Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers
Abstract
:1. Epidemiology
2. Genetic Predisposition for Prostate Cancer
2.1. Genetic Markers of PC
2.2. GWASs in PC
2.3. GWAS and PC Aggressiveness
3. The Role of DNA Methylation in Prostate Carcinogenesis
4. The Role of Histone Modifications in Prostate Carcinogenesis
5. MiRNA as a Prostate Cancer Biomarker
5.1. MicroRNA Biogenesis
5.2. The Role of miRNA in Prostate Carcinogenesis
5.3. Oncogenic miRNAs in Prostate Cancer
5.4. Tumor Suppressor miRNAs in Prostate Cancer
6. Pathogenesis and Staging
7. Methods for Diagnosing Prostate Cancer
7.1. Currently Used Diagnostic Approaches
- Digital rectal examination (DRE); and/or
- Transrectal ultrasound (TRUS).
- Serum PSA (prostate-specific antigen): total PSA and the ratio of free PSA to total PSA.
- Biopsy confirmation.
7.2. Necessity of Early Screening
7.3. Biopsy Examination and How TAMs Can Help
Diagnostic Method | Principle | Sensitivity (0–1) | Specificity (0–1) | False-Negative Cases (%) | False Positive Cases (%) | Benefits | Limitations | Reference |
---|---|---|---|---|---|---|---|---|
Digital Rectal Examination (DRE) | Palpation of the lower part of the rectum, pelvis and lower abdomen | 0.51 | 0.59 | - | - | availability and affordability non-invasive | low sensitivity lack specificity more than 60% are identified as asymptomatic | [166,200,201] |
Prostate Specific Antigen (PSA) | Venous blood sampling for prostate-specific antigen, a glycoprotein expressed in both cancerous and normal columnar prostate epithelial cells. | 0.21–0.5 | 0.91 | 10–15% | - | availability and affordability | lack specificity predictive accuracy of 8% to 10% | [166,202,203] |
Transrectal Ultrasound Scan (TRUS) | Ultrasound examination of the prostate with insertion of the sensor into the rectum. | - | - | 11.34–29.31 | 4.61–6.11% | availability and affordability non-invasive | lack specificity | [166] |
Transrectal biopsy (TRB) | Tissue sampling with a thin needle that is inserted through the rectum into the prostate. | 0.53 | 1 | 11–46% | - | Availability affordability | most lesion are small and sometime located in regions that are not identifiable complications of prostate biopsy (e.g., infection, pain, bleeding, urinary obstruction) | [141,147,166,200,204,205] |
MRI-guided biopsy | MRI-guided sampling of prostate tumor tissue | 0.77 | 1 | 6% | 4.2% | accuracy | complications of prostate biopsy (e.g., infection, pain, bleeding, urinary obstruction); expensive | [141,147,204] |
MRI | Creation of detailed volumetric images of areas using a magnetic tomography | 0.67 | 0.92 | 2.7% | 44.1% | non-invasive | expensive | [141,147] |
7.4. State-of-the Art Imaging for Staging and Metastasis Detection
7.5. Raman Spectroscopy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
21-kDa protein | |
BAD | Bcl-2 agonist of cell death |
Bcl-2 | family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis |
Bcl-xL | It is a member of the Bcl-2 family of proteins, and acts as an anti-apoptotic protein. |
Bmi-1 | Polycomb complex protein BMI-1 |
cAMP | responsive element binding protein (CREB) |
CASP9 | caspase 9 |
CBP CREB | binding protein |
CDKN1B | cyclin dependent kinase inhibitor 1B |
CDK2 | cyclin dependent kinase 2 |
ERK | extracellular signal-regulated kinase |
FKHR | subfamily of “forkhead” proteins that regulate transcription |
EPHB3 | protein coding gene which regulates the synthesis and release of D-serine in astrocytes |
FOXA1 | transcription factor (TF) of the Forkhead box (FOX) protein family. |
GFR | growth factor receptors |
GF | growth factor |
Grb2 | Growth Factor Receptor bound 2 |
GSK-3 | Glycogen synthase kinase 3 |
GSTP1 | glutathione S-transferase pi 1 |
HIV | human immunodeficiency virus |
HCs-96 | |
HOX subset of homeobox genes | group of related genes that specify regions of the body plan of an embryo along the head–tail axis |
HRas | proto-oncogene Harvey-RAS |
IL1R2 | interleukin 1 receptor type 2 |
IKK | IκB kinase |
IκB | [I-kappa-B], a protein complex |
MSI | microsatellite instability |
MDM2 | proto-oncogene encodes a nuclear-localized E3 ubiquitin ligase. |
MEK | Mitogen-activated protein kinase—MAPK/ERK (MAPK/ERK kinase или MEK MAPK mitogen-activated protein kinase ERK extracellular signal-regulated kinase |
MMP | matrix metalloproteinases |
mTOR | mammalian target of rapamycin |
NF-kB | Nuclear Factor Kappa B |
NKX3-1 | NK3 homeobox 1 |
NBS1 | is a protein which in humans is encoded by the NBN gene |
p21 | wildtype activating factor-1/cyclin-dependent kinase inhibitory protein-1 or WAF1/CIP1 |
P27 | tumor suppressor, inhibit all types of cyclin-dependent kinase (cyclin-dependent kinase, CDK) |
P53 | protein that regulates the repair of cellular DNA |
PDK1 | Phosphoinositide-dependent kinase-1 |
PI3K | phosphatidylinositol-3-kinase |
PIP3 | phosphatidylinositol-3,4,5-triphosphate |
pkb/akt | protein kinase B |
PLAU | plasminogen activator, urokinase |
PLAT | (tissue plasminogen activator) |
PSA | prostate specific antigen |
RNase L (HPC1) | interferon (IFN)-induced ribonuclease which, upon activation, destroys all RNA within the cell (both cellular and viral) |
Rb | Retinoblastoma protein |
SRD5a2 | Steroid 5-α-reductase type 2 |
SPINT1 | serine peptidase inhibitor, Kunitz type 1 |
TCF/LEF | TCF/LEF family (T cell factor/lymphoid enhancer factor family) |
TMPRSS2 | transmembrane serine protease 2 |
TMPRSS2-ERG | fusion of transmembrane serine protease 2 (TMPRSS2) genes with ETS transcription factor |
TF | Tissue factor |
TRBP | transactivation response element RNA-binding protein |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 9 March 2023).
