Plasma Bile Acid Profiling and Modulation of Secreted Mucin 5AC in Cholangiocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Clinical Study
2.1.1. Study Population
2.1.2. BAs Profiles in Plasma Samples
2.1.3. Understanding of Variables and Confounders
2.1.4. Statistical Model Results
2.2. In Vitro Study
3. Discussion
4. Materials and Methods
4.1. Clinical Study
4.1.1. Patients and Sample Collection
4.1.2. Reagents and Chemicals
4.1.3. LC-MS/MS Analysis of BAs
4.1.4. Statistical Model
4.1.5. Statistical Analysis
4.2. In Vitro Study
4.2.1. Cell Cultures
4.2.2. BAs Treatment
4.2.3. Cell Lysates and Media
4.2.4. Western Blot Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergquist, A.; von Seth, E. Epidemiology of cholangiocarcinoma. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Bertuccio, P.; Malvezzi, M.; Carioli, G.; Hashim, D.; Boffetta, P.; El-Serag, H.B.; La Vecchia, C.; Negri, E. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 2019, 71, 104–114. [Google Scholar] [CrossRef]
- Labib, P.L.; Goodchild, G.; Pereira, S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019, 19, 185. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Yu, M.; Xu, W.; Yu, S. Research Progress of Bile Acids in Cancer. Front. Oncol. 2022, 11, 778258. [Google Scholar] [CrossRef]
- Režen, T.; Rozman, D.; Kovács, T.; Kovács, P.; Sipos, A.; Bai, P.; Mikó, E. The role of bile acids in carcinogenesis. Cell. Mol. Life Sci. 2022, 79, 243. [Google Scholar] [CrossRef]
- Hong, J.; Behar, J.; Wands, J.; Resnick, M.; Wang, L.J.; DeLellis, R.A.; Lambeth, D.; Souza, R.F.; Spechler, S.J.; Cao, W. Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut 2010, 59, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Zheng, J.B.; Qi, J.; Yang, K.; Wu, Y.H.; Wang, K.; Wang, C.B.; Sun, X.J. Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int. J. Oncol. 2019, 54, 879–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.C.; Chidambaram, S.; Kinross, J.M. The role of the colonic microbiota and bile acids in colorectal cancer. Curr. Opin. Gastroenterol. 2022, 38, 179–188. [Google Scholar] [CrossRef]
- di Gregorio, M.C.; Cautela, J.; Galantini, L. Physiology and Physical Chemistry of Bile Acids. Int. J. Mol. Sci. 2021, 22, 1780. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16 (Suppl. 1), s4–s14. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tian, S.L.; Jin, D.; Liu, B.; Wang, W.; Chang, H.; Chen, C.; Yu, Z.; Wang, Y.Z.; Li, Y.L. The role of bile acid subtypes in the diagnosis of cholangiocarcinoma. Asia Pac. J. Clin. Oncol. 2022, 18, e163–e172. [Google Scholar]
- Zhang, X.; Yang, Z.; Shi, Z.; Zhu, Z.; Li, C.; Du, Z.; Zhang, Y.; Wang, Z.; Jiao, Z.; Tian, X.; et al. Analysis of bile acid profile in plasma to differentiate cholangiocarcinoma from benign biliary diseases and healthy controls. J. Steroid Biochem. Mol. Biol. 2021, 205, 105775. [Google Scholar] [CrossRef] [PubMed]
- Song, W.S.; Park, H.M.; Ha, J.M.; Shin, S.G.; Park, H.G.; Kim, J.; Zhang, T.; Ahn, D.H.; Kim, S.M.; Yang, Y.H.; et al. Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma. Sci. Rep. 2018, 8, 11088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proungvitaya, S.; Sombattheera, S.; Boonsiri, P.; Limpaiboon, T.; Wongkham, S.; Wongkham, C.; Titapun, A.; Proungvitaya, T. Diagnostic value of serum bile acid composition patterns and serum glycocholic acid levels in cholangiocarcinoma. Oncol. Lett. 2017, 14, 4943–4948. [Google Scholar] [CrossRef] [Green Version]
- Manieri, E.; Folgueira, C.; Rodríguez, M.E.; Leiva-Vega, L.; Esteban-Lafuente, L.; Chen, C.; Cubero, F.J.; Barrett, T.; Cavanagh-Kyros, J.; Seruggia, D.; et al. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proc. Natl. Acad. Sci. USA 2020, 117, 16492–16499. [Google Scholar] [CrossRef]
- Shekels, L.L.; Lyftogt, C.T.; Ho, S.B. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines. Int. J. Biochem. Cell Biol. 1996, 28, 193–201. [Google Scholar] [CrossRef]
