Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging
Abstract
:1. Introduction
2. Results
2.1. Effect of Drought and Waterlogging on Growth of Wheat and Triticale Pretreated with Selective Herbicide
2.2. Accumulation of Reactive Oxygene Species (ROS)
2.2.1. ROS Detection in Wheat Subjected to Drought or Waterlogging after Herbicide Treatment
Drought-Affected Wheat
Waterlogged Wheat
2.2.2. ROS Detection in Triticale Subjected to Drought or Waterlogging after Herbicide Treatment
Drought-Affected Triticale
Waterlogged Triticale
2.3. Transcript Profiling of Genes Coding for ROS Scavenging Enzymes in the Leaves of Wheat and Triticale Subjected to Drought and Waterlogging after the Application of a Selective Herbicide
2.3.1. Expression of SOD-Coding Genes in Wheat and Triticale Subjected to Drought or Waterlogging in Combination with Herbicide Treatment
2.3.2. Expression of T. aestivum Genes Coding for Catalase and Peroxidase in Wheat and Triticale Subjected to Drought or Waterlogging in Combination with Herbicide Treatment
2.3.3. Expression of T. aestivum Glutathione Reductase Gene in Wheat and Triticale Subjected to Drought or Waterlogging in Combination with Herbicide Treatment
2.3.4. Expression of T. aestivum Genes for Enzymes from the L-Proline Biosynthesis in Wheat and Triticale Subjected to Drought or Waterlogging in Combination with Herbicide Treatment
3. Discussion
3.1. Herbicide Treatment Reduces Triticale Tolerance to Prolonged Drought and Enhances the Negative Effect of Waterlogging on Wheat
3.2. The Expression of Wheat Antioxidant Genes Shows Divergent Profiles in Hybrid Crop Triticale Subjected to Stress
3.3. Herbicide-Treated Wheat and Triticale Recovery Patterns in Individuals Affected by Drought and Waterlogging
4. Materials and Methods
4.1. Plant Material and Treatments
4.2. Histochemical Detection of O2●−and H2O2
4.3. RT-PCR Analysis
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karkanis, A.; Ntatsi, G.; Alemardan, A.; Petropoulos, S.; Bilalis, D. Interference of weeds in vegetable crop cultivation, in the changing climate of Southern Europe with emphasis on drought and elevated temperatures: A review. J. Agric. Sci. 2018, 156, 1175–1185. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Plant breeding: Past, present and future. Euphytica 2017, 213, 60. [Google Scholar] [CrossRef]
- Crossa, J.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Dreisigacker, S.; Montesinos-Lopez, A.; Bentley, A.R. The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Front. Plant Sci. 2021, 12, 651480. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar]
- Blum, A. The abiotic stress response and adaptation of triticale—A review. Cereal Res. Commun. 2014, 42, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Hussain, S.; Chauhan, B.S.; Saud, S.; Wu, C.; Hassan, S.; Tanveer, M.; Jan, A.; Huang, J. Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Prot. 2015, 71, 101–108. [Google Scholar] [CrossRef]
- Raatz, L.; Hills, M.; McKenzie, R.; Yang, R.-C.; Topinka, K.; Hall, L. Tolerance of spring triticale (× Triticosecale Wittmack) to four wheat herbicides. Weed Technol. 2011, 25, 84–89. [Google Scholar] [CrossRef]
- Ziska, L.H. Climate change and the herbicide paradigm: Visiting the future. Agronomy 2020, 10, 1953. [Google Scholar] [CrossRef]
- Restuccia, A.; Scavo, A. Sustainable weed management. Plants 2023, 12, 1673. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Osipitan, O.A.; Begcy, K.; Werle, R. Cover crops, hormones and herbicides: Priming an integrated weed management strategy. Plant Sci. 2020, 301, 110550. [Google Scholar] [CrossRef]