- Rebbeck, T.R. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography. Semin. Radiat. Oncol. 2017, 27, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Elfiky, A.; Freeman, V.L.; Roach, M. Race, Biology, Disparities, and Prostate Cancer. Eur. Urol. 2022, 81, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.M.; Romero, T.; Nickols, N.G.; Rettig, M.B.; Garraway, I.P.; Roach, M.; Michalski, J.M.; Pisansky, T.M.; Lee, W.R.; Jones, C.U.; et al. Comparison of Response to Definitive Radiotherapy for Localized Prostate Cancer in Black and White Men: A Meta-Analysis. JAMA Netw. Open 2021, 4, e2139769. [Google Scholar] [CrossRef]
- Koscuiszka, M.; Hatcher, D.; Christos, P.J.; Rose, A.E.; Greenwald, H.S.; Chiu, Y.; Taneja, S.S.; Mazumdar, M.; Lee, P.; Osman, I. Impact of Race on Survival in Patients with Clinically Nonmetastatic Prostate Cancer Who Deferred Primary Treatment: Race and Survival in PCa Patients. Cancer 2012, 118, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and Biology of Prostate Cancer. Genes Dev. 2018, 32, 1105–1140. [Google Scholar] [CrossRef]
- Jahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The High Prevalence of Undiagnosed Prostate Cancer at Autopsy: Implications for Epidemiology and Treatment of Prostate Cancer in the Prostate-Specific Antigen-Era: High Prostate Cancer Prevalence: Research Implications in the PSA-ERA. Int. J. Cancer 2015, 137, 2795–2802. [Google Scholar] [CrossRef]
- Wasim, S.; Lee, S.-Y.; Kim, J. Complexities of Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 14257. [Google Scholar] [CrossRef]
- Turanli, B.; Grøtli, M.; Boren, J.; Nielsen, J.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Drug Repositioning for Effective Prostate Cancer Treatment. Front. Physiol. 2018, 9, 500. [Google Scholar] [CrossRef]
- Han, H.; Park, C.K.; Cho, N.H.; Lee, J.; Jang, W.S.; Ham, W.S.; Choi, Y.D.; Cho, K.S. Characteristics of BRCA2 Mutated Prostate Cancer at Presentation. Int. J. Mol. Sci. 2022, 23, 13426. [Google Scholar] [CrossRef]
- Bardis, M.D.; Houshyar, R.; Chang, P.D.; Ushinsky, A.; Glavis-Bloom, J.; Chahine, C.; Bui, T.-L.; Rupasinghe, M.; Filippi, C.G.; Chow, D.S. Applications of Artificial Intelligence to Prostate Multiparametric MRI (MpMRI): Current and Emerging Trends. Cancers 2020, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Santos-Pereira, J.M.; Aguilera, A. R Loops: New Modulators of Genome Dynamics and Function. Nat. Rev. Genet. 2015, 16, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A.; et al. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Sinha, C.; Kalyana-Sundaram, S.; Chinnaiyan, A.M. Landscape of Gene Fusions in Epithelial Cancers: Seq and Ye Shall Find. Genome Med. 2015, 7, 129. [Google Scholar] [CrossRef]
- van Dessel, L.F.; van Riet, J.; Smits, M.; Zhu, Y.; Hamberg, P.; van der Heijden, M.S.; Bergman, A.M.; van Oort, I.M.; de Wit, R.; Voest, E.E.; et al. The Genomic Landscape of Metastatic Castration-Resistant Prostate Cancers Reveals Multiple Distinct Genotypes with Potential Clinical Impact. Nat. Commun. 2019, 10, 5251. [Google Scholar] [CrossRef]
- Tong, D. Unravelling the Molecular Mechanisms of Prostate Cancer Evolution from Genotype to Phenotype. Crit. Rev. Oncol./Hematol. 2021, 163, 103370. [Google Scholar] [CrossRef]
- Adamaki, M.; Zoumpourlis, V. Prostate Cancer Biomarkers: From Diagnosis to Prognosis and Precision-Guided Therapeutics. Pharmacol. Ther. 2021, 228, 107932. [Google Scholar] [CrossRef]
- Kong, D.-P.; Chen, R.; Zhang, C.-L.; Zhang, W.; Xiao, G.-A.; Wang, F.-B.; Ta, N.; Gao, X.; Sun, Y.-H. Prevalence and Clinical Application of TMPRSS2-ERG Fusion in Asian Prostate Cancer Patients: A Large-Sample Study in Chinese People and a Systematic Review. Asian J. Androl. 2020, 22, 200. [Google Scholar] [CrossRef]
- John, J.S.; Powell, K.; -LaComb, M.K.C. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression. J. Cancer Sci. Ther. 2012, 4, 94–101. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines 2019, 6, 82. [Google Scholar] [CrossRef]
- Stelloo, S.; Nevedomskaya, E.; Kim, Y.; Schuurman, K.; Valle-Encinas, E.; Lobo, J.; Krijgsman, O.; Peeper, D.S.; Chang, S.L.; Feng, F.Y.-C.; et al. Integrative Epigenetic Taxonomy of Primary Prostate Cancer. Nat. Commun. 2018, 9, 4900. [Google Scholar] [CrossRef]
- Dudka, I.; Thysell, E.; Lundquist, K.; Antti, H.; Iglesias-Gato, D.; Flores-Morales, A.; Bergh, A.; Wikström, P.; Gröbner, G. Comprehensive Metabolomics Analysis of Prostate Cancer Tissue in Relation to Tumor Aggressiveness and TMPRSS2-ERG Fusion Status. BMC Cancer 2020, 20, 437. [Google Scholar] [CrossRef] [PubMed]
- Koide, H.; Kimura, T.; Inaba, H.; Sato, S.; Iwatani, K.; Yorozu, T.; Furusato, B.; Kamata, Y.; Miki, J.; Kiyota, H.; et al. Comparison of ERG and SPINK1 Expression among Incidental and Metastatic Prostate Cancer in Japanese Men. Prostate 2019, 79, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.D.; Ross, J.L.; Arun, B.K. The Changing Landscape of Hereditary Cancer Genetic Testing: Hereditary Cancer Genetic Testing. Cancer 2018, 124, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Dathathri, E.; Isebia, K.T.; Abali, F.; Lolkema, M.P.; Martens, J.W.M.; Terstappen, L.W.M.M.; Bansal, R. Liquid Biopsy Based Circulating Biomarkers in Metastatic Prostate Cancer. Front. Oncol. 2022, 12, 863472. [Google Scholar] [CrossRef]
- Tian, P.; Zhong, M.; Wei, G.-H. Mechanistic Insights into Genetic Susceptibility to Prostate Cancer. Cancer Lett. 2021, 522, 155–163. [Google Scholar] [CrossRef] [PubMed]
- The COGS–Cancer Research UK GWAS–ELLIPSE (Part of GAME-ON) Initiative; The Australian Prostate Cancer Bioresource; The UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons’ Section of Oncology; The UK ProtecT (Prostate Testing for Cancer and Treatment) Study Collaborators; The PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium; Eeles, R.A.; Olama, A.A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.A.; et al. Identification of 23 New Prostate Cancer Susceptibility Loci Using the ICOGS Custom Genotyping Array. Nat. Genet. 2013, 45, 385–391. [Google Scholar] [CrossRef]
- Benafif, S.; Kote-Jarai, Z.; Eeles, R.A. A Review of Prostate Cancer Genome-Wide Association Studies (GWAS). Cancer Epidemiol. Biomark. Prev. 2018, 27, 845–857. [Google Scholar] [CrossRef]
- The Profile Study; Australian Prostate Cancer BioResource (APCB); The IMPACT Study; Canary PASS Investigators; Breast and Prostate Cancer Cohort Consortium (BPC3); The PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium; Cancer of the Prostate in Sweden (CAPS); Prostate Cancer Genome-Wide Association Study of Uncommon Susceptibility Loci (PEGASUS); The Genetic Associations and Mechanisms in Oncology (GAME-ON)/Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; Schumacher, F.R.; et al. Association Analyses of More than 140,000 Men Identify 63 New Prostate Cancer Susceptibility Loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef]
- The UKGPCS Collaborators; Leongamornlert, D.; Saunders, E.; Dadaev, T.; Tymrakiewicz, M.; Goh, C.; Jugurnauth-Little, S.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; et al. Frequent Germline Deleterious Mutations in DNA Repair Genes in Familial Prostate Cancer Cases Are Associated with Advanced Disease. Br. J. Cancer 2014, 110, 1663–1672. [Google Scholar] [CrossRef]
