.; Lines, C.; Stern, R.A.; Kost, J.; Voss, T.; Mozley, L.H.; Furtek, C.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; et al. Cognitive Outcomes in Trials of Two BACE Inhibitors in Alzheimer’s Disease. Alzheimer’s Dement. 2020, 16, 1483–1492. [Google Scholar] [CrossRef]
- Sur, C.; Kost, J.; Scott, D.; Adamczuk, K.; Fox, N.C.; Cummings, J.L.; Tariot, P.N.; Aisen, P.S.; Vellas, B.; Voss, T.; et al. BACE Inhibition Causes Rapid, Regional, and Non-Progressive Volume Reduction in Alzheimer’s Disease Brain. Brain 2020, 143, 3816–3826. [Google Scholar] [CrossRef]
- Sperling, R.; Henley, D.; Aisen, P.S.; Raman, R.; Donohue, M.C.; Ernstrom, K.; Rafii, M.S.; Streffer, J.; Shi, Y.; Karcher, K.; et al. Findings of Efficacy, Safety, and Biomarker Outcomes of Atabecestat in Preclinical Alzheimer Disease. JAMA Neurol. 2021, 78, 293. [Google Scholar] [CrossRef]
- Filser, S.; Ovsepian, S.V.; Masana, M.; Blazquez-Llorca, L.; Brandt Elvang, A.; Volbracht, C.; Müller, M.B.; Jung, C.K.E.; Herms, J. Pharmacological Inhibition of BACE1 Impairs Synaptic Plasticity and Cognitive Functions. Biol. Psychiatry 2015, 77, 729–739. [Google Scholar] [CrossRef]
- Zhu, K.; Peters, F.; Filser, S.; Herms, J. Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol. Psychiatry 2018, 84, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Xiang, X.; Filser, S.; Marinković, P.; Dorostkar, M.M.; Crux, S.; Neumann, U.; Shimshek, D.R.; Rammes, G.; Haass, C.; et al. Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biol. Psychiatry 2018, 83, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J.-C.; Curran, E.; Citron, M.; Vassar, R. Expression Analysis of BACE2 in Brain and Peripheral Tissues. J. Biol. Chem. 2000, 275, 20647–20651. [Google Scholar] [CrossRef] [Green Version]
- Voytyuk, I.; Mueller, S.A.; Herber, J.; Snellinx, A.; Moechars, D.; van Loo, G.; Lichtenthaler, S.F.; De Strooper, B. BACE2 Distribution in Major Brain Cell Types and Identification of Novel Substrates. Life Sci. Alliance 2018, 1, e201800026. [Google Scholar] [CrossRef] [PubMed]
- Yan, R. Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2. Front. Mol. Neurosci. 2017, 10, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochin, L.; Hurbain, I.; Serneels, L.; Fort, C.; Watt, B.; Leblanc, P.; Marks, M.S.; De Strooper, B.; Raposo, G.; van Niel, G. BACE2 Processes PMEL to Form the Melanosome Amyloid Matrix in Pigment Cells. Proc. Natl. Acad. Sci. USA 2013, 110, 10658–10663. [Google Scholar] [CrossRef] [PubMed]
- Shimshek, D.R.; Jacobson, L.H.; Kolly, C.; Zamurovic, N.; Balavenkatraman, K.K.; Morawiec, L.; Kreutzer, R.; Schelle, J.; Jucker, M.; Bertschi, B.; et al. Pharmacological BACE1 and BACE2 Inhibition Induces Hair Depigmentation by Inhibiting PMEL17 Processing in Mice. Sci. Rep. 2016, 6, 21917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDade, E.; Voytyuk, I.; Aisen, P.; Bateman, R.J.; Carrillo, M.C.; De Strooper, B.; Haass, C.; Reiman, E.M.; Sperling, R.; Tariot, P.N.; et al. The Case for Low-Level BACE1 Inhibition for the Prevention of Alzheimer Disease. Nat. Rev. Neurol. 2021, 17, 703–714. [Google Scholar] [CrossRef]
- Blume, T.; Filser, S.; Jaworska, A.; Blain, J.-F.; Koenig, G.; Moschke, K.; Lichtenthaler, S.F.; Herms, J. BACE1 Inhibitor MK-8931 Alters Formation but Not Stability of Dendritic Spines. Front. Aging Neurosci. 2018, 10, 229. [Google Scholar] [CrossRef]
- Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; et al. β-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science 1999, 286, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, P.H.; Koroniak, K.; Hogl, S.; Colombo, A.; Zeitschel, U.; Willem, M.; Volbracht, C.; Schepers, U.; Imhof, A.; Hoffmeister, A.; et al. Secretome Protein Enrichment Identifies Physiological BACE1 Protease Substrates in Neurons. EMBO J. 2012, 31, 3157–3168. [Google Scholar] [CrossRef] [Green Version]