- Kebede, M.; Gerama, G.; Bidira, T.; Birhanu, C. Influence of post-emergence herbicides on major grass weeds and wheat (Triticum aestivum L.) at Gedo and Shambo, Western Oromia. Commun. Plant Sci. 2017, 3, 55–61. [Google Scholar] [CrossRef]
- Meena, V.; Kaushik, M.K.; Verma, A.; Upadhayay, B.; Meena, S.K.; Bhimwal, J.P. Effect of herbicide and their combinations on growth and productivity of wheat (Triticum aestivum L.) under late sown condition. Int. J. Chem. Stud. 2017, 5, 1512–1516. [Google Scholar]
- Galon, L.; Ulkovski, C.; Rossetto, E.R.O.; Cavaletti, D.C.; Weirich, S.N.; Brandler, D.; Loureiro da Silva, A.M.; Perin, G.F. Selectivity and efficacy of herbicides applied to the wheat crop. Rev. Ciênc. Agrovet. 2021, 20, 199–212. [Google Scholar] [CrossRef]
- De Freitas-Silva, L.; Rodríguez-Ruiz, M.; Houmani, H.; Campos da Silva, L.; Palma, J.M.; Corpas, J.F. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. Plant Physiol. 2017, 218, 196–205. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Lei, W.; Wu, J.; Li, C.; Shi, H.; Meng, L.; Yuan, F.; Zhou, Q.; Cui, C. Transcriptome analysis reveals gene responses to herbicide, tribenuron methyl, in Brassica napus L. during seed germination. BMC Genom. 2021, 22, 299. [Google Scholar]
- Radchenko, M.; Ponomareva, I.; Pozynych, I.; Morderer, Y. Stress and use of herbicides in field crops. Agric. Sci. Pract. 2021, 8, 50–70. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef] [Green Version]
- Pastori, G.M.; Trippi, V.S. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 1992, 33, 957–961. [Google Scholar]
- Benedetti, L.; Rangani, G.; EbelingViana, V.; Carvalho-Moore, P.; RabaioliCamargo, E.; Avila, L.A.d.; Roma-Burgos, N. Recurrent selection by herbicide sublethal dose and drought stress results in rapid reduction of herbicide sensitivity in jungle rice. Agronomy 2020, 10, 1619. [Google Scholar] [CrossRef]
- Agostinetto, D.; Benemann, D.P.; Cechin, J.; Nohatto, M.A.; Langaro, A.C.; Piasecki, C.; Vargas, L. Gene expression related to oxidative stress induced by herbicides in rice. Agron. J. 2019, 111, 1239–1246. [Google Scholar] [CrossRef]
- Tyczewska, A.; Gracz-Bernaciak, J.; Szymkowiak, J.; Twardowski, T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance. J. Appl. Genet. 2021, 62, 235–248. [Google Scholar] [CrossRef]
- Wu, G.; Wilen, R.W.; Robertson, A.J.; Gusta, L.V. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol. 1999, 120, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, L.; Yun, L.; Ji, L.; Li, G.; Ji, M.; Shi, Y.; Zheng, X. Catalase (CAT) Gene Family in Wheat (Triticum aestivum L.): Evolution, Expression Pattern and Function Analysis. Int. J. Mol.Sci. 2022, 23, 542. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhou, E.; Gao, L.; Mao, X.; Zhou, R.; Jia, J. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S. Afr. J. Bot. 2008, 74, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudi, K.; Emam, Y.; Niazi, A.; Pessarakli, M.; Arvin, M.J. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J. Plant Interact. 2018, 13, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yang, L.; He, Y.; Zhang, H.; Li, W.; Chen, H.; Ma, D.; Yin, J. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). Peer J. 2019, 7, e8062. [Google Scholar] [CrossRef] [Green Version]