- Wang, M.; Takahashi, A.; Liu, F.; Ye, D.; Ding, Q.; Qin, C.; Yin, C.; Zhang, Z.; Matsuda, K.; Kubo, M.; et al. Large-Scale Association Analysis in Asians Identifies New Susceptibility Loci for Prostate Cancer. Nat. Commun. 2015, 6, 8469. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.V.; Darst, B.F.; Moss, L.C.; Saunders, E.J.; Sheng, X.; Chou, A.; Schumacher, F.R.; Olama, A.A.A.; Benlloch, S.; Dadaev, T.; et al. Trans-Ancestry Genome-Wide Association Meta-Analysis of Prostate Cancer Identifies New Susceptibility Loci and Informs Genetic Risk Prediction. Nat. Genet. 2021, 53, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Sipeky, C.; Tammela, T.L.J.; Auvinen, A.; Schleutker, J. Novel Prostate Cancer Susceptibility Gene SP6 Predisposes Patients to Aggressive Disease. Prostate Cancer Prostatic Dis. 2021, 24, 1158–1166. [Google Scholar] [CrossRef]
- Amarasekera, C.; Wong, V.; Yura, E.; Manjunath, A.; Schaeffer, E.; Kundu, S. Prostate Cancer in Sexual Minorities and the Influence of HIV Status. Nat. Rev. Urol. 2019, 16, 404–421. [Google Scholar] [CrossRef] [PubMed]
- Duggan, D.; Zheng, S.L.; Knowlton, M.; Benitez, D.; Dimitrov, L.; Wiklund, F.; Robbins, C.; Isaacs, S.D.; Cheng, Y.; Li, G.; et al. Two Genome-Wide Association Studies of Aggressive Prostate Cancer Implicate Putative Prostate Tumor Suppressor Gene DAB2IP. JNCI J. Natl. Cancer Inst. 2007, 99, 1836–1844. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, S.L.; Wiklund, F.; Isaacs, S.D.; Li, G.; Wiley, K.E.; Kim, S.-T.; Zhu, Y.; Zhang, Z.; Hsu, F.-C.; et al. Sequence Variants at 22q13 Are Associated with Prostate Cancer Risk. Cancer Res. 2009, 69, 10–15. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, S.L.; Isaacs, S.D.; Wiley, K.E.; Wiklund, F.; Sun, J.; Kader, A.K.; Li, G.; Purcell, L.D.; Kim, S.-T.; et al. Inherited Genetic Variant Predisposes to Aggressive but Not Indolent Prostate Cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 2136–2140. [Google Scholar] [CrossRef]
- FitzGerald, L.M.; Kwon, E.M.; Conomos, M.P.; Kolb, S.; Holt, S.K.; Levine, D.; Feng, Z.; Ostrander, E.A.; Stanford, J.L. Genome-Wide Association Study Identifies a Genetic Variant Associated with Risk for More Aggressive Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1196–1203. [Google Scholar] [CrossRef]
- Nam, R.K.; Zhang, W.; Siminovitch, K.; Shlien, A.; Kattan, M.W.; Klotz, L.H.; Trachtenberg, J.; Lu, Y.; Zhang, J.; Yu, C.; et al. New Variants at 10q26 and 15q21 Are Associated with Aggressive Prostate Cancer in a Genome-Wide Association Study from a Prostate Biopsy Screening Cohort. Cancer Biol. Ther. 2011, 12, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, F.R.; Berndt, S.I.; Siddiq, A.; Jacobs, K.B.; Wang, Z.; Lindstrom, S.; Stevens, V.L.; Chen, C.; Mondul, A.M.; Travis, R.C.; et al. Genome-Wide Association Study Identifies New Prostate Cancer Susceptibility Loci. Hum. Mol. Genet. 2011, 20, 3867–3875. [Google Scholar] [CrossRef]
- Amin Al Olama, A.; Kote-Jarai, Z.; Schumacher, F.R.; Wiklund, F.; Berndt, S.I.; Benlloch, S.; Giles, G.G.; Severi, G.; Neal, D.E.; Hamdy, F.C.; et al. A Meta-Analysis of Genome-Wide Association Studies to Identify Prostate Cancer Susceptibility Loci Associated with Aggressive and Non-Aggressive Disease. Hum. Mol. Genet. 2013, 22, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Berndt, S.I.; Wang, Z.; Yeager, M.; Alavanja, M.C.; Albanes, D.; Amundadottir, L.; Andriole, G.; Beane Freeman, L.; Campa, D.; Cancel-Tassin, G.; et al. Two Susceptibility Loci Identified for Prostate Cancer Aggressiveness. Nat. Commun. 2015, 6, 6889. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, C.C.; Leongamornlert, D.; Dadaev, T.; Thomas, A.; Farnham, J.; Stephenson, R.A.; Riska, S.; McDonnell, S.K.; Schaid, D.J.; Catalona, W.J.; et al. Genome-Wide Association of Familial Prostate Cancer Cases Identifies Evidence for a Rare Segregating Haplotype at 8q24.21. Hum. Genet. 2016, 135, 923–938. [Google Scholar] [CrossRef]
- Shui, I.M.; Lindström, S.; Kibel, A.S.; Berndt, S.I.; Campa, D.; Gerke, T.; Penney, K.L.; Albanes, D.; Berg, C.; Bueno-de-Mesquita, H.B.; et al. Prostate Cancer (PCa) Risk Variants and Risk of Fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur. Urol. 2014, 65, 1069–1075. [Google Scholar] [CrossRef]
- Xia, J.-H.; Wei, G.-H. Oncogenic Regulatory Circuits Driven by 19q13 Rs11672691 Underlies Prostate Cancer Aggressiveness. Mol. Cell Oncol. 2018, 5, e1516451. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Xia, J.-H.; Sipeky, C.; Dong, X.-M.; Zhang, Q.; Yang, Y.; Zhang, P.; Cruz, S.P.; Zhang, K.; Zhu, J.; et al. Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus. Cell 2018, 174, 576–589.e18. [Google Scholar] [CrossRef] [PubMed]
- Helfand, B.T.; Roehl, K.A.; Cooper, P.R.; McGuire, B.B.; Fitzgerald, L.M.; Cancel-Tassin, G.; Cornu, J.-N.; Bauer, S.; Van Blarigan, E.L.; Chen, X.; et al. Associations of Prostate Cancer Risk Variants with Disease Aggressiveness: Results of the NCI-SPORE Genetics Working Group Analysis of 18,343 Cases. Hum. Genet. 2015, 134, 439–450. [Google Scholar] [CrossRef]
- Markers of Clinical Utility in the Differential Diagnosis and Prognosis of Prostate Cancer—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29297492/ (accessed on 7 July 2023).
- Jin, Z.; Liu, Y. DNA Methylation in Human Diseases. Genes Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Li, L.-C.; Okino, S.T.; Dahiya, R. DNA Methylation in Prostate Cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2004, 1704, 87–102. [Google Scholar] [CrossRef]
- Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA Methylation and DNA Methyltransferases. Epigenetics Chromatin 2017, 10, 23. [Google Scholar] [CrossRef]
- Eismann, L.; Von Walter, P.; Jung, A.; Chaloupka, M.; Rodler, S.; Westhofen, T.; Buchner, A.; Stief, C.G.; Stadler, T.; Schlenker, B. Methylation Status of Various Gene Loci in Localized Prostate Cancer: Novel Biomarkers for Diagnostics and Biochemical Recurrence. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 325.e1–325.e8. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Klee, E.W.; Young, C.Y.F.; Sun, Z.; Jimenez, R.E.; Klee, G.G.; Tindall, D.J.; Donkena, K.V. Global Methylation Profiling for Risk Prediction of Prostate Cancer. Clin. Cancer Res. 2012, 18, 2882–2895. [Google Scholar] [CrossRef]
- Moritz, R.; Ellinger, J.; Nuhn, P.; Haese, A.; Müller, S.C.; Graefen, M.; Schlomm, T.; Bastian, P.J. DNA Hypermethylation as a Predictor of PSA Recurrence in Patients with Low- and Intermediate-Grade Prostate Cancer. Anticancer Res. 2013, 33, 5249–5254. [Google Scholar] [PubMed]
- Singh, A.; Sharma, N. Identification of Key Pathways and Genes with Aberrant Methylation in Prostate Cancer Using Bioinformatics Analysis. OncoTargets Ther. 2017, 10, 4925–4933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Zhang, G.Q.; Zhang, L. Correlation between Methylation of the E-Cadherin Gene and Malignancy of Prostate Cancer. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Cao, Z.; Wei, L.; Zhu, W.; Yao, X. Meta-Analysis of CDKN2A Methylation to Find Its Role in Prostate Cancer Development and Progression, and Also to Find the Effect of CDKN2A Expression on Disease-Free Survival (PRISMA). Medicine 2018, 97, e0182. [Google Scholar] [CrossRef]
- Mishra, D.K.; Chen, Z.; Wu, Y.; Sarkissyan, M.; Koeffler, H.P.; Vadgama, J.V. Global Methylation Pattern of Genes in Androgen-Sensitive and Androgen-Independent Prostate Cancer Cells. Mol. Cancer Ther. 2010, 9, 33–45. [Google Scholar] [CrossRef]