- Chuang, S.C.; His, E.; Lee, K.T. Mucin genes in gallstone disease. Clin. Chim. Acta 2012, 413, 1466–1471. [Google Scholar] [CrossRef]
- Pyo, J.S.; Ko, Y.S.; Kang, G.; Kim, D.H.; Kim, W.H.; Lee, B.L.; Sohn, J.H. Bile acid induces MUC2 expression and inhibits tumor invasion in gastric carcinomas. J. Cancer Res. Clin. Oncol. 2015, 141, 1181–1188. [Google Scholar] [CrossRef]
- Piessen, G.; Jonckheere, N.; Vincent, A.; Hémon, B.; Ducourouble, M.P.; Copin, M.C.; Mariette, C.; Van Seuningen, I. Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1alpha. Biochem. J. 2007, 402, 81–91. [Google Scholar] [CrossRef]
- Mariette, C.; Perrais, M.; Leteurtre, E.; Jonckheere, N.; Hémon, B.; Pigny, P.; Batra, S.; Aubert, J.P.; Triboulet, J.P.; Van Seuningen, I. Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway. Biochem. J. 2004, 377 Pt 3, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Roon, A.C.H.; Mayne, G.C.; Wijnhoven, B.P.; Watson, D.I.; Leong, M.P.; Neijman, G.E.; Michael, M.Z.; McKay, A.R.; Astill, D.; Hussey, D.J. Impact of gastro-esophageal reflux on mucin mRNA expression in the esophageal mucosa. J. Gastrointestig. Surg. 2008, 12, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Mall, A.S.; Tyler, M.G.; Ho, S.B.; Krige, J.E.; Kahn, D.; Spearman, W.; Myer, L.; Govender, D. The expression of MUC mucin in cholangiocarcinoma. Pathol. Res. Pract. 2010, 206, 805–809. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, Z.; Yang, L.; Liu, J.; Miao, X. Expressive levels of MUC1 and MUC5AC and their clinicopathologic significances in the benign and malignant lesions of gallbladder. J. Surg. Oncol. 2012, 105, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Matull, W.R.; Andreola, F.; Loh, A.; Adiguzel, Z.; Deheragoda, M.; Qureshi, U.; Batra, S.K.; Swallow, D.M.; Pereira, S.P. MUC4 and MUC5AC are highly specific tumour-associated mucins in biliary tract cancer. Br. J. Cancer 2008, 98, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Roh, S.J.; Kim, Y.N.; Kim, S.Z.; Park, H.S.; Jang, K.Y.; Chung, M.J.; Kang, M.J.; Lee, D.G.; Moon, W.S. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma: Prognostic impact. Oncol. Rep. 2009, 22, 649–657. [Google Scholar]
- Lau, S.K.; Weiss, L.M.; Chu, P.G. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: An immunohistochemical study. Am. J. Clin. Pathol. 2004, 122, 61–69. [Google Scholar] [CrossRef]
- Ponnusamy, M.P.; Seshacharyulu, P.; Lakshmanan, I.; Vaz, A.P.; Chugh, S.; Batra, S.K. Emerging role of mucins in epithelial to mesenchymal transition. Curr. Cancer Drug Targets 2013, 13, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Danese, E.; Ruzzenente, O.; Ruzzenente, A.; Iacono, C.; Bertuzzo, F.; Gelati, M.; Conci, S.; Bendinelli, S.; Bonizzato, G.; Guglielmi, A.; et al. Assessment of bile and serum mucin5AC in cholangiocarcinoma: Diagnostic performance and biologic significance. Surgery 2014, 156, 1218–1224. [Google Scholar] [CrossRef]
- Ruzzenente, A.; Iacono, C.; Conci, S.; Bertuzzo, F.; Salvagno, G.; Ruzzenente, O.; Campagnaro, T.; Valdegamberi, A.; Pachera, S.; Bagante, F.; et al. A novel serum marker for biliary tract cancer: Diagnostic and prognostic values of quantitative evaluation of serum mucin 5AC (MUC5AC). Surgery 2014, 155, 633–639. [Google Scholar] [CrossRef]
- Danese, E.; Ruzzenente, A.; Montagnana, M.; Lievens, P.M. Current and future roles of mucins in cholangiocarcinoma-recent evidences for a possible interplay with bile acids. Ann. Transl. Med. 2018, 6, 333. [Google Scholar] [CrossRef]