- Båga, M.; Chibbar, R.N.; Kartha, K.K. Molecular cloning and expression analysis of peroxidase genes from wheat. Plant Mol. Biol. 1995, 29, 647–662. [Google Scholar] [CrossRef]
- Geng, H.; Shi, J.; Fuerst, E.P.; Wei, J.; Morris, C.F. Physical Mapping of Peroxidase Genes and Development of Functional Markers for TaPod-D1 on Bread Wheat Chromosome 7D. Front. Plant Sci. 2019, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Madhu; Kaur, A.; Tyagi, S.; Shumayla, S.; Singh, K.; Upadhyay, S.K. Exploration of glutathione reductase for abiotic stress response in bread wheat (Triticum aestivum L.). Plant Cell Rep. 2022, 41, 639–654. [Google Scholar] [CrossRef]
- Belz, R.G. Low herbicide doses can change the responses of weeds to subsequent treatments in the next generation: Metamitron exposed PSII-target-site resistant Chenopodium album as a case study. Pest Manag. Sci. 2020, 76, 3056–3065. [Google Scholar] [CrossRef] [Green Version]
- Cedergreen, N. Herbicides can stimulate plant growth. Weed Res. 2008, 48, 429–438. [Google Scholar] [CrossRef]
- Stankov, I.; Yanchev, I.; Raycheva, T. A new stage of triticale breeding and production in Bulgaria. Soil Sci. Agrochem. Ecol. 2014, 48, 86–89. [Google Scholar]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef]
- Niu, L.; Liao, W. Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Front. Plant Sci. 2016, 7, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, F.; Fariduddin, Q.; Khan, T.A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Bashir, F.; Ayaydin, F.; Kóta, Z.; Páli, T.; Vass, I. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol. Plant 2021, 172, 7–18. [Google Scholar] [CrossRef]
- Silva, F.M.L.; Duke, S.O.; Dayan, F.E.; Velini, E.D. Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Res. 2016, 56, 124–136. [Google Scholar] [CrossRef]
- Todorova, D.; Sergiev, I.; Katerova, Z.; Shopova, E.; Dimitrova, L.; Brankova, L. Assessment of the biochemical responses of wheat seedlings to soil drought after application of selective herbicide. Plants 2021, 10, 733. [Google Scholar] [CrossRef]
- Khatami, S.A.; Barmaki, M.; Alebrahim, M.T.; Bajwa, A.A. Salicylic acid pre-treatment reduces the physiological damage caused by the herbicide mesosulfuron-methyl + iodosulfuron-methyl in wheat (Triticum aestivum). Agronomy 2022, 12, 3053. [Google Scholar] [CrossRef]
- Godar, A.S.; Varanasi, V.K.; Nakka, S.; Prasad, P.V.V.; Thompson, C.R.; Mithila, J. Physiological and molecular mechanisms of differential sensitivity of palmer amaranth (Amaranthus palmeri) to mesotrione at varying growth temperatures. PLoS ONE 2015, 10, e0126731. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.; Ali, B.; Wang, J.; Farooq, M.A.; Gill, R.A.; Ali, S.; Wang, D.; Zhou, W. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiol. Biochem. 2016, 107, 82–95. [Google Scholar] [CrossRef]
- Alizade, S.; Keshtkar, E.; Mokhtassi-Bidgoli, A.; Sasanfar, H.; Streibig, J.C.; Bohren, C. Effect of drought stress on herbicide performance and photosynthetic activity of Avena sterilis subsp. ludoviciana (winter wild oat) and Hordeum spontaneum (wild barley). Weed Res. 2021, 61, 288–297. [Google Scholar] [CrossRef]
- Ramírez-González, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.; et al. The transcriptional landscape of polyploid wheat. Science 2018, 361, eaar6089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Lin, J.; Mei, F.; Mao, H.; Li, Q.Q. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. Plant J. 2023, 114, 499–518. [Google Scholar] [CrossRef]