- Massie, C.E.; Mills, I.G.; Lynch, A.G. The Importance of DNA Methylation in Prostate Cancer Development. J. Steroid Biochem. Mol. Biol. 2017, 166, 1–15. [Google Scholar] [CrossRef]
- Nowacka-Zawisza, M.; Wiśnik, E. DNA Methylation and Histone Modifications as Epigenetic Regulation in Prostate Cancer. Oncol. Rep. 2017, 38, 2587–2596. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, S.C.; Lim, B.; Shin, S.-H.; Kim, M.Y.; Kim, S.-Y.; Lim, H.; Charton, C.; Shin, D.; Moon, H.W.; et al. DNA Methylation Biomarkers Distinguishing Early-Stage Prostate Cancer from Benign Prostatic Hyperplasia. Prostate Int. 2023, 11, 113–121. [Google Scholar] [CrossRef]
- Pu, Y.; Li, C.; Yuan, H.; Wang, X. Identification of Prostate Cancer Specific Methylation Biomarkers from a Multi-Cancer Analysis. BMC Bioinform. 2021, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Tolkach, Y.; Zarbl, R.; Bauer, S.; Ritter, M.; Ellinger, J.; Hauser, S.; Hüser, L.; Klauck, S.M.; Altevogt, P.; Sültmann, H.; et al. DNA Promoter Methylation and ERG Regulate the Expression of CD24 in Prostate Cancer. Am. J. Pathol. 2021, 191, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Altevogt, P.; Sammar, M.; Hüser, L.; Kristiansen, G. Novel Insights into the Function of CD24: A Driving Force in Cancer. Int. J. Cancer 2021, 148, 546–559. [Google Scholar] [CrossRef]
- Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Krishnan, V.; Hatakeyama, J.; Dorigo, O.; Barkal, L.J.; et al. CD24 Signalling through Macrophage Siglec-10 Is a Target for Cancer Immunotherapy. Nature 2019, 572, 392–396. [Google Scholar] [CrossRef]
- Berchuck, J.E.; Baca, S.C.; McClure, H.M.; Korthauer, K.; Tsai, H.K.; Nuzzo, P.V.; Kelleher, K.M.; He, M.; Steinharter, J.A.; Zacharia, S.; et al. Detecting Neuroendocrine Prostate Cancer through Tissue-Informed Cell-Free DNA Methylation Analysis. Clin. Cancer Res. 2022, 28, 928–938. [Google Scholar] [CrossRef]
- Wu, A.; Cremaschi, P.; Wetterskog, D.; Conteduca, V.; Franceschini, G.M.; Kleftogiannis, D.; Jayaram, A.; Sandhu, S.; Wong, S.Q.; Benelli, M.; et al. Genome-Wide Plasma DNA Methylation Features of Metastatic Prostate Cancer. J. Clin. Investig. 2020, 130, 1991–2000. [Google Scholar] [CrossRef]
- Chen, S.; Petricca, J.; Ye, W.; Guan, J.; Zeng, Y.; Cheng, N.; Gong, L.; Shen, S.Y.; Hua, J.T.; Crumbaker, M.; et al. The Cell-Free DNA Methylome Captures Distinctions between Localized and Metastatic Prostate Tumors. Nat. Commun. 2022, 13, 6467. [Google Scholar] [CrossRef]
- Mehdi, A.; Cheishvili, D.; Arakelian, A.; Bismar, T.A.; Szyf, M.; Rabbani, S.A. DNA Methylation Signatures of Prostate Cancer in Peripheral T-Cells. BMC Cancer 2020, 20, 588. [Google Scholar] [CrossRef] [PubMed]
- Bakavicius, A.; Daniunaite, K.; Zukauskaite, K.; Barisiene, M.; Jarmalaite, S.; Jankevicius, F. Urinary DNA Methylation Biomarkers for Prediction of Prostate Cancer Upgrading and Upstaging. Clin. Epigenetics 2019, 11, 115. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, L. Construction of DNA Methylation-Based Nomogram for Predicting Biochemical-Recurrence-Free Survival in Prostate Cancer. Medicine 2022, 101, e32205. [Google Scholar] [CrossRef]
- Pidsley, R.; Lam, D.; Qu, W.; Peters, T.J.; Luu, P.-L.; Korbie, D.; Stirzaker, C.; Daly, R.J.; Stricker, P.; Kench, J.G.; et al. Comprehensive Methylome Sequencing Reveals Prognostic Epigenetic Biomarkers for Prostate Cancer Mortality. Clin. Transl. Med. 2022, 12, e1030. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.; Clark, S.; Stirzaker, C.; Pidsley, R. Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers 2020, 12, 2993. [Google Scholar] [CrossRef] [PubMed]
- Boehm, B.E.; York, M.E.; Petrovics, G.; Kohaar, I.; Chesnut, G.T. Biomarkers of Aggressive Prostate Cancer at Diagnosis. Int. J. Mol. Sci. 2023, 24, 2185. [Google Scholar] [CrossRef]
- Nakayama, T.; Watanabe, M.; Yamanaka, M.; Hirokawa, Y.; Suzuki, H.; Ito, H.; Yatani, R.; Shiraishi, T. The Role of Epigenetic Modifications in Retinoic Acid Receptor Β2 Gene Expression in Human Prostate Cancers. Lab. Investig. 2001, 81, 1049–1057. [Google Scholar] [CrossRef]
- Patra, S.K.; Patra, A.; Dahiya, R. Histone Deacetylase and DNA Methyltransferase in Human Prostate Cancer. Biochem. Biophys. Res. Commun. 2001, 287, 705–713. [Google Scholar] [CrossRef]
- Audia, J.E.; Campbell, R.M. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019521. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of Histone Modification. In Histone Mutations and Cancer; Fang, D., Han, J., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 1283, pp. 1–16. ISBN 9789811581038. [Google Scholar]
- Chervona, Y.; Costa, M. Histone Modifications and Cancer: Biomarkers of Prognosis? Am. J. Cancer Res. 2012, 2, 589–597. [Google Scholar]
- Kurdistani, S.K. Histone Modifications in Cancer Biology and Prognosis. In Epigenetics and Disease; Gasser, S.M., Li, E., Eds.; Springer: Basel, Switzerland, 2011; pp. 91–106. ISBN 978-3-7643-8988-8. [Google Scholar]
- Albini, S.; Zakharova, V.; Ait-Si-Ali, S. Histone Modifications. In Epigenetics and Regeneration; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–72. ISBN 978-0-12-814879-2. [Google Scholar]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jing, L.; Li, M.; He, L.; Guo, Z. Regulation of Histone Arginine Methylation/Demethylation by Methylase and Demethylase (Review). Mol. Med. Rep. 2019, 19, 3963–3971. [Google Scholar] [CrossRef]
- Balakhnin, S.; Ovsyanko, E.; Ostashevsky, V.; Bakarev, M. Epigenetic Markers of Prostate Cancer. CΠHO (MPSE) 2016, 6. [Google Scholar] [CrossRef]
- Chiam, K.; Ricciardelli, C.; Bianco-Miotto, T. Epigenetic Biomarkers in Prostate Cancer: Current and Future Uses. Cancer Lett. 2014, 342, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Ngollo, M.; Lebert, A.; Daures, M.; Judes, G.; Rifai, K.; Dubois, L.; Kemeny, J.-L.; Penault-Llorca, F.; Bignon, Y.-J.; Guy, L.; et al. Global Analysis of H3K27me3 as an Epigenetic Marker in Prostate Cancer Progression. BMC Cancer 2017, 17, 261. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.F.; Michishita-Kioi, E.; Xi, Y.; Tasselli, L.; Kioi, M.; Moqtaderi, Z.; Tennen, R.I.; Paredes, S.; Young, N.L.; Chen, K.; et al. SIRT7 Links H3K18 Deacetylation to Maintenance of Oncogenic Transformation. Nature 2012, 487, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Haider, R.; Massa, F.; Kaminski, L.; Clavel, S.; Djabari, Z.; Robert, G.; Laurent, K.; Michiels, J.-F.; Durand, M.; Ricci, J.-E.; et al. Sirtuin 7: A New Marker of Aggressiveness in Prostate Cancer. Oncotarget 2017, 8, 77309–77316. [Google Scholar] [CrossRef]
- Seligson, D.B.; Horvath, S.; Shi, T.; Yu, H.; Tze, S.; Grunstein, M.; Kurdistani, S.K. Global Histone Modification Patterns Predict Risk of Prostate Cancer Recurrence. Nature 2005, 435, 1262–1266. [Google Scholar] [CrossRef]
- Bai, X.; Wu, L.; Liang, T.; Liu, Z.; Li, J.; Li, D.; Xie, H.; Yin, S.; Yu, J.; Lin, Q.; et al. Overexpression of Myocyte Enhancer Factor 2 and Histone Hyperacetylation in Hepatocellular Carcinoma. J. Cancer Res. Clin. Oncol. 2007, 134, 83–91. [Google Scholar] [CrossRef]
- Zhen, L.; Gui-lan, L.; Ping, Y.; Jin, H.; Ya-li, W. The Expression of H3K9Ac, H3K14Ac, and H4K20TriMe in Epithelial Ovarian Tumors and the Clinical Significance. Int. J. Gynecol. Cancer 2010, 20, 82–86. [Google Scholar] [CrossRef]