- Vassar, R. BACE1 Inhibitor Drugs in Clinical Trials for Alzheimer’s Disease. Alzheimer’s Res. Ther. 2014, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Ruderisch, N.; Schlatter, D.; Kuglstatter, A.; Guba, W.; Huber, S.; Cusulin, C.; Benz, J.; Rufer, A.C.; Hoernschemeyer, J.; Schweitzer, C.; et al. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport. EBioMedicine 2017, 24, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, K.; Yoshida, S.; Tadano, G.; Asada, N.; Fuchino, K.; Suzuki, S.; Matsuoka, E.; Yamamoto, T.; Yamamoto, S.; Ando, S.; et al. Structure-Based Approaches to Improving Selectivity through Utilizing Explicit Water Molecules: Discovery of Selective β-Secretase (BACE1) Inhibitors over BACE2. J. Med. Chem. 2021, 64, 3075–3085. [Google Scholar] [CrossRef]
- Feng, G.; Mellor, R.H.; Bernstein, M.; Keller-Peck, C.; Nguyen, Q.T.; Wallace, M.; Nerbonne, J.M.; Lichtman, J.W.; Sanes, J.R. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP. Neuron 2000, 28, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Pigoni, M.; Wanngren, J.; Kuhn, P.H.; Munro, K.M.; Gunnersen, J.M.; Takeshima, H.; Feederle, R.; Voytyuk, I.; De Strooper, B.; Levasseur, M.D.; et al. Seizure Protein 6 and Its Homolog Seizure 6-like Protein Are Physiological Substrates of BACE1 in Neurons. Mol. Neurodegener. 2016, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Holtmaat, A.; Bonhoeffer, T.; Chow, D.K.; Chuckowree, J.; De Paola, V.; Hofer, S.B.; Hübener, M.; Keck, T.; Knott, G.; Lee, W.-C.A.; et al. Long-Term, High-Resolution Imaging in the Mouse Neocortex through a Chronic Cranial Window. Nat. Protoc. 2009, 4, 1128–1144. [Google Scholar] [CrossRef] [PubMed]
- Holtmaat, A.J.G.D.; Trachtenberg, J.T.; Wilbrecht, L.; Shepherd, G.M.; Zhang, X.; Knott, G.W.; Svoboda, K. Transient and Persistent Dendritic Spines in the Neocortex in Vivo. Neuron 2005, 45, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtmaat, A.; Svoboda, K. Experience-Dependent Structural Synaptic Plasticity in the Mammalian Brain. Nat. Rev. Neurosci. 2009, 10, 647–658. [Google Scholar] [CrossRef]
- Fuhrmann, M.; Mitteregger, G.; Kretzschmar, H.; Herms, J. Dendritic Pathology in Prion Disease Starts at the Synaptic Spine. J. Neurosci. 2007, 27, 6224–6233. [Google Scholar] [CrossRef]
Biochemical Enzymatic Assay | Elenbecestat | Shionogi 1 | Shionogi 2 |
---|---|---|---|
BACE1/APP (IC50 nM) | 3.9 | 3.9 | 7.7 |
BACE2/APP (IC50 nM) | 46 | 148 | 307 |
BACE1/BACE2 (fold) | 12 | 38 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratsch, K.; Unemura, C.; Ito, M.; Lichtenthaler, S.F.; Horiguchi, N.; Herms, J. New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo. Int. J. Mol. Sci. 2023, 24, 12283. https://doi.org/10.3390/ijms241512283
Pratsch K, Unemura C, Ito M, Lichtenthaler SF, Horiguchi N, Herms J. New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo. International Journal of Molecular Sciences. 2023; 24(15):12283. https://doi.org/10.3390/ijms241512283
Chicago/Turabian StylePratsch, Katrin, Chie Unemura, Mana Ito, Stefan F. Lichtenthaler, Naotaka Horiguchi, and Jochen Herms. 2023. "New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo" International Journal of Molecular Sciences 24, no. 15: 12283. https://doi.org/10.3390/ijms241512283
APA StylePratsch, K., Unemura, C., Ito, M., Lichtenthaler, S. F., Horiguchi, N., & Herms, J. (2023). New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo. International Journal of Molecular Sciences, 24(15), 12283. https://doi.org/10.3390/ijms241512283