A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development
Abstract
:1. Introduction
2. Results
2.1. SSM-Based Electrophysiology Recordings on TMEM175 Localized in Lysosomes
2.1.1. Purified Lysosomes Contain the Lysosomal Marker LAMP-1
2.1.2. TMEM175 Evokes Currents in SSME Recordings
2.1.3. Minor Artifact Currents Are Recorded from Lysosomes Purified from Control HEK293 Cells
2.2. Ion Selectivity of TMEM175 in an SSME Assay
2.2.1. TMEM175 Conducts K+, Rb+, and Cs+, but Not Li+, Na+, or Choline+
2.2.2. I/c Curves Reveal Kinetic Information about the Target Protein
2.3. Cytosolic pH, but Not pH Gradients Affect K+ Permeability of TMEM175
2.3.1. K+ Conductivity Is Downregulated at Acidic and Alkaline pH
2.3.2. Intra-Lysosomal Protons Do Not Affect the K+ Flux through TMEM175
2.4. H+ Permeability of TMEM175 in an SSME Assay
2.4.1. H+ Translocation in Influx Mode
2.4.2. H+ Translocation in Efflux Mode
2.4.3. A Quantitative Comparison between Permeabilities
2.5. Tool Compounds Affect TMEM175 Activity in an HTS-Compatible SSME Assay
2.5.1. 4-Aminopyridine and Zinc Act as Inhibitors
2.5.2. DCPIB and Arachidonic Acid Stimulate TMEM175 Activity
2.6. Whole-Cell Automated Patch-Clamp Recordings
2.6.1. Establishing an APC Assay for TMEM175
2.6.2. Investigating Compound Potencies in Whole-Cell APC
2.6.3. Off-Target Compound Effects in Whole-Cell Automated Patch-Clamp Are Negligible
2.6.4. The Potency of DCPIB Is Identical for APC-Based Cs+ Flux and H+ Flux Assays
2.7. Assay Technologies Affect Apparent Drug Potencies—A Case Study on Nine Enhancers Using Lysosomal Patch-Clamp, Whole-Cell APC and SSME
2.7.1. SC-79 Has No Significant Effect on TMEM175 in SSME Due to the Absence of PKB
2.7.2. We Grouped Test Compounds into Three Clusters Based on Their EC50 Values
2.7.3. The Average Maximum Potentiation Is Higher in Patch-Clamp Compared to SSME
2.8. Assay Parameters May Affect Apparent Drug Potencies
2.8.1. The Driving Force Has No Effect on the Apparent Compound Potency
2.8.2. Effects of pH and pH Gradients on Apparent Drug Potencies
2.8.3. Effects of TMEM175 Orientation on Drug Potency
2.9. Off Target Effects in SSME Recordings
2.9.1. SSME Recordings Tolerate DMSO Concentrations of 1%
2.9.2. Off-Target Compound Effects for Tool Compounds Are Mostly Negligible
2.9.3. A Set of Test Compounds Shows Significant Off-Target Compound Effects
3. Discussion
3.1. Lysosomal TMEM175 Conducts Both H+ and K+ at Similar Rates
3.2. TMEM175 Conductivity Is a Function of Cytosolic pH and K+ Concentrations
3.3. Lysosomal Acidification Does Not Stimulate TMEM175 Activity
3.4. TMEM175 Tool Compounds Reveal Different Apparent Potencies in HTS Compatible APC and SSME Assays
3.4.1. 4-AP
3.4.2. Zinc
3.4.3. DCPIB
3.4.4. Arachidonic Acid
3.4.5. SC-79
3.5. Eight Blinded Test Compounds Generated Different Results in APC, SSME, and LPC
3.5.1. Maximum Potentiation Is Higher in APC and LPC Compared to SSME
3.5.2. Apparent EC50 Values Differ across Assay Technologies
3.6. LPC, APC, and SSME Are Complementary Technologies
3.6.1. The Natural Driving Forces of TMEM175 Are pH and K+ Concentration Gradients
3.6.2. The Target Membrane and Protein Orientation May Affect Pharmacological Properties of TMEM175
3.6.3. SSME and Patch-Clamp Recordings Employ Different Read-Outs with Impact on Data Interpretation
3.6.4. Challenges of Assay Development in APC and SSME
3.6.5. SSME Provides Superior Assay Flexibility
3.6.6. APC Excels in Throughput Compared to SSME and LPC
3.6.7. APC and SSME Recordings Achieve Similar Data Quality
3.7. Final Remarks
4. Materials and Methods
4.1. Cell Culture
Western Blot
4.2. SSME on Lysosomes
4.2.1. Cell Harvest and Cell Disruption
4.2.2. Isolation of Lysosomes for SSME Recordings
4.2.3. ELISA
4.2.4. SSME Recordings
4.2.5. Sensor Preparation
4.2.6. Measurement Solutions
4.2.7. Electrophysiological Recordings and Data Analysis
4.3. Whole-Cell APC
4.3.1. Cell Harvest
4.3.2. Whole-Cell APC Recordings
4.3.3. Cs+ Flux Assay
4.3.4. H+ Flux Assay
4.4. Lysosomal Patch-Clamp
4.4.1. Preparation of Lysosomes
4.4.2. Lysosomal Patch-Clamp Recordings
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
APC | automated patch-clamp, referring to the whole-cell configuration |
LPC | lysosomal patch-clamp, referring to the manual approach |
SSME | solid supported membrane-based electrophysiology |
A | activating solution |
NA | non-activating solution |
R | resting solution |
4-AP | 4-aminopyridine |
DMSO | dimethyl sulfoxide |
BSA | bovine serum albumin |
HEK | Human embryonic kidney |
Parameters and Variables
cX | concentration of ion species X |
pHi | refers to the internal pH, either the luminal/intra-lysosomal pH in SSME recordings, or the cytosolic pH in APC |
pHo | refers to the external pH: in SSME recordings the cytosolic pH; in APC recordings the luminal/intra-lysosomal pH |
I | current, in SSME referring to the peak current, in patch-clamp to the steady-state current; depends on the ion species and the driving forces (ion gradients and voltage) |
Imax | maximum current, usually obtained from EC50 or IC50 fits |
Imin | minimum current, usually obtained from EC50 or IC50 fits |
pKa | pK value for downregulation of TMEM175 in acidic environments, obtained from a pH dependent fit of the recorded peak currents, using equations that consider either a single (I = Imax/(1 + 10pKa−pH)) or two (I = Imax1/(1 + 10pKa1-pH) + Imax2/(1 + 10pKa2−pH)) pK values |
pKb | pK value for downregulation of TMEM175 in alkaline environments, obtained from a pH dependent fit of the recorded peak currents, using I = Imax/(1 + 10pH-pKb) |
EC50 | empirical half saturation constant for a dose response curve of an enhancer/activator, obtained from the fit using the equation I = Imax − (Imax − Imin)/(1 + (c/EC50)n) |
IC50 | same as EC50, used for dose response curves of inhibitors |
n | Hill coefficient, used in EC50 and IC50 fits |
PX | Permeability for ion species X |
Statistics
N | number of repetitions per dataset, i.e., number of sensors, cells, and lysosomes in SSME, APC, and LPC recordings, respectively |
SD | standard deviation |
SEM | standard error of the mean |
R2 | adjusted R2 as an indicator of fit quality |
Z’ | z’ prime value representing the quality of an assay, derived using z’ = [(AVGpos − 3SDpos/√N) − (AVGneg − 3SDneg/√N)]/(AVGpos − AVGneg), with AVGpos/neg being the mean values of positive and negative controls [44]. |
References
- Cang, C.; Aranda, K.; Seo, Y.-j.; Gasnier, B.; Ren, D. TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function. Cell 2015, 162, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, J.D.; Jakob, R.P.; Schulze, T.; Neldner, Y.; Moroni, A.; Thiel, G.; Maier, T.; Schenck, S. Structural basis for ion selectivity in TMEM175 K+ channels. Elife 2020, 9, e53683. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Guo, J.; Zeng, W.; Kim, S.; She, J.; Cang, C.; Ren, D.; Jiang, Y. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature 2017, 547, 472–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.; Paknejad, N.; Hite, R.K. Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175. Elife 2020, 9, e.53430. [Google Scholar] [CrossRef] [PubMed]
- Jinn, S.; Drolet, R.E.; Cramer, P.E.; Wong, A.H.-K.; Toolan, D.M.; Gretzula, C.A.; Voleti, B.; Vassileva, G.; Disa, J.; Tadin-Strapps, M.; et al. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 2017, 114, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, P.; Wang, C.; Feng, X.; Geng, Q.; Chen, W.; Marthi, M.; Zhang, W.; Gao, C.; Reid, W.; et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 2022, 185, 2292–2308.e20. [Google Scholar] [CrossRef]
- Tang, T.; Jian, B.; Liu, Z. Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson’s Disease. Biomolecules 2023, 13, 802. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Z.; Li, Q.; Tan, Z. Lysosomal Potassium Channels: Potential Roles in Lysosomal Function and Neurodegenerative Diseases. CNS Neurol. Disord. Drug Targets 2018, 17, 261–266. [Google Scholar] [CrossRef]
- Pankratz, N.; Wilk, J.B.; Latourelle, J.C.; DeStefano, A.L.; Halter, C.; Pugh, E.W.; Doheny, K.F.; Gusella, J.F.; Nichols, W.C.; Foroud, T.; et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet. 2009, 124, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Dehay, B.; Martinez-Vicente, M.; Caldwell, G.A.; Caldwell, K.A.; Yue, Z.; Cookson, M.R.; Klein, C.; Vila, M.; Bezard, E. Lysosomal impairment in Parkinson’s disease. Mov. Disord. 2013, 28, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Chia, R.; Sabir, M.S.; Bandres-Ciga, S.; Saez-Atienzar, S.; Reynolds, R.H.; Gustavsson, E.; Walton, R.L.; Ahmed, S.; Viollet, C.; Ding, J.; et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 2021, 53, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Bahr, B.A.; Bendiske, J. The neuropathogenic contributions of lysosomal dysfunction. J. Neurochem. 2002, 83, 481–489. [Google Scholar] [CrossRef]
- Jinn, S.; Blauwendraat, C.; Toolan, D.; Gretzula, C.A.; Drolet, R.E.; Smith, S.; Nalls, M.A.; Marcus, J.; Singleton, A.B.; Stone, D.J. Functionalization of the TMEM175 p.M393T variant as a risk factor for Parkinson disease. Hum. Mol. Genet. 2019, 28, 3244–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riederer, E.; Cang, C.; Ren, D. Lysosomal Ion Channels: What Are They Good for and Are They Druggable Targets? Annu. Rev. Pharmacol. Toxicol. 2023, 63, 19–41. [Google Scholar] [CrossRef]
- Zoete, V.; Grosdidier, A.; Michielin, O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med. 2009, 13, 238–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.; Narumi, T.; Taiji, M. High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comput. Biol. 2009, 5, e1000528. [Google Scholar] [CrossRef]
- Pollard, T.D. A guide to simple and informative binding assays. Mol. Biol. Cell 2010, 21, 4061–4067. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.D.; Harden, D.; Dworetzky, S.I.; Robertson, B.; Knox, R.J. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J. Biomol. Screen. 2004, 9, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.D. Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters. Methods Mol. Biol. 2018, 1684, 105–114. [Google Scholar] [CrossRef]
- Terstappen, G.C. Nonradioactive rubidium ion efflux assay and its applications in drug discovery and development. Assay Drug Dev. Technol. 2004, 2, 553–559. [Google Scholar] [CrossRef]
- Whiteaker, K.L.; Gopalakrishnan, S.M.; Groebe, D.; Shieh, C.C.; Warrior, U.; Burns, D.J.; Coghlan, M.J.; Scott, V.E.; Gopalakrishnan, M. Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 2001, 6, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Sakmann, B. Single-Channel Recording, 2nd ed.; Springer: Boston, MA, USA, 2009; ISBN 978-1-4419-1229-9. [Google Scholar]
- Fertig, N.; Blick, R.H.; Behrends, J.C. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 2002, 82, 3056–3062. [Google Scholar] [CrossRef] [Green Version]
- Sigworth, F.J.; Klemic, K.G. Patch clamp on a chip. Biophys. J. 2002, 82, 2831–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Lu, G.; Chiang, E.Y.; Chernov-Rogan, T.; Grogan, J.L.; Chen, J. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE. PLoS ONE 2017, 12, e0180154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, B.; Park, S.H.; Yu, W. Screening Assay Protocols Targeting the Nav1.7 Channel Using Qube High-Throughput Automated Patch-Clamp System. Curr. Protoc. Pharmacol. 2020, 89, e74. [Google Scholar] [CrossRef] [PubMed]
- Obergrussberger, A.; Rinke-Weiß, I.; Goetze, T.A.; Rapedius, M.; Brinkwirth, N.; Becker, N.; Rotordam, M.G.; Hutchison, L.; Madau, P.; Pau, D.; et al. The suitability of high throughput automated patch clamp for physiological applications. J. Physiol. 2022, 600, 277–297. [Google Scholar] [CrossRef] [PubMed]
- Pergel, E.; Veres, I.; Csigi, G.I.; Czirják, G. Translocation of TMEM175 Lysosomal Potassium Channel to the Plasma Membrane by Dynasore Compounds. Int. J. Mol. Sci. 2021, 22, 10515. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, W.; Han, Y.; Lee, W.-R.; Liou, J.; Jiang, Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol. Cell 2023, 83, 2524–2539.e7. [Google Scholar] [CrossRef]
- Chen, C.-C.; Cang, C.; Fenske, S.; Butz, E.; Chao, Y.-K.; Biel, M.; Ren, D.; Wahl-Schott, C.; Grimm, C. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat. Protoc. 2017, 12, 1639–1658. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, S.; Hao, B.; Li, C.; Zhu, K.; Guo, W.; Wang, Q.; Cheung, K.-H.; Wong, C.W.M.; Wu, W.-T.; et al. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014, 10, 1895–1905. [Google Scholar] [CrossRef] [Green Version]
- Seifert, K.; Fendler, K.; Bamberg, E. Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys. J. 1993, 64, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Bazzone, A.; Barthmes, M.; Fendler, K. SSM-Based Electrophysiology for Transporter Research. Methods Enzymol. 2017, 594, 31–83. [Google Scholar] [CrossRef]
- Bazzone, A.; Barthmes, M. Functional Characterization of SLC Transporters Using Solid Supported Membranes. Methods Mol. Biol. 2020, 2168, 73–103. [Google Scholar] [CrossRef]
- Pommereau, A.; Licher, T.; Bärenz, F. Solid-Supported Membrane (SSM)-Based Electrophysiology Assays Using Surface Electrogenic Event Reader Technology (SURFE²R) in Early Drug Discovery. Curr. Protoc. 2023, 3, e650. [Google Scholar] [CrossRef] [PubMed]
- Gerbeth-Kreul, C.; Pommereau, A.; Ruf, S.; Kane, J.L.; Kuntzweiler, T.; Hessler, G.; Engel, C.K.; Shum, P.; Wei, L.; Czech, J.; et al. A Solid Supported Membrane-Based Technology for Electrophysical Screening of B0AT1-Modulating Compounds. SLAS Discov. 2021, 26, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Festa, M.; Minicozzi, V.; Boccaccio, A.; Lagostena, L.; Gradogna, A.; Qi, T.; Costa, A.; Larisch, N.; Hamamoto, S.; Pedrazzini, E.; et al. Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells 2022, 11, 921. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.; Werner, J.; Stauber, T.; Henriksen, K.; Fendler, K. The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS ONE 2010, 5, e12585. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Marinelli, F.; Zhou, W.; Lee, J.; Choi, H.J.; Kim, M.; Faraldo-Gómez, J.D.; Hite, R.K. Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175. Elife 2022, 11, e75122. [Google Scholar] [CrossRef]
- Bazzone, A.; Zerlotti, R.; Barthmes, M.; Fertig, N. Functional characterization of SGLT1 using SSM-based electrophysiology: Kinetics of sugar binding and translocation. Front. Physiol. 2023, 14, 1058583. [Google Scholar] [CrossRef]
- Garcia-Celma, J.J.; Hatahet, L.; Kunz, W.; Fendler, K. Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. Langmuir 2007, 23, 10074–10080. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, C.; Wang, L.; Rawson, S.; Xie, W.J.; Nist-Lund, C.; Wu, J.; Shen, Z.; Xia, S.; Holt, J.R.; et al. pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. Sci. Adv. 2022, 8, eabm1568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.W.; Beck, B.; Chen, Y.-F.; Dere, W.; Devanarayan, V.; Eastwood, B.J.; Farmen, M.W.; Iturria, S.J.; Montrose, C.; Moore, R.A.; et al. Assay Guidance Manual: HTS Assay Validation; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Oh, S.; Stix, R.; Zhou, W.; Faraldo-Gómez, J.D.; Hite, R.K. Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175. Proc. Natl. Acad. Sci. USA 2022, 119, e2208882119. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, I.V.; Bakke, O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 1994, 4, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Bojesen, I.N.; Bojesen, E. Binding of arachidonate and oleate to bovine serum albumin. J. Lipid Res. 1994, 35, 770–778. [Google Scholar] [CrossRef]
- Wie, J.; Liu, Z.; Song, H.; Tropea, T.F.; Yang, L.; Wang, H.; Liang, Y.; Cang, C.; Aranda, K.; Lohmann, J.; et al. A growth-factor-activated lysosomal K+ channel regulates Parkinson’s pathology. Nature 2021, 591, 431–437. [Google Scholar] [CrossRef]
- Scheidt, H.A.; Huster, D. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning. Acta Pharmacol. Sin. 2008, 29, 35–49. [Google Scholar] [CrossRef]
- Kermani, A.A.; Macdonald, C.B.; Burata, O.E.; Ben Koff, B.; Koide, A.; Denbaum, E.; Koide, S.; Stockbridge, R.B. The structural basis of promiscuity in small multidrug resistance transporters. Nat. Commun. 2020, 11, 6064. [Google Scholar] [CrossRef]
- Xu, H.; Ren, D. Lysosomal Physiology. Annu. Rev. Physiol. 2015, 77, 57–80. [Google Scholar] [CrossRef] [Green Version]
- Zacchia, M.; Abategiovanni, M.L.; Stratigis, S.; Capasso, G. Potassium: From Physiology to Clinical Implications. Kidney Dis. 2016, 2, 72–79. [Google Scholar] [CrossRef]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Chanoit, G.; McIntosh, R.; Zvara, D.A.; Xu, Z. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H569–H575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzone, A.; Körner, A.; Meincke, M.; Bhatt, M.; Dondapati, S.; Barthmes, M.; Kubick, S.; Fertig, N. SSM-based electrophysiology, a label-free real-time method reveals sugar binding & transport events in SGLT1. Biosens. Bioelectron. 2022, 197, 113763. [Google Scholar] [CrossRef]
- Zhang, Y.; Hagenbuch, B. Protein-protein interactions of drug uptake transporters that are important for liver and kidney. Biochem. Pharmacol. 2019, 168, 384–391. [Google Scholar] [CrossRef]
- Stieger, B.; Steiger, J.; Locher, K.P. Membrane lipids and transporter function. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166079. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, D.; Lu, Y.; He, Y.; Yu, J.; Wei, W.; Chen, C.; Wang, R.; Zhang, L.; Zhang, L.; et al. Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZβ. Oncogene 2021, 40, 1775–1791. [Google Scholar] [CrossRef]
- Angelova, M.I.; Bitbol, A.-F.; Seigneuret, M.; Staneva, G.; Kodama, A.; Sakuma, Y.; Kawakatsu, T.; Imai, M.; Puff, N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2042–2063. [Google Scholar] [CrossRef]
- Bazzone, A.; Madej, M.G.; Kaback, H.R.; Fendler, K. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases. PLoS ONE 2016, 11, e0156392. [Google Scholar] [CrossRef] [Green Version]
- Bazzone, A.; Zabadne, A.J.; Salisowski, A.; Madej, M.G.; Fendler, K. A Loose Relationship: Incomplete H+/Sugar Coupling in the MFS Sugar Transporter GlcP. Biophys. J. 2017, 113, 2736–2749. [Google Scholar] [CrossRef] [Green Version]
- Bazzone, A.; Tesmer, L.; Kurt, D.; Kaback, H.R.; Fendler, K.; Madej, M.G. Investigation of sugar binding kinetics of the E. coli sugar/H+ symporter XylE using solid-supported membrane-based electrophysiology. J. Biol. Chem. 2022, 298, 101505. [Google Scholar] [CrossRef]
- Stauffer, M.; Ucurum, Z.; Harder, D.; Fotiadis, D. Engineering and functional characterization of a proton-driven β-lactam antibiotic translocation module for bionanotechnological applications. Sci. Rep. 2021, 11, 17205. [Google Scholar] [CrossRef] [PubMed]
- Niessen, K.V.; Seeger, T.; Rappenglück, S.; Wein, T.; Höfner, G.; Wanner, K.T.; Thiermann, H.; Worek, F. In vitro pharmacological characterization of the bispyridinium non-oxime compound MB327 and its 2- and 3-regioisomers. Toxicol. Lett. 2018, 293, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Sfragano, P.S.; Palchetti, I.; Tadini-Buoninsegni, F. A bioelectrochemical approach based on a solid supported membrane to evaluate the effect of natural products on Ca2+-ATPase: The case of 6-gingerol. Electrochim. Acta 2023, 458, 142515. [Google Scholar] [CrossRef]
Parameter | SURFE2R N1 | SURFE2R 96SE |
---|---|---|
Assay parameter | ||
Main buffer (M) 1 | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl, pH 7.6 (NaOH) | |
Non-activating solution (NA) 1 | M + 50 mM NaCl | |
Activating solution (A) 1 | M + 50 mM KCl | |
Total protein concentration of the sample | 2.2 mg/mL | |
Sample dilution used per sensor well | 1:10 | 1:100 |
Sample volume per sensor | 10 µL | 8 µL |
Sample consumption based on total protein concentration determined via Bradford assay | 2.2 µg protein per sensor | 0.18 µg protein per sensor; 17 µg protein per plate |
Typical mode of measurement | Sequential recordings on the same sensor using different buffer compositions (i.e., pH or concentration sequence); first, three measurements using standard conditions; in-well normalization of dataset to standard activation response before averaging across sensors | Parallel recordings on different sensors; first, three measurements using standard conditions; then, one assay condition is applied per sensor (i.e., pH, ion concentration, compound addition); in-well normalization of single data point to standard activation response before averaging across sensors |
Hardware parameter | ||
Parallelization | Single well | 96 wells |
Sensor diameter | 3 mm | 3 mm |
Liquid handling of solution exchange | Continuous solution flow: 1 s NA, 1 s A, 1 s NA | Stack of solutions in 200 µL pipette: 50 µL NA 2, 30 µL A, 80 µL NA |
Restoring initial conditions | Rinse with 1 mL NA at continuous flow conditions | Stepwise dilution: remove solution down to ~30 µL well volume; rinse with 200 µL NA; remove solution down to ~30 µL well volume; refill with 60 µL NA |
Solution flow speed (defines time resolution) | 200 µL/s | 200 µL/s |
Time resolution taken from [33] | 38 ms | 7 ms |
Measurement time window (time of A flow) | 1 s | ~250 ms |
A consumption per measurement | 300 µL (200 µL + 100 µL spare) | 50 µL |
NA consumption per measurement | 1.6 mL (Measurement: 600 µL; rinse: 1 mL) | ~0.4 mL (Measurement: 130 µL; rinse + refill: 260 µL) |
Solution consumption per compound and well in compound assay | ~2 mL (rinse, incubate, measure) | ~0.4 mL (rinse, incubate, measure) |
Read-out characteristics | ||
TMEM175 peak current | (12 ± 3) nA | (4.1 ± 1) nA |
Control peak current | (−1.07 ± 0.3) nA | (−1.29 ± 0.52) nA |
TMEM175 rise time constant τ1 | (5.1 ± 1.3) ms | (9.2 ± 1.7) ms |
TMEM175 decay time constant τ2 | (10.7 ± 1.1) ms | (10.2 ± 0.8) ms |
TMEM175 system time constant τ3 3 | (285 ± 71) ms | N.A. |
Assay | Main Solution (M) | Non-Activating Solution (NA) | Activating Solution (A) | Resting Solution (R) |
---|---|---|---|---|
Standard Assay (Figure 1G,K) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl, pH 7.6 (NaOH) | M + 50 mM NaCl | M + 50 mM KCl | -- |
Ion selectivity (Figure 2) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NMDG-Cl, pH 7.6 (NMDG) | M + 50 mM NMDG-Cl | M + 50 mM Cl- salt (Li, Na, K, Rb, Cs, choline) | -- |
K+ translocation (I/c curve, Figure 3) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl, pH 7.6 (NaOH) | M + 300 mM NaCl | M + x mM KCl + (300 − x) mM NaCl (1 ≤ x ≤ 300 mM) | -- |
pH dependence, K+ flux (no ΔpH, Figure 4A–D) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl | M + 50 mM NaCl titrated to pH 3.0–10.0 (NaOH, HCl) | M + 50 mM KCl titrated to pH 3.0–10.0 (NaOH, HCl) | -- |
pH dependence, K+ flux (with ΔpH, Figure 4E–G) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl | M + 50 mM NaCl titrated to pH 7.5 (NaOH) | M + 50 mM KCl titrated to pH 7.5 (NaOH) | M + 50 mM NaCl titrated to pH 3.0–10.0 (NaOH, HCl) |
H+ translocation (influx, Figure 5A–E) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 140 mM NaCl | M titrated to pH 7.6 (NaOH) | M titrated to pH 7.4–4.6 (NaOH) | -- |
H+ translocation (efflux, Figure 5F–J) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 140 mM NaCl | M titrated to pH 4.6 (NaOH) | M titrated to pH 4.8–7.6 (NaOH) | -- |
Compound IC50/EC50 (Figure 6) | 30 mM HEPES, 30 mM MES, 5 mM MgCl2, 90 mM NaCl, pH 7.6 (NaOH) | M + 50 mM NaCl + x µM compound (0.1% DMSO) | M + 50 mM KCl + x µM compound (0.1% DMSO) | -- |
4-AP | Zn | DCPIB | Arachidonic Acid | ||
---|---|---|---|---|---|
Half saturation | SSME | (1.46 ± 0.3) mM | (1.53 ± 0.21) mM (inhibitor) | (9.6 ± 5.1) µM | (2.25 ± 0.45) µM |
APC | (16.6 ± 8.2) µM | (102 ± 12) µM (activator) | (16.7 ± 11.3) µM | (83 ± 20) µM | |
Relative current | SSME | 1.0 ± 3.6% (10 mM) | 19.2 ± 4.6% (10 mM) | 275 ± 37% (60 µM) | 168 ± 5% (50 µM) |
APC | −24 ± 2% (50 µM) | 400 ± 40% (50 µM) | 579 ± 105% (50 µM) | 137 ± 6% (30 µM) |
Cluster | Compound | Technique | EC50 (µM) | n | Imax − Imin (nA) | R² |
---|---|---|---|---|---|---|
N.A. | SC-79 | APC | 61.8 ± 43.2 | 1.17 ± 0.38 | 2.45 ± 1.02 | 0.983 |
SSME 1 | 2.9 ± 2.3 1 | 0.89 ± 0.6 | 0.09 ± 0.04 1 | 0.893 | ||
LPC | 21 ± 32 | 1 | 0.91 ± 0.52 | 0.733 | ||
1 | 1 | APC | 10.8 ± 3.1 | 2.78 ± 2.1 | 3.96 ± 1.04 | 0.846 |
SSME | 12.9 ± 15.1 | 0.86 ± 0.34 | 0.91 ± 0.41 | 0.971 | ||
LPC | 3.8 ± 1.2 | 1 | 3.51 ± 0.42 | 0.993 | ||
2 | APC | 6.5 ± 2.7 | 2.38 ± 1.45 | 0.81 ± 0.18 | 0.88 | |
SSME | 30.3 ± 12.8 | 1.61 ± 0.81 | 0.74 ± 0.2 | 0.943 | ||
LPC | 15.9 ± 5.8 | 1 | 5.16 ± 0.7 | 0.981 | ||
2 | 3 | APC | no saturation | N.A. | 6.4 2 | 0.984 |
SSME | no saturation | N.A. | 0.46 2 | 0.969 | ||
LPC | no effect | N.A. | N.A. | N.A. | ||
4 | APC | 9 ± 3.3 | 1.43 ± 0.85 | 2.02 ± 3.63 | 0.905 | |
SSME | 70.4 ± 16.4 | 1.04 ± 0.08 | 1.21 ± 0.14 | 0.999 | ||
LPC | no effect | N.A. | N.A. | N.A. | ||
5 | APC | 54 ± 28 | 1.21 ± 0.33 | 9.72 ± 3.09 | 0.986 | |
SSME | 34.8 ± 4.2 | 2.7 ± 1.1 | 1.67 ± 0.17 | 0.993 | ||
LPC | no effect | N.A. | N.A. | N.A. | ||
3 | 6 | APC | no saturation | N.A. | 1.73 2 | 0.984 |
SSME | no saturation | N.A. | 0.48 2 | 0.984 | ||
LPC | 0.11 ± 0.07 | 1 | 1.95 ± 0.43 | 0.887 | ||
7 | APC | 73 ± 212 | 0.66 ± 0.54 | 3.25 ± 3.67 | 0.963 | |
SSME | no saturation | N.A. | 0.98 2 | 0.976 | ||
LPC | 0.2 ± 0.2 | 1 | 1.1 ± 0.35 | 0.83 | ||
8 | APC | 96 ± 181 | 1.19 ± 0.77 | 4.75 ± 5.66 | 0.946 | |
SSME | 9 ± 0.8 | 3 | 0.51 ± 0.03 | 0.985 | ||
LPC | 17.4 ± 6.6 | 1 | 2.07 ± 0.29 | 0.98 |
SSME | Whole-Cell APC | Lysosomal Patch-Clamp | |
---|---|---|---|
Experimental conditions | |||
Driving force | Stimulus: concentration jumps; no direct voltage control, but voltage may be applied via uncouplers [55] | Stimulus: voltage steps; additional ionic gradients | Stimulus: voltage steps; additional ionic gradients |
Solutions | Wide range of assay conditions, including pH gradients, extreme pH values and non-native ionic concentrations | Limited by the requirements of live cells; potentially requires chemicals to increase giga-seal stability, i.e., Fluoride, BSA; or channel blockers to increase specificity of the currents for the target protein | Potentially requires chemicals to increase giga-seal stability, i.e., fluoride, BSA, or channel blockers to increase specificity of the currents for the target protein |
Target membrane | Lysosomes, non-treated, stored at −80 °C; impurities with plasma membrane vesicles | Plasma membrane of live cells | Freshly isolated lysosomes, chemically pre-treated using vacuolin-1 for enlargement |
Protein orientation | Right-site-out | Inside-out | Right-site-out |
Technical limitations | |||
Read-out | Capacitive currents; peak represents initial translocation rate; potential pre-steady-state currents triggered by ion/substrate binding [40] | Steady-state currents; potential pre-steady-state currents triggered by voltage steps | Steady-state currents; potential pre-steady-state currents triggered by voltage steps |
Signal-to-noise | Up to 1000-fold larger currents compared to whole-cell APC due to large circular sensor surface (Ø 3 mm) | Signal-to-noise is limited by surface of the cell and the expression of the target protein inside the target membrane | Signal-to-noise is limited by the surface of the lysosome and the expression of the target protein inside the target membrane |
Signal interpretation | Signal represents flux of the ion species provided during fast solution exchange | Voltage steps stimulate the flux of all available ions across the membrane | Voltage steps stimulate the flux of all available ions across the membrane |
Control experiments reveal… | Solution exchange artifacts due to membrane-ion interaction [41]; off-target compound effects using high compound concentrations | Off-target leak currents; off-target compound effects potentially smaller compared to SSME | Off-target leak currents; off-target compound effects |
Ease of use | Easy, overall process is automated | Easy, overall process is automated | Highly skilled technician required |
Throughput | 96 parallel recordings; lysosomes stored for months at −80 °C; sensor preparation in batches; stable sequential recordings | 384 parallel recordings; running cell culture required; duration of recordings limited by giga-seal stability | No parallel recordings; fresh lysosomal preparations each day; duration of recordings limited by giga-seal stability, further reduced compared to whole-cell APC |
Data quality | Ultra-high success rates (96.4 ± 3.3%); superior z’ prime (0.87 ± 0.0278); low standard deviation between sensors | High success rates (82 ± 5.2%); superior z’ prime (0.768 ± 0.058); high standard deviations between cells | Low current amplitudes and lower success rates compared to APC and SSME; higher standard deviation between lysosomes |
Novelty | Not yet standard in drug screening | Well-established standard method | Gold standard for lysosomal channels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazzone, A.; Barthmes, M.; George, C.; Brinkwirth, N.; Zerlotti, R.; Prinz, V.; Cole, K.; Friis, S.; Dickson, A.; Rice, S.; et al. A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. Int. J. Mol. Sci. 2023, 24, 12788. https://doi.org/10.3390/ijms241612788
Bazzone A, Barthmes M, George C, Brinkwirth N, Zerlotti R, Prinz V, Cole K, Friis S, Dickson A, Rice S, et al. A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. International Journal of Molecular Sciences. 2023; 24(16):12788. https://doi.org/10.3390/ijms241612788
Chicago/Turabian StyleBazzone, Andre, Maria Barthmes, Cecilia George, Nina Brinkwirth, Rocco Zerlotti, Valentin Prinz, Kim Cole, Søren Friis, Alexander Dickson, Simon Rice, and et al. 2023. "A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development" International Journal of Molecular Sciences 24, no. 16: 12788. https://doi.org/10.3390/ijms241612788
APA StyleBazzone, A., Barthmes, M., George, C., Brinkwirth, N., Zerlotti, R., Prinz, V., Cole, K., Friis, S., Dickson, A., Rice, S., Lim, J., Fern Toh, M., Mohammadi, M., Pau, D., Stone, D. J., Renger, J. J., & Fertig, N. (2023). A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. International Journal of Molecular Sciences, 24(16), 12788. https://doi.org/10.3390/ijms241612788