- Ellinger, J.; Kahl, P.; Von Der Gathen, J.; Rogenhofer, S.; Heukamp, L.C.; Gütgemann, I.; Walter, B.; Hofstädter, F.; Büttner, R.; Müller, S.C.; et al. Global Levels of Histone Modifications Predict Prostate Cancer Recurrence. Prostate 2010, 70, 61–69. [Google Scholar] [CrossRef]
- Padeken, J.; Methot, S.P.; Gasser, S.M. Establishment of H3K9-Methylated Heterochromatin and Its Functions in Tissue Differentiation and Maintenance. Nat. Rev. Mol. Cell Biol. 2022, 23, 623–640. [Google Scholar] [CrossRef]
- Vanacore, D.; Boccellino, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; Di Franco, R.; Romano, F.J.; Montanari, M.; La Mantia, E.; Piscitelli, R.; et al. Micrornas in Prostate Cancer: An Overview. Oncotarget 2017, 8, 50240–50251. [Google Scholar] [CrossRef]
- Cochetti, G.; Poli, G.; Guelfi, G.; Boni, A.; Egidi, M.G.; Mearini, E. Different Levels of Serum MicroRNAs in Prostate Cancer and Benign Prostatic Hyperplasia: Evaluation of Potential Diagnostic and Prognostic Role. OncoTargets Ther. 2016, 9, 7545–7553. [Google Scholar] [CrossRef]
- Kasomva, K.; Sen, A.; Paulraj, M.G.; Sailo, S.; Raphael, V.; Puro, K.; Assumi, S.R.; Ignacimuthu, S. Roles of MicroRNA in Prostate Cancer Cell Metabolism. Int. J. Biochem. Cell Biol. 2018, 102, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Baruah, M.M. The MicroRNA Signatures: Aberrantly Expressed MiRNAs in Prostate Cancer. Clin. Transl. Oncol. 2019, 21, 126–144. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Tran, N. MiRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Models Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef]
- Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA Biogenesis, Gene Silencing Mechanisms and Role in Breast, Ovarian and Prostate Cancer. Biochimie 2019, 167, 12–24. [Google Scholar] [CrossRef]
- Massillo, C.; Dalton, G.N.; Farré, P.L.; De Luca, P.; De Siervi, A. Implications of MicroRNA Dysregulation in the Development of Prostate Cancer. Reproduction 2017, 154, R81–R97. [Google Scholar] [CrossRef]
- Trümbach, D.; Prakash, N. The Conserved MiR-8/MiR-200 MicroRNA Family and Their Role in Invertebrate and Vertebrate Neurogenesis. Cell Tissue Res. 2015, 359, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Majidinia, M.; Mir, S.M.; Mirza-Aghazadeh-Attari, M.; Asghari, R.; Kafil, H.S.; Safa, A.; Mahmoodpoor, A.; Yousefi, B. MicroRNAs, DNA Damage Response and Ageing. Biogerontology 2020, 21, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Rawat, M.; Kadian, K.; Gupta, Y.; Kumar, A.; Chain, P.S.; Kovbasnjuk, O.; Kumar, S.; Parasher, G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes 2019, 10, 752. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakano, Y.; Onomoto, K.; Murakami, F.; Komori, C.; Suzuki, Y.; Yoneyama, M.; Ui-Tei, K. LGP2 Virus Sensor Regulates Gene Expression Network Mediated by TRBP-Bound MicroRNAs. Nucleic Acids Res. 2018, 46, 9134–9147. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-Evaluation of the Roles of DROSHA, Exportin 5, and DICER in MicroRNA Biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [PubMed]
- Stavast, C.; Erkeland, S. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ahmed, E.; Elareer, N.; Junejo, K.; Steinhoff, M.; Uddin, S. Role of MiRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019, 8, 840. [Google Scholar] [CrossRef] [PubMed]
- Porkka, K.P.; Pfeiffer, M.J.; Waltering, K.K.; Vessella, R.L.; Tammela, T.L.J.; Visakorpi, T. MicroRNA Expression Profiling in Prostate Cancer. Cancer Res. 2007, 67, 6130–6135. [Google Scholar] [CrossRef] [PubMed]
- KEGG PATHWAY: MicroRNAs in Cancer—Reference Pathway. Available online: https://www.kegg.jp/pathway/map=map05206&keyword=prostate%20cancer (accessed on 13 March 2023).
- Svoronos, A.A.; Campbell, S.G.; Engelman, D.M. MicroRNA Function Can Be Reversed by Altering Target Gene Expression Levels. iScience 2021, 24, 103208. [Google Scholar] [CrossRef]
- Rhodes, A.R.; Sober, A.J.; Day, C.L.; Melski, J.W.; Harrist, T.J.; Mihm, M.C., Jr.; Fitzpatrick, T.B. The Malignant Potential of Small Congenital Nevocellular Nevi. J. Am. Acad. Dermatol. 1982, 6, 230–241. [Google Scholar] [CrossRef]
- He, L.; Yao, H.; Fan, L.H.; Liu, L.; Qiu, S.; Li, X.; Gao, J.P.; Hao, C.Q. MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3. Genet. Mol. Res. 2013, 12, 1012–1021. [Google Scholar] [CrossRef]
- Leite, K.R.M.; Reis, S.T.; Viana, N.; Morais, D.R.; Moura, C.M.; Silva, I.A.; Pontes Jr, J.; Katz, B.; Srougi, M. Controlling RECK MiR21 Promotes Tumor Cell Invasion and Is Related to Biochemical Recurrence in Prostate Cancer. J. Cancer 2015, 6, 292–301. [Google Scholar] [CrossRef]
- Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 Directly Targets MARCKS and Promotes Apoptosis Resistance and Invasion in Prostate Cancer Cells. Biochem. Biophys. Res. Commun. 2009, 383, 280–285. [Google Scholar] [CrossRef]
- Rizzo, M. Mechanisms of Docetaxel Resistance in Prostate Cancer: The Key Role Played by MiRNAs. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2021, 1875, 188481. [Google Scholar] [CrossRef]
- Schramedei, K.; Mörbt, N.; Pfeifer, G.; Läuter, J.; Rosolowski, M.; Tomm, J.M.; von Bergen, M.; Horn, F.; Brocke-Heidrich, K. MicroRNA-21 Targets Tumor Suppressor Genes ANP32A and SMARCA4. Oncogene 2011, 30, 2975–2985. [Google Scholar] [CrossRef] [PubMed]
- Seputra, K.; Purnomo, B.; Susianti, H.; Kalim, H.; Purnomo, A. MiRNA-21 as Reliable Serum Diagnostic Biomarker Candidate for Metastatic Progressive Prostate Cancer: Meta-Analysis Approach. Med. Arch. 2021, 75, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.H.; Abdellateif, M.S.; Kassem, S.H.; Abd El Salam, M.A.; El Gammal, M.M. Diagnostic Significance of MiR-21, MiR-141, MiR-18a and MiR-221 as Novel Biomarkers in Prostate Cancer among Egyptian Patients. Andrologia 2019, 51, e13384. [Google Scholar] [CrossRef] [PubMed]
- Mehlich, D.; Garbicz, F.; Włodarski, P.K. The Emerging Roles of the Polycistronic MiR-106b∼25 Cluster in Cancer—A Comprehensive Review. Biomed. Pharmacother. 2018, 107, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.S.; Yi, M.; Esposito, D.; Glynn, S.A.; Starks, A.M.; Yang, Y.; Schetter, A.J.; Watkins, S.K.; Hurwitz, A.A.; Dorsey, T.H.; et al. MicroRNA-106b-25 Cluster Expression Is Associated with Early Disease Recurrence and Targets Caspase-7 and Focal Adhesion in Human Prostate Cancer. Oncogene 2013, 32, 4139–4147. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Mahjoubin Tehran, M.; Sahebkar, A.; Jalili, A.; Aghaee-Bakhtiari, S.H. Androgen Receptor-related Micro RNAs in Prostate Cancer and Their Role in Antiandrogen Drug Resistance. J. Cell Physiol. 2020, 235, 3222–3234. [Google Scholar] [CrossRef] [PubMed]
- Fredsøe, J.; Rasmussen, A.K.I.; Thomsen, A.R.; Mouritzen, P.; Høyer, S.; Borre, M.; Ørntoft, T.F.; Sørensen, K.D. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-Free Urine. Eur. Urol. Focus 2018, 4, 825–833. [Google Scholar] [CrossRef]
- Nip, H.; Dar, A.A.; Saini, S.; Colden, M.; Varahram, S.; Chowdhary, H.; Yamamura, S.; Mitsui, Y.; Tanaka, Y.; Kato, T.; et al. Oncogenic MicroRNA-4534 Regulates PTEN Pathway in Prostate Cancer. Oncotarget 2016, 7, 68371–68384. [Google Scholar] [CrossRef]