- Danese, E.; Negrini, D.; Pucci, M.; De Nitto, S.; Ambrogi, D.; Donzelli, S.; Lievens, P.M.; Salvagno, G.L.; Lippi, G. Bile Acids Quantification by Liquid Chromatography-Tandem Mass Spectrometry: Method Validation, Reference Range, and Interference Study. Diagnostics 2020, 10, 462. [Google Scholar] [CrossRef]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39 (Suppl. 1), 19–31. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Kakiyama, G.; Suzuki, M.; Naritaka, N.; Takei, H.; Sato, H.; Kimura, A.; Murai, T.; Kurosawa, T.; Pandak, W.M.; et al. Changes in conjugated urinary bile acids across age groups. Steroids 2020, 164, 108730. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Jena, P.K.; Liu, H.X.; Kalanetra, K.M.; Gonzalez, F.J.; French, S.W.; Krishnan, V.V.; Mills, D.A.; Wan, Y.Y. Gender Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity in Steatosis Induced by Diet and FXR Inactivation. Sci. Rep. 2017, 7, 1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizvi, S.; Gores, G.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013, 145, 1215–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanisha, S.S.; Guruvayoorappan, C.; Drishya, S.; Abeesh, P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. Hematol. 2018, 122, 98–122. [Google Scholar] [CrossRef]
- Lidell, M.E.; Hansson, G.C. Cleavage in the GDPH sequence of the C-terminal cysteine-rich part of the human MUC5AC mucin. Biochem. J. 2006, 399, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Changbumrung, S.; Tungtrongchitr, R.; Migasena, P.; Chamroenngan, S. Serum unconjugated primary and secondary bile acids in patients with cholangiocarcinoma and hepatocellular carcinoma. J. Med. Assoc. Thai. 1990, 73, 81–90. [Google Scholar]
- Sombattheera, S.; Proungvitaya, T.; Limpaiboon, T.; Wongkham, S.; Wongkham, C.; Luvira, V.; Proungvitaya, S. Total serum bile acid as a potential marker for the diagnosis of cholangiocarcinoma without jaundice. Asian Pac. J. Cancer Prev. 2015, 16, 1367–1370. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Martviset, P.; Panrit, L.; Chantree, P.; Muhamad, P.; Na-Bangchang, K. Suppression of Cholangiocarcinoma Cell Growth and Proliferation by Atractylodes lancea (Thunb) DC. through ERK-Signaling Cascade. Asian Pac. J. Cancer Prev. 2021, 22, 3633–3640. [Google Scholar] [CrossRef]
- Li, C.Z.; Lin, Y.X.; Huang, T.C.; Pan, J.Y.; Wang, G.X. Receptor-Interacting Protein Kinase 1 Promotes Cholangiocarcinoma Proliferation and Lymphangiogenesis through the Activation Protein 1 Pathway. OncoTargets Ther. 2019, 12, 9029–9040. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Tiffany, T.; De Maria, G.; Sheehan, J.K.; Kesimer, M. Mapping the protein domain structures of the respiratory mucins: A mucin proteome coverage study. J. Proteome Res. 2012, 11, 4013–4023. [Google Scholar] [CrossRef] [Green Version]
- Benson, K.K.; Sheel, A.; Rahman, S.; Esnakula, A.; Manne, A. Understanding the clinical significance of MUC5AC in biliary tract Cancers. Cancers 2023, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Thornton, D.J.; Sharpe, C.; Ridley, C. Intracellular processing of human secreted polymeric airways mucins. Ann. Am. Thorac. Soc. 2018, 15 (Suppl. 3), S154–S158. [Google Scholar] [CrossRef]
- Kusaka, Y.; Tokiwa, T.; Sato, J. Establishment and characterization of a cell line from a human cholangiocellular carcinoma. Res. Exp. Med. 1988, 188, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Colyn, L.; Alvarez-Sola, G.; Latasa, U.M.; Uriarte, I.; Herranz, J.M.; Arechederra, M.; Vlachogiannis, G.; Rae, C.; Pineda-Lucena, A.; Casadei-Gardini, A.; et al. New molecular mechanisms in cholangiocarcinoma: Signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J. Exp. Clin. Cancer Res. 2022, 41, 183. [Google Scholar] [CrossRef]
- Malik, I.A.; Rajput, M.; Werner, R.; Fey, D.; Salehzadeh, N.; Arnim, C.A.F.; Wilting, J. Differential in vitro effects of targeted therapeutics in primary human liver cancer: Importance of liver cancer. BMC Cancer 2022, 22, 1190. [Google Scholar] [CrossRef] [PubMed]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liskiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 10 May 2023).