- Todorova, D.; Aleksandrov, V.; Anev, S.; Sergiev, I. Photosynthesis alterations in wheat plants induced by herbicide, soil drought or flooding. Agronomy 2022, 12, 390. [Google Scholar] [CrossRef]
- Schweiger, R.; Maidel, A.-M.; Renziehausen, T.; Schmidt-Schippers, R.; Müller, C. Effects of drought, subsequent waterlogging and redrying on growth, physiology and metabolism of wheat. Physiol. Plant 2023, 175, e13874. [Google Scholar] [CrossRef]
- Katerova, Z.; Sergiev, I.; Todorova, D.; Shopova, E.; Dimitrova, L.; Brankova, L. Physiological responses of wheat seedlings to soil waterlogging applied after treatment with selective herbicide. Plants 2021, 10, 1195. [Google Scholar] [CrossRef]
- Schippers, J.H.; Schmidt, R.; Wagstaff, C.; Jing, H.C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol. 2015, 169, 914–930. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.; Dighe, P.A.; Mezera, V.; Monternier, P.A.; Brand, M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017, 292, 16804–16809. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Yusuf, M.A.; Singh, P.; Sardar, M.; Sarin, N.B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio Protoc. 2014, 4, e1108. [Google Scholar] [CrossRef]
- Landini, G.; Martinelli, G.; Piccinini, F. Colour Deconvolution: Stain unmixing in histological imaging. Bioinformatics 2020, 37, 1485–1487. [Google Scholar] [CrossRef]
- Ruifrok, A.C.; Johnston, D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 2001, 23, 291–299. [Google Scholar] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Locus | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|---|
Cu/Zn SOD | U69632.1 | ttaacccaaacggcctgacacat | caacaaacgctctcccaacaactg |
Mn SOD | LOC542833 | cgccacctacgtcgcccactac | acatgaccgccgccgttgaa |
Fe SOD | LOC101290631 | gtctggttgggtttggcttgtctt | ttcgcctgtcatccttgtaatcca |
CAT3 | LOC100682478 | caccctcgtcggcggcaagaac | cacgggctggagggggacgag |
CATA | LOC543316 | gggagccagtgcaaagggattc | cacggtcatgcacaacggtagaga |
GR | GR305072 | gttgaagtcacccagccaga | tccgccaccaagaatcacag |
POD1 | FJ890988.1 | caaggctctgaccacctcag | catcttcccagggtgtgacc |
POX2 | LOC543313 | gcggtgacaccaacatcaac | gtccaggttctccaggttgg |
P5CS | LOC606368 | ctctacagcggtccaccaag | caggtacaccacccgttgaa |
P5CR | LOC606347 | taaatgccgttgttgctgcc | agcaaaactaacaatggctaccag |
α-TUB | U76558.1 | ttctcccgcatcgaccacaagttt | tcatcgccctcatcaccgtcc |
18S RNA | LOC123171822 | tacctggttgatcctgccagt | caatgatccttccgcaggttcac |
EF-1 α | LOC123123039 | cagatcggcaacggctac | gagaaggtctccaccaccat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaseva, I.I.; Petrakova, M.; Blagoeva, A.; Todorova, D. Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging. Int. J. Mol. Sci. 2023, 24, 12503. https://doi.org/10.3390/ijms241512503
Vaseva II, Petrakova M, Blagoeva A, Todorova D. Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging. International Journal of Molecular Sciences. 2023; 24(15):12503. https://doi.org/10.3390/ijms241512503
Chicago/Turabian StyleVaseva, Irina I., Margarita Petrakova, Ana Blagoeva, and Dessislava Todorova. 2023. "Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging" International Journal of Molecular Sciences 24, no. 15: 12503. https://doi.org/10.3390/ijms241512503
APA StyleVaseva, I. I., Petrakova, M., Blagoeva, A., & Todorova, D. (2023). Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging. International Journal of Molecular Sciences, 24(15), 12503. https://doi.org/10.3390/ijms241512503