- Aghdam, S.G.; Ebrazeh, M.; Hemmatzadeh, M.; Seyfizadeh, N.; Shabgah, A.G.; Azizi, G.; Ebrahimi, N.; Babaie, F.; Mohammadi, H. The Role of MicroRNAs in Prostate Cancer Migration, Invasion, and Metastasis. J. Cell. Physiol. 2019, 234, 9927–9942. [Google Scholar] [CrossRef]
- Kotarac, N.; Dobrijevic, Z.; Matijasevic, S.; Savic-Pavicevic, D.; Brajuskovic, G. Analysis of Association of Potentially Functional Genetic Variants within Genes Encoding MiR-34b/c, MiR-378 and MiR-143/145 with Prostate Cancer in Serbian Population. EXCLI J. 2019, 18, 515–529. [Google Scholar] [CrossRef]
- Chauhan, N.; Manojkumar, A.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. MicroRNA-205 in Prostate Cancer: Overview to Clinical Translation. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188809. [Google Scholar] [CrossRef] [PubMed]
- Suriya Muthukumaran, N.; Velusamy, P.; Akino Mercy, C.S.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J. Pers. Med. 2022, 12, 1329. [Google Scholar] [CrossRef] [PubMed]
- Nanta, R.; Kumar, D.; Meeker, D.; Rodova, M.; Van Veldhuizen, P.J.; Shankar, S.; Srivastava, R.K. NVP-LDE-225 (Erismodegib) inhibits epithelial–mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2013, 2, e42. [Google Scholar] [CrossRef] [PubMed]
- Bonci, D.; Coppola, V.; Musumeci, M.; Addario, A.; Giuffrida, R.; Memeo, L.; D’Urso, L.; Pagliuca, A.; Biffoni, M.; Labbaye, C.; et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 2008, 14, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Zidan, H.E.; Abdul-Maksoud, R.S.; Elsayed, W.S.H.; Desoky, E.A.M. Diagnostic and Prognostic Value of Serum MiR-15a and MiR-16-1 Expression among Egyptian Patients with Prostate Cancer: SERUM MIR-15A AND MIR-16-1 IN PROSTATE CANCER. IUBMB Life 2018, 70, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Chiyomaru, T.; Yamamura, S.; Fukuhara, S.; Hidaka, H.; Majid, S.; Saini, S.; Arora, S.; Deng, G.; Shahryari, V.; Chang, I.; et al. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS ONE 2013, 8, e58929. [Google Scholar] [CrossRef]
- Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in Circulating MicroRNA Levels Associated with Prostate Cancer. Br. J. Cancer 2012, 106, 768–774. [Google Scholar] [CrossRef]
- Rodríguez, M.; Bajo-Santos, C.; Hessvik, N.P.; Lorenz, S.; Fromm, B.; Berge, V.; Sandvig, K.; Linē, A.; Llorente, A. Identification of Non-Invasive MiRNAs Biomarkers for Prostate Cancer by Deep Sequencing Analysis of Urinary Exosomes. Mol. Cancer 2017, 16, 156. [Google Scholar] [CrossRef]
- Brase, J.C.; Johannes, M.; Schlomm, T.; Fälth, M.; Haese, A.; Steuber, T.; Beissbarth, T.; Kuner, R.; Sültmann, H. Circulating MiRNAs Are Correlated with Tumor Progression in Prostate Cancer. Int. J. Cancer 2011, 128, 608–616. [Google Scholar] [CrossRef]
- Porzycki, P.; Ciszkowicz, E.; Semik, M.; Tyrka, M. Combination of Three MiRNA (MiR-141, MiR-21, and MiR-375) as Potential Diagnostic Tool for Prostate Cancer Recognition. Int. Urol. Nephrol. 2018, 50, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Y.-Y.; Wang, J.; Zeng, X.-F.; Li, R.; Kang, W.; Hao, X.-K. Exosomal MicroRNA-141 Is Upregulated in the Serum of Prostate Cancer Patients. OncoTargets Ther. 2016, 9, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, Y.; Jia, J.; Mao, X.; Stankiewicz, E.; Scandura, G.; Burke, E.; Xu, L.; Marzec, J.; Davies, C.R.; et al. The Identification of Plasma Exosomal MiR-423-3p as a Potential Predictive Biomarker for Prostate Cancer Castration-Resistance Development by Plasma Exosomal MiRNA Sequencing. Front. Cell Dev. Biol. 2020, 8, 602493. [Google Scholar] [CrossRef]
- Alix-Panabières, C. Circulating Tumor Cells: Finding Rare Events for a Huge Knowledge of Cancer Dissemination. Cells 2020, 9, 661. [Google Scholar] [CrossRef]
- Chisholm, J.; Haas-Neill, S.; Margetts, P.; Al-Nedawi, K. Characterization of Proteins, MRNAs, and MiRNAs of Circulating Extracellular Vesicles from Prostate Cancer Patients Compared to Healthy Subjects. Front. Oncol. 2022, 12, 895555. [Google Scholar] [CrossRef]
- Shiva, M.; Wei, C.; Molana, H.; Nabi, G. Cost-Effectiveness of Prostate Cancer Detection in Biopsy-Naïve Men: Ultrasound Shear Wave Elastography vs. Multiparametric Diagnostic Magnetic Resonance Imaging. Healthcare 2022, 10, 254. [Google Scholar] [CrossRef]
- Worthington, M.; Aurelus, C.; Banerjee, N.; Krauss, C.; Kahan, W.; Banerjee, S.; Gavin, S.; Bartlett, V.; Payne, G.; Rousch, J.; et al. A Study to Investigate the Role of Noncoding RNA MiR146 Alpha as a Potential Biomarker in Prostate Cancer. J. Anal. Oncol. 2022, 11, 21–23. [Google Scholar] [CrossRef]
- Juracek, J.; Madrzyk, M.; Stanik, M.; Ruckova, M.; Trachtova, K.; Malcikova, H.; Lzicarova, E.; Barth, D.A.; Pichler, M.; Slaby, O. A Tissue MiRNA Expression Pattern Is Associated with Disease Aggressiveness of Localized Prostate Cancer. Prostate 2023, 83, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Sancer, O.; Koşar, P.A.; Tefebaşı, M.Y.; Ergün, O.; Demir, M.; Koşar, A. Determination of miRNA expression profile in patients with prostate cancer and benign prostate hyperplasia. Turk. J. Med Sci. 2022, 52, 788–795. [Google Scholar] [CrossRef]
- DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. (Eds.) DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2019; ISBN 978-1-4963-9463-7. [Google Scholar]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef] [PubMed]
- Drost, F.-J.H.; Osses, D.F.; Nieboer, D.; Steyerberg, E.W.; Bangma, C.H.; Roobol, M.J.; Schoots, I.G. Prostate MRI, with or without MRI-Targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer. Cochrane Database Syst. Rev. 2019, 2019, CD012663. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, D.W.; Vis, L.C.; Kearney, T.; Sharp, L.; Bennett, D.; Wilding, S.; Downing, A.; Wright, P.; Watson, E.; Wagland, R.; et al. Quality of Life among Symptomatic Compared to PSA-Detected Prostate Cancer Survivors—Results from a UK Wide Patient-Reported Outcomes Study. BMC Cancer 2019, 19, 947. [Google Scholar] [CrossRef]
- Carlsson, S.V.; Vickers, A.J. Screening for Prostate Cancer. Med. Clin. N. Am. 2020, 104, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, P.C.; Aguilar, J.C.; Mujica, K.; Zuñiga, A.; Godoy, A.S.; Smith, G.J.; Mohler, J.L.; Vitagliano, G.; San Francisco, I.F. Active Surveillance in Prostate Cancer: Current and Potentially Emerging Biomarkers for Patient Selection Criteria. Urol. Int. 2022, 106, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Djulbegovic, M.; Jung, J.H.; Hwang, E.C.; Zhou, Q.; Cleves, A.; Agoritsas, T.; Dahm, P. Prostate Cancer Screening with Prostate-Specific Antigen (PSA) Test: A Systematic Review and Meta-Analysis. BMJ 2018, 362, k3519. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- Schröder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.J.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Screening and Prostate-Cancer Mortality in a Randomized European Study. N. Engl. J. Med. 2009, 360, 1320–1328. [Google Scholar] [CrossRef]
- Schröder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.J.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Prostate-Cancer Mortality at 11 Years of Follow-Up. N. Engl. J. Med. 2012, 366, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Andriole, G.L.; Crawford, E.D.; Grubb, R.L.; Buys, S.S.; Chia, D.; Church, T.R.; Fouad, M.N.; Gelmann, E.P.; Kvale, P.A.; Reding, D.J.; et al. Mortality Results from a Randomized Prostate-Cancer Screening Trial. N. Engl. J. Med. 2009, 360, 1310–1319. [Google Scholar] [CrossRef]
- Patysheva, M.; Larionova, I.; Stakheyeva, M.; Grigoryeva, E.; Iamshchikov, P.; Tarabanovskaya, N.; Weiss, C.; Kardashova, J.; Frolova, A.; Rakina, M.; et al. Effect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front. Oncol. 2022, 11, 800235. [Google Scholar] [CrossRef]
- Larionova, I.; Patysheva, M.; Iamshchikov, P.; Kazakova, E.; Kazakova, A.; Rakina, M.; Grigoryeva, E.; Tarasova, A.; Afanasiev, S.; Bezgodova, N.; et al. PFKFB3 Overexpression in Monocytes of Patients with Colon but Not Rectal Cancer Programs Pro-Tumor Macrophages and Is Indicative for Higher Risk of Tumor Relapse. Front. Immunol. 2023, 13, 1080501. [Google Scholar] [CrossRef] [PubMed]
- Patysheva, M.; Frolova, A.; Larionova, I.; Afanas’ev, S.; Tarasova, A.; Cherdyntseva, N.; Kzhyshkowska, J. Monocyte Programming by Cancer Therapy. Front. Immunol. 2022, 13, 994319. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Neyen, C.; Gordon, S. Role of Macrophage Scavenger Receptors in Atherosclerosis. Immunobiology 2012, 217, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Mosig, S.; Rennert, K.; Krause, S.; Kzhyshkowska, J.; Neunübel, K.; Heller, R.; Funke, H. Different Functions of Monocyte Subsets in Familial Hypercholesterolemia: Potential Function of CD14+ CD16+ Monocytes in Detoxification of Oxidized LDL. FASEB J. 2009, 23, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, L.; Winther, M.P. Macrophage Subsets in Atherosclerosis as Defined by Single-cell Technologies. J. Pathol. 2020, 250, 705–714. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Kramer, G.; Marberger, M.; Montironi, R.; Nelson, W.; Schröder, F.; Sciarra, A.; Tubaro, A. The Controversial Relationship Between Benign Prostatic Hyperplasia and Prostate Cancer: The Role of Inflammation. Eur. Urol. 2011, 60, 106–117. [Google Scholar] [CrossRef]
- Welch, H.G.; Albertsen, P.C. Reconsidering Prostate Cancer Mortality—The Future of PSA Screening. N. Engl. J. Med. 2020, 382, 1557–1563. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Andersson, J.; Palsdottir, T.; Lantz, A.; Aly, M.; Grönberg, H.; Egevad, L.; Eklund, M.; Nordström, T. Digital Rectal Examination in Stockholm3 Biomarker-Based Prostate Cancer Screening. Eur. Urol. Open Sci. 2022, 44, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Javaid, A.; Amjad, F.; Youssif, T.A.; Afzal, S. An Overview of Prostate Cancer (PCa) Diagnosis: Potential Role of MiRNAs. Transl. Oncol. 2022, 26, 101542. [Google Scholar] [CrossRef]
- Hugosson, J.; Roobol, M.J.; Månsson, M.; Tammela, T.L.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Carlsson, S.V.; Talala, K.M.; et al. A 16-Yr Follow-up of the European Randomized Study of Screening for Prostate Cancer. Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef]
- Murata, M. Inflammation and Cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef]
- Thapa, D.; Ghosh, R. Chronic Inflammatory Mediators Enhance Prostate Cancer Development and Progression. Biochem. Pharmacol. 2015, 94, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Gray, K.P.; Harshman, L.C.; Evan, C.; Nakabayashi, M.; Fichorova, R.; Rider, J.; Mucci, L.; Kantoff, P.W.; Sweeney, C.J. Elevated IL-8, TNF-α, and MCP-1 in Men with Metastatic Prostate Cancer Starting Androgen-Deprivation Therapy (ADT) Are Associated with Shorter Time to Castration-Resistance and Overall Survival: Cytokines and Prostate Cancer. Prostate 2014, 74, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Kattan, M.W.; Shariat, S.F.; Andrews, B.; Zhu, K.; Canto, E.; Matsumoto, K.; Muramoto, M.; Scardino, P.T.; Ohori, M.; Wheeler, T.M.; et al. The Addition of Interleukin-6 Soluble Receptor and Transforming Growth Factor Beta 1 Improves a Preoperative Nomogram for Predicting Biochemical Progression in Patients with Clinically Localized Prostate Cancer. J. Clin. Oncol. 2003, 21, 3573–3579. [Google Scholar] [CrossRef]
- Shariat, S.F.; Shalev, M.; Menesses-Diaz, A.; Kim, I.Y.; Kattan, M.W.; Wheeler, T.M.; Slawin, K.M. Preoperative Plasma Levels of Transforming Growth Factor Beta 1 (TGF-β 1) Strongly Predict Progression in Patients Undergoing Radical Prostatectomy. J. Clin. Oncol. 2001, 19, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- David, J.W.; Waugh, D.J.J.; Wilson, C.; Seaton, A.; Maxwell, P.J. Multi-Faceted Roles for CXC-Chemokines in Prostate Cancer Progression. Front. Biosci. 2008, 13, 4595–4604. [Google Scholar] [CrossRef]
- Christensson, A.; Björk, T.; Nilsson, O.; Dahlén, U.; Matikainen, M.-T.; Cockett, A.T.K.; Abrahamsson, P.-A.; Lilja, H. Serum Prostate Specific Antigen Complexed to α 1-Antichymotrypsin as an Indicator of Prostate Cancer. J. Urol. 1993, 150, 100–105. [Google Scholar] [CrossRef]
- Väisänen, M.-R.; Väisänen, T.; Jukkola-Vuorinen, A.; Vuopala, K.S.; Desmond, R.; Selander, K.S.; Vaarala, M.H. Expression of Toll-like Receptor-9 Is Increased in Poorly Differentiated Prostate Tumors: Increased TLR9 Expression in Prostate Cancer. Prostate 2010, 70, 817–824. [Google Scholar] [CrossRef]
- Ebelt, K.; Babaryka, G.; Frankenberger, B.; Stief, C.G.; Eisenmenger, W.; Kirchner, T.; Schendel, D.J.; Noessner, E. Prostate Cancer Lesions Are Surrounded by FOXP3+, PD-1+ and B7-H1+ Lymphocyte Clusters. Eur. J. Cancer 2009, 45, 1664–1672. [Google Scholar] [CrossRef]
- Ness, N.; Andersen, S.; Valkov, A.; Nordby, Y.; Donnem, T.; Al-Saad, S.; Busund, L.-T.; Bremnes, R.M.; Richardsen, E. Infiltration of CD8+ Lymphocytes Is an Independent Prognostic Factor of Biochemical Failure-Free Survival in Prostate Cancer: CD8+ Lymphocytes in Prostate Cancer. Prostate 2014, 74, 1452–1461. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, J.; Cai, C.; Lu, J.; Wu, W.; Zeng, G. Immune-Related Biomarker Risk Score Predicts Prognosis in Prostate Cancer. Aging 2020, 12, 22776–22793. [Google Scholar] [CrossRef]
- Noureldin, M.; Eldred-Evans, D.; Khoo, C.C.; Winkler, M.; Sokhi, H.; Tam, H.; Ahmed, H.U. Review Article: MRI-Targeted Biopsies for Prostate Cancer Diagnosis and Management. World J. Urol. 2021, 39, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Murray, T.B.J. The Pathogenesis of Prostate Cancer. In Prostate Cancer; Bott, S.R., Lim Ng, K., Eds.; Exon Publications: Brisbane City, Australia, 2021; pp. 29–42. ISBN 978-0-645-00175-4. [Google Scholar]
- Van Leenders, G.J.L.H.; Van Der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef] [PubMed]
- Sauter, G.; Steurer, S.; Clauditz, T.S.; Krech, T.; Wittmer, C.; Lutz, F.; Lennartz, M.; Janssen, T.; Hakimi, N.; Simon, R.; et al. Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur. Urol. 2016, 69, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Amin, M.B.; Fine, S.W.; Algaba, F.; Aron, M.; Baydar, D.E.; Beltran, A.L.; Brimo, F.; Cheville, J.C.; Colecchia, M.; et al. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch. Pathol. Lab. Med. 2021, 145, 461–493. [Google Scholar] [CrossRef]
- Alford, A.V.; Brito, J.M.; Yadav, K.K.; Yadav, S.S.; Tewari, A.K.; Renzulli, J. The Use of Biomarkers in Prostate Cancer Screening and Treatment. Rev. Urol. 2017, 19, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Naya, Y.; Okihara, K. Role of Complexed PSA in the Early Detection of Prostate Cancer. J. Natl. Compr. Cancer Netw. 2004, 2, 209–212. [Google Scholar] [CrossRef]
- Darson, M.F.; Pacelli, A.; Roche, P.; Rittenhouse, H.G.; Wolfert, R.L.; Young, C.Y.F.; Klee, G.G.; Tindall, D.J.; Bostwick, D.G. Human Glandular Kallikrein 2 (HK2) Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma: A Novel Prostate Cancer Marker. Urology 1997, 49, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Deebel, N.A.; Morin, J.P.; Autorino, R.; Vince, R.; Grob, B.; Hampton, L.J. Prostate Cancer in Transgender Women: Incidence, Etiopathogenesis, and Management Challenges. Urology 2017, 110, 166–171. [Google Scholar] [CrossRef]
- Porzycki, P.; Ciszkowicz, E. Modern Biomarkers in Prostate Cancer Diagnosis. Cent. Eur. J. Urol. 2020, 73, 300–306. [Google Scholar] [CrossRef]
- Jairath, N.K.; Dal Pra, A.; Vince, R.; Dess, R.T.; Jackson, W.C.; Tosoian, J.J.; McBride, S.M.; Zhao, S.G.; Berlin, A.; Mahal, B.A.; et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur. Urol. 2021, 79, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and Validation of a Prostate Cancer Genomic Classifier That Predicts Early Metastasis Following Radical Prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef] [PubMed]
- Den, R.B.; Yousefi, K.; Trabulsi, E.J.; Abdollah, F.; Choeurng, V.; Feng, F.Y.; Dicker, A.P.; Lallas, C.D.; Gomella, L.G.; Davicioni, E.; et al. Genomic Classifier Identifies Men with Adverse Pathology after Radical Prostatectomy Who Benefit from Adjuvant Radiation Therapy. J. Clin. Oncol. 2015, 33, 944–951. [Google Scholar] [CrossRef]
- Cullen, J.; Rosner, I.L.; Brand, T.C.; Zhang, N.; Tsiatis, A.C.; Moncur, J.; Ali, A.; Chen, Y.; Knezevic, D.; Maddala, T.; et al. A Biopsy-Based 17-Gene Genomic Prostate Score Predicts Recurrence After Radical Prostatectomy and Adverse Surgical Pathology in a Racially Diverse Population of Men with Clinically Low- and Intermediate-Risk Prostate Cancer. Eur. Urol. 2015, 68, 123–131. [Google Scholar] [CrossRef]
- Cuzick, J.; Swanson, G.P.; Fisher, G.; Brothman, A.R.; Berney, D.M.; Reid, J.E.; Mesher, D.; Speights, V.; Stankiewicz, E.; Foster, C.S.; et al. Prognostic Value of an RNA Expression Signature Derived from Cell Cycle Proliferation Genes in Patients with Prostate Cancer: A Retrospective Study. Lancet Oncol. 2011, 12, 245–255. [Google Scholar] [CrossRef]
- Larionova, I.; Tuguzbaeva, G.; Ponomaryova, A.; Stakheyeva, M.; Cherdyntseva, N.; Pavlov, V.; Choinzonov, E.; Kzhyshkowska, J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front. Oncol. 2020, 10, 566511. [Google Scholar] [CrossRef]
- Kazakova, E.; Iamshchikov, P.; Larionova, I.; Kzhyshkowska, J. Macrophage Scavenger Receptors: Tumor Support and Tumor Inhibition. Front. Oncol. 2023, 12, 1096897. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Yin, S.; Liu, T.; Riabov, V.; Mitrofanova, I. Role of Chitinase-like Proteins in Cancer. Biol. Chem. 2016, 397, 231–247. [Google Scholar] [CrossRef]
- Larionova, I.; Kazakova, E.; Gerashchenko, T.; Kzhyshkowska, J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers 2021, 13, 3253. [Google Scholar] [CrossRef] [PubMed]
- Danilko, K.V.; Enikeeva, K.I.; Kabirov, I.R.; Maksimova, S.Y.; Vishnyakov, D.S.; Kzhyshkowska, J.G.; Pavlov, V.N. Morphological Heterogeneity of Intratumoral Macrophages in Prostate Tumors. Sib. Onkol. Ž. 2022, 21, 81–90. [Google Scholar] [CrossRef]
- Larionova, I.; Kazakova, E.; Patysheva, M.; Kzhyshkowska, J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers 2020, 12, 1411. [Google Scholar] [CrossRef]
- Descotes, J.-L. Diagnosis of Prostate Cancer. Asian J. Urol. 2019, 6, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.D.; Wender, R.C.; Etzioni, R.B.; Thompson, I.M.; D’Amico, A.V.; Volk, R.J.; Brooks, D.D.; Dash, C.; Guessous, I.; Andrews, K.; et al. American Cancer Society Guideline for the Early Detection of Prostate Cancer: Update 2010. CA Cancer J. Clin. 2010, 60, 70–98. [Google Scholar] [CrossRef] [PubMed]
- Tikkinen, K.A.O.; Dahm, P.; Lytvyn, L.; Heen, A.F.; Vernooij, R.W.M.; Siemieniuk, R.A.C.; Wheeler, R.; Vaughan, B.; Fobuzi, A.C.; Blanker, M.H.; et al. Prostate Cancer Screening with Prostate-Specific Antigen (PSA) Test: A Clinical Practice Guideline. BMJ 2018, 362, k3581. [Google Scholar] [CrossRef] [PubMed]
- Derin, O.; Fonseca, L.; Sanchez-Salas, R.; Roberts, M.J. Infectious Complications of Prostate Biopsy: Winning Battles but Not War. World J. Urol. 2020, 38, 2743–2753. [Google Scholar] [CrossRef]
- Quon, J.S.; Moosavi, B.; Khanna, M.; Flood, T.A.; Lim, C.S.; Schieda, N. False Positive and False Negative Diagnoses of Prostate Cancer at Multi-Parametric Prostate MRI in Active Surveillance. Insights Imaging 2015, 6, 449–463. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- O’Shea, A.; Harisinghani, M. PI-RADS: Multiparametric MRI in Prostate Cancer. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 523–532. [Google Scholar] [CrossRef]
- Mitrofanova, I.; Zavyalova, M.; Telegina, N.; Buldakov, M.; Riabov, V.; Cherdyntseva, N.; Kzhyshkowska, J. Tumor-Associated Macrophages in Human Breast Cancer Parenchyma Negatively Correlate with Lymphatic Metastasis after Neoadjuvant Chemotherapy. Immunobiology 2017, 222, 101–109. [Google Scholar] [CrossRef]
- Rafalsky, V.V.; Zyubin, A.Y.; Moiseeva, E.M.; Samusev, I.G. Prospects for Raman Spectroscopy in Cardiology. Cardiovasc. Ther. Prev. 2020, 19, 70–77. [Google Scholar] [CrossRef]
- Aubertin, K.; Trinh, V.Q.; Jermyn, M.; Baksic, P.; Grosset, A.-A.; Desroches, J.; St-Arnaud, K.; Birlea, M.; Vladoiu, M.C.; Latour, M.; et al. Mesoscopic Characterization of Prostate Cancer Using Raman Spectroscopy: Potential for Diagnostics and Therapeutics. BJU Int. 2018, 122, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Zorn, K.C.; Tremblay, J.-P.; Desroches, J.; Dallaire, F.; Aubertin, K.; Marple, E.; Kent, C.; Leblond, F.; Trudel, D.; et al. Integration of a Raman Spectroscopy System to a Robotic-Assisted Surgical System for Real-Time Tissue Characterization during Radical Prostatectomy Procedures. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Medipally, D.K.R.; Cullen, D.; Untereiner, V.; Sockalingum, G.D.; Maguire, A.; Nguyen, T.N.Q.; Bryant, J.; Noone, E.; Bradshaw, S.; Finn, M.; et al. Vibrational Spectroscopy of Liquid Biopsies for Prostate Cancer Diagnosis. Ther. Adv. Med. Oncol. 2020, 12, 175883592091849. [Google Scholar] [CrossRef] [PubMed]
- Del Mistro, G.; Cervo, S.; Mansutti, E.; Spizzo, R.; Colombatti, A.; Belmonte, P.; Zucconelli, R.; Steffan, A.; Sergo, V.; Bonifacio, A. Surface-Enhanced Raman Spectroscopy of Urine for Prostate Cancer Detection: A Preliminary Study. Anal. Bioanal. Chem. 2015, 407, 3271–3275. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chi, J.; Zheng, Z.; Attygalle, A.; Kim, I.Y.; Du, H. Therapeutic Prognosis of Prostate Cancer Using Surface-enhanced Raman Scattering of Patient Urine and Multivariate Statistical Analysis. J. Biophotonics 2021, 14, e202000275. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Yang, X.; Shao, X.; Li, T.; Chen, N.; Chen, Z.; Xue, W.; Pan, J.; Liu, S. Raman Spectroscopy Reveals Abnormal Changes in the Urine Composition of Prostate Cancer: An Application of an Intelligent Diagnostic Model with a Deep Learning Algorithm. Adv. Intell. Syst. 2021, 3, 2000090. [Google Scholar] [CrossRef]
- Chen, N.; Rong, M.; Shao, X.; Zhang, H.; Liu, S.; Dong, B.; Xue, W.; Wang, T.; Li, T.; Pan, J. Surface-Enhanced Raman Spectroscopy of Serum Accurately Detects Prostate Cancer in Patients with Prostate-Specific Antigen Levels of 4–10 Ng/ML. Int. J. Nanomed. 2017, 12, 5399–5407. [Google Scholar