- Wickham, H.; Bryan, J. Readxl: Read Excel Files R Package Version 1.3.1. 2019. Available online: https://CRAN.R-project.org/package=readxl (accessed on 10 May 2023).
N. Patients | 110 |
Age | |
≤65 | 48 (43.6%) |
>65 | 62 (56.4%) |
Gender | |
Male | 64 (58.2%) |
Female | 46 (41.8%) |
Type of disease | |
Malignant (CCA) | 68 (61.8%) |
Benign (BBD) | 42 (38.2%) |
Type of benign disease | |
Choledocholithiasis | 40 (93%) |
Other benign biliary disease | 2 (7%) |
Type of malignant disease | |
Perihilar cholangiocarcinoma | 38 (55.9%) |
Intrahepatic cholangiocarcinoma | 15 (22.0%) |
Distal Cholangiocarcinoma cancer | 15 (22.1%) |
Primary Unconjugated (µmol/L) | Primary Conjugated (µmol/L) | Secondary Unconjugated (µmol/L) | Secondary Conjugated (µmol/L) | |
---|---|---|---|---|
CCA | 0.49 | 33.57 | 0.45 | 9.23 |
BBD | 1.00 | 2.80 | 0.86 | 1.50 |
Plasma BAs | OR | 95% C.I. | p-Value |
---|---|---|---|
GCDCA (µmol/L) | 2.01 | 0.91 to 4.42 | 0.083 |
TCA (µmol/L) | 8.74 | 1.56 to 49.02 | 0.014 |
GCA (µmol/L) | 2.56 | 1.31 to 4.99 | 0.006 |
TCDCA (µmol/L) | 42.29 | 3.54 to 504.63 | 0.003 |
Primary conjugated BAs (µmol/L) | 1.50 | 1.14 to 1.96 | 0.003 |
Primary/Secondary (ratio) | 1.14 | 1.04 to 1.25 | 0.007 |
Total Conjugated/Total Unconjugated (ratio) | 1.06 | 1.01 to 1.13 | 0.046 |
Primary conjugated/Secondary conjugated (ratio) | 1.12 | 1.03 to 1.21 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danese, E.; Lievens, P.M.-J.; Padoan, A.; Peserico, D.; Galavotti, R.; Negrini, D.; Gelati, M.; Conci, S.; Ruzzenente, A.; Salvagno, G.L.; et al. Plasma Bile Acid Profiling and Modulation of Secreted Mucin 5AC in Cholangiocarcinoma. Int. J. Mol. Sci. 2023, 24, 12794. https://doi.org/10.3390/ijms241612794
Danese E, Lievens PM-J, Padoan A, Peserico D, Galavotti R, Negrini D, Gelati M, Conci S, Ruzzenente A, Salvagno GL, et al. Plasma Bile Acid Profiling and Modulation of Secreted Mucin 5AC in Cholangiocarcinoma. International Journal of Molecular Sciences. 2023; 24(16):12794. https://doi.org/10.3390/ijms241612794
Chicago/Turabian StyleDanese, Elisa, Patricia M.-J. Lievens, Andrea Padoan, Denise Peserico, Roberta Galavotti, Davide Negrini, Matteo Gelati, Simone Conci, Andrea Ruzzenente, Gian Luca Salvagno, and et al. 2023. "Plasma Bile Acid Profiling and Modulation of Secreted Mucin 5AC in Cholangiocarcinoma" International Journal of Molecular Sciences 24, no. 16: 12794. https://doi.org/10.3390/ijms241612794
APA StyleDanese, E., Lievens, P. M. -J., Padoan, A., Peserico, D., Galavotti, R., Negrini, D., Gelati, M., Conci, S., Ruzzenente, A., Salvagno, G. L., & Lippi, G. (2023). Plasma Bile Acid Profiling and Modulation of Secreted Mucin 5AC in Cholangiocarcinoma. International Journal of Molecular Sciences, 24(16), 12794. https://doi.org/10.3390/ijms241612794