Time- and Gender-Dependent Alterations in Mice during the Aging Process
Abstract
:1. Introduction
2. Results
2.1. Gender-Specific Differences in Senescence Cell Localization during Natural Aging
2.2. Gender Differences in Morphological and Histological Alteration
2.3. Functional Changes in Protein Secretion during Natural Aging
3. Discussion
4. Materials and Methods
4.1. Animal
4.2. Reagent
4.3. Antibody List
4.4. Perfusion Fixation
4.5. Sampling
4.6. Frozen Section
4.7. Paraffin Section
4.8. Histology and Immunofluorescence
4.9. Staining
4.10. Enzyme-Linked Immunosorbent Assay (ELISA)
4.11. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Abreu, M.; Zylberman, M.; Vensentini, N.; Villarreal, R.; Zaidel, E.; Antonietti, L.; Mariani, J.; Gagliardi, J.; Doval, H.; Tajer, C. Sex Differences in the Clinical Presentation of Acute Coronary Syndromes. Curr. Probl. Cardiol. 2022, 47, 101300. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, E.; Sudano, I.; Brouwers, S.; Borghi, C.; Bruno, R.M.; Ceconi, C.; Cornelissen, V.; Dievart, F.; Ferrini, M.; Kahan, T.; et al. Sex differences in arterial hypertension. Eur. Heart J. 2022, 43, 4777–4788. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Yap, M.L.; Cheng, E.S.; Ngo, P.J.; Vaneckova, P.; Karikios, D.; Canfell, K.; Weber, M.F. Evaluating Prognostic Factors for Sex Differences in Lung Cancer Survival: Findings From a Large Australian Cohort. J. Thorac. Oncol. 2022, 17, 688–699. [Google Scholar] [CrossRef]
- Jin, M.; Cai, S.Q. Mechanisms Underlying Brain Aging Under Normal and Pathological Conditions. Neurosci. Bull. 2023, 39, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, D.; Yu, T.; Zhu, D. Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. J. Innov. Opt. Health Sci. 2022, 15, 2230002. [Google Scholar] [CrossRef]
- Ahmed, S.B.; Fisher, N.D.L.; Hollenberg, N.K. Gender and the renal nitric oxide synthase system in healthy humans. Clin. J. Am. Soc. Nephrol. 2007, 2, 916–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampathkumar, N.K.; Bravo, J.I.; Chen, Y.; Danthi, P.S.; Donahue, E.K.; Lai, R.W.; Lu, R.; Randall, L.T.; Vinson, N.; Benayoun, B.A. Widespread sex dimorphism in aging and age-related diseases. Hum. Genet. 2020, 139, 333–356. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [Green Version]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O.; et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef]
- Melk, A.; Kittikowit, W.; Sandhu, I.; Halloran, K.M.; Grimm, P.; Schmidt, B.M.; Halloran, P.F. Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int. 2003, 63, 2134–2143. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Miyakawa, T.; Shiokawa, A.; Nakajima-Adachi, H.; Tanokura, M.; Hachimura, S. Splenic stromal cells from aged mice produce higher levels of IL-6 compared to young mice. Mediat. Inflamm. 2014, 2014, 826987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezuka, Y.; Atsumi, N.; Blinder, A.R.; Rege, J.; Giordano, T.J.; Rainey, W.E.; Turcu, A.F. The Age-Dependent Changes of the Human Adrenal Cortical Zones Are Not Congruent. J. Clin. Endocrinol. Metab. 2021, 106, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Lombard, D.B. Finding Ponce de Leon’s Pill: Challenges in Screening for Anti-Aging Molecules. F1000Research 2016, 5, 406. [Google Scholar] [CrossRef]
- Beck, J.A.; Lloyd, S.; Hafezparast, M.; Lennon-Pierce, M.; Eppig, J.T.; Festing, M.F.; Fisher, E.M. Genealogies of mouse inbred strains. Nat. Genet. 2000, 24, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Justice, M.J.; Dhillon, P. Using the mouse to model human disease: Increasing validity and reproducibility. Dis. Model. Mech. 2016, 9, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, T.K.; Meyerholz, D.K.; Beck, A.P.; Delaney, M.A.; Piersigilli, A.; Southard, T.L.; Brayton, C.F. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J. 2021, 62, 77–132. [Google Scholar] [CrossRef]
- Yousefzadeh, M.J.; Zhao, J.; Bukata, C.; Wade, E.A.; McGowan, S.J.; Angelini, L.A.; Bank, M.P.; Gurkar, A.U.; McGuckian, C.A.; Calubag, M.F.; et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 2020, 19, e13094. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, A.D.; Tazearslan, C.; Tare, A.; Zhu, Y.; Huffman, D.; Suh, Y. Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Front. Genet. 2018, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Sadighi Akha, A.A. Aging and the immune system: An overview. J. Immunol. Methods 2018, 463, 21–26. [Google Scholar] [CrossRef]
- Shanks, J.H.; Hill, C.M.; Lappin, T.R.; Maxwell, A.P. Localization of erythropoietin gene expression in proximal renal tubular cells detected by digoxigenin-labelled oligonucleotide probes. J. Pathol. 1996, 179, 283–287. [Google Scholar] [CrossRef]
- Costa, E.; Fernandes, J.; Ribeiro, S.; Sereno, J.; Garrido, P.; Rocha-Pereira, P.; Coimbra, S.; Catarino, C.; Belo, L.; Bronze-da-Rocha, E.; et al. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression. Aging Dis. 2014, 5, 356–365. [Google Scholar] [PubMed]
- Amano, A.; Tsunoda, M.; Aigaki, T.; Maruyama, N.; Ishigami, A. Age-related changes of dopamine, noradrenaline and adrenaline in adrenal glands of mice. Geriatr. Gerontol. Int. 2013, 13, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Accounting for sex and gender makes for better science. Nature 2020, 588, 196. [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Han, J.A.; Im, J.S.; Morrone, A.; Johung, K.; Goodwin, E.C.; Kleijer, W.J.; DiMaio, D.; Hwang, E.S. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 2006, 5, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, I.; Kang, W.K. E2F-1 is a critical modulator of cellular senescence in human cancer. Int. J. Mol. Med. 2006, 17, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Fogo, A.B. Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 2010, 21, 1436–1439. [Google Scholar] [CrossRef] [Green Version]
- Nath, K.A.; Grande, J.P.; Farrugia, G.; Croatt, A.J.; Belcher, J.D.; Hebbel, R.P.; Vercellotti, G.M.; Katusic, Z.S. Age sensitizes the kidney to heme protein-induced acute kidney injury. Am. J. Physiol.—Ren. Physiol. 2013, 304, F317–F325. [Google Scholar] [CrossRef] [Green Version]
- Haley, D.P.; Bulger, R.E. The aging male rat: Structure and function of the kidney. Am. J. Anat. 1983, 167, 1–13. [Google Scholar] [CrossRef]
- Baba, M.; Shimbo, T.; Horio, M.; Ando, M.; Yasuda, Y.; Komatsu, Y.; Masuda, K.; Matsuo, S.; Maruyama, S. Longitudinal study of the decline in renal function in healthy subjects. PLoS ONE 2015, 10, e0129036. [Google Scholar] [CrossRef] [Green Version]
- Kitada, K.; Nakano, D.; Hitomi, H.; Kobori, H.; Deguchi, K.; Mori, H.; Masaki, T.; Nishiyama, A. Aldosterone induces p21-regulated apoptosis via increased synthesis and secretion of tumour necrosis factor-alpha in human proximal tubular cells. Clin. Exp. Pharmacol. Physiol. 2012, 39, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Morgan, R.G.; Walker, A.E.; Lesniewski, L.A. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell. Cardiol. 2015, 89, 122–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Lian, Q.; Fu, R.; Ding, G.B.; Amin, S.; Li, Z.W.; Li, Z.Y. Cucurbitacin E Triggers Cellular Senescence in Colon Cancer Cells via Regulating the miR-371b-5p/TFAP4 Signaling Pathway. J. Agr. Food Chem. 2022, 70, 2936–2947. [Google Scholar] [CrossRef] [PubMed]
- Kunieda, T.; Minamino, T.; Nishi, J.; Tateno, K.; Oyama, T.; Katsuno, T.; Miyauchi, H.; Orimo, M.; Okada, S.; Takamura, M.; et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 2006, 114, 953–960. [Google Scholar] [CrossRef]
- Safwan-Zaiter, H.; Wagner, N.; Michiels, J.F.; Wagner, K.D. Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16Ink4a in Development and Aging. Cells 2022, 11, 541. [Google Scholar] [CrossRef]
- El-Naseery, N.I.; Mousa, H.S.E.; Noreldin, A.E.; El-Far, A.H.; Elewa, Y.H.A. Aging-associated immunosenescence via alterations in splenic immune cell populations in rat. Life Sci. 2020, 241, 117168. [Google Scholar] [CrossRef] [PubMed]
- Lessard-Beaudoin, M.; Laroche, M.; Demers, M.J.; Grenier, G.; Graham, R.K. Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice. Exp. Gerontol. 2015, 63, 27–34. [Google Scholar] [CrossRef]
- Davies, I.; Fotheringham, A.P.; Faragher, B.E. Age-associated changes in the kidney of the laboratory mouse. Age Ageing 1989, 18, 127–133. [Google Scholar] [CrossRef]
- Okada, A.; Yabuki, A.; Matsumoto, M.; Suzuki, S. Development of gender differences in DBA/2Cr mouse kidney morphology during maturation. J. Vet. Med. Sci. 2005, 67, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Papalambros, E.; Felekouras, E.; Tsamandas, A.; Sigala, F.; Salakou, S.; Tepetes, K.; Filis, K.; Milonakis, M.; Kourelis, T.; Bastounis, E. Pathological changes of hepatic artery and portal vein, after allyl-alcohol and carbon tetrachloride administration. An experimental study. Int. Angiol. 2000, 19, 166–170. [Google Scholar] [PubMed]
- Collett, J.A.; Mehrotra, P.; Crone, A.; Shelley, W.C.; Yoder, M.C.; Basile, D.P. Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am. J. Physiol. Ren. Physiol. 2017, 312, F897–F907. [Google Scholar] [CrossRef] [Green Version]
- Papazova, D.A.; Krebber, M.M.; Oosterhuis, N.R.; Gremmels, H.; van Zuilen, A.D.; Joles, J.A.; Verhaar, M.C. Dissecting recipient from donor contribution in experimental kidney transplantation: Focus on endothelial proliferation and inflammation. Dis. Model. Mech. 2018, 11, dmm035030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbieta-Caceres, V.H.; Syed, F.A.; Lin, J.; Zhu, X.Y.; Jordan, K.L.; Bell, C.C.; Bentley, M.D.; Lerman, A.; Khosla, S.; Lerman, L.O. Age-dependent renal cortical microvascular loss in female mice. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E979–E986. [Google Scholar] [CrossRef]
- Babickova, J.; Klinkhammer, B.M.; Buhl, E.M.; Djudjaj, S.; Hoss, M.; Heymann, F.; Tacke, F.; Floege, J.; Becker, J.U.; Boor, P. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 2017, 91, 70–85. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal Aging: Causes and Consequences. J. Am. Soc. Nephrol. JASN 2017, 28, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Rebuffat, P.; Belloni, A.S.; Rocco, S.; Andreis, P.G.; Neri, G.; Malendowicz, L.K.; Gottardo, G.; Mazzocchi, G.; Nussdorfer, G.G. The effects of ageing on the morphology and function of the zonae fasciculata and reticularis of the rat adrenal cortex. Cell Tissue Res. 1992, 270, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.R., Jr.; Slayden, S.M.; Azziz, R.; Crabbe, S.L.; Hines, G.A.; Boots, L.R.; Bae, S. Effects of aging on adrenal function in the human: Responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. J. Clin. Endocrinol. Metab. 2000, 85, 48–54. [Google Scholar] [CrossRef]
- Sun, N.; Wu, Y.; Nanba, K.; Sbiera, S.; Kircher, S.; Kunzke, T.; Aichler, M.; Berezowska, S.; Reibetanz, J.; Rainey, W.E.; et al. High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland. Endocrinology 2018, 159, 1511–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuschle, M.; Gotthardt, U.; Schweiger, U.; Weber, B.; Körner, A.; Schmider, J.; Standhardt, H.; Lammers, C.H.; Heuser, I. With aging in humans the activity of the hypothalamus-pituitary-adrenal system increases and its diurnal amplitude flattens. Life Sci. 1997, 61, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Hacham, M.; Argov, S.; White, R.M.; Segal, S.; Apte, R.N. Different patterns of interleukin-1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur. Cytokine Netw. 2002, 13, 55–65. [Google Scholar] [PubMed]
- Hacham, M.; White, R.M.; Argov, S.; Segal, S.; Apte, R.N. Interleukin-6 and interleukin-10 are expressed in organs of normal young and old mice. Eur. Cytokine Netw. 2004, 15, 37–46. [Google Scholar] [PubMed]
- Ghezzi, P.; Brines, M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ. 2004, 11 (Suppl. S1), S37–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reagent Name | Catalog Number | Company |
---|---|---|
PBS | P3813 | Sigma-Aldrich, St. Louis, MO, USA |
Paraformaldehyde | 158127 | Sigma-Aldrich, St. Louis, MO, USA |
Chloral hydrate | 30037517 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Ethyl carbamate | 30191218 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
OCT | 4583 | SAKURA, Tokyo, Japan |
PI | P21493 | Thermo Fisher Scientific, Waltham, MA USA |
DAPI | D1306 | Thermo Fisher Scientific, Waltham, MA USA |
Triton X-100 | T9284 | Sigma-Aldrich, St. Louis, MO, USA |
Bovine serum albumin | A1933 | Sigma-Aldrich, St. Louis, MO, USA |
Ethanol | 10009218 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Butyl alcohol | 10005218 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Glycerol | 10010618 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Dimethylbenzene | 10023418 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
β-Galactose staining kit | 9860 | Cell Signaling, Danvers, MA, USA |
PAS staining kit | BH0003 | POWERFUL BIOLOGY, Wuhan, China |
Masson staining kit | BH0002 | POWERFUL BIOLOGY, Wuhan, China |
Noradrenaline ELISA Kit | JYM0577Mo | Colorful-Gene biological technology, Wuhan, China |
Interleukin-6 ELISA Kit | JYM0012Mo | Colorful-Gene biological technology, Wuhan, China |
Epinephrine ELISA Kit | JYM0287Mo | Colorful-Gene biological technology, Wuhan, China |
Erythropoietin ELISA Kit | JYM0114Mo | Colorful-Gene biological technology, Wuhan, China |
Renin ELISA Kit | JYM0269Mo | Colorful-Gene biological technology, Wuhan, China |
Interleukin-1β ELISA Kit | JYM0531Mo | Colorful-Gene biological technology, Wuhan, China |
Antigen | Cat# | Company | Dilution |
---|---|---|---|
Anti-p21 antibody | sc-6246 | Santa Cruz Biotechnology, CA, USA | 1:200 |
Anti-p16 antibody | ab28486 | Abcam, Cambridge, UK | 1:200 |
Goat Anti-Mouse-Alexa488 | A-11029 | Invitrogen, Waltham, MA, USA | 1:800 |
Goat Anti-Rabbit-Alexa488 | A-11034 | Invitrogen, Waltham, MA, USA | 1:800 |
Goat Anti-Mouse-Alexa594 | A-11032 | Invitrogen, Waltham, MA, USA | 1:800 |
Goat Anti-Rabbit-Alexa594 | A-11037 | Invitrogen, Waltham, MA, USA | 1:800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Yang, X.; Gong, H.; Li, X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int. J. Mol. Sci. 2023, 24, 12790. https://doi.org/10.3390/ijms241612790
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. International Journal of Molecular Sciences. 2023; 24(16):12790. https://doi.org/10.3390/ijms241612790
Chicago/Turabian StyleJin, Jing, Xiaoquan Yang, Hui Gong, and Xiangning Li. 2023. "Time- and Gender-Dependent Alterations in Mice during the Aging Process" International Journal of Molecular Sciences 24, no. 16: 12790. https://doi.org/10.3390/ijms241612790
APA StyleJin, J., Yang, X., Gong, H., & Li, X. (2023). Time- and Gender-Dependent Alterations in Mice during the Aging Process. International Journal of Molecular Sciences, 24(16), 12790. https://doi.org/10.3390/ijms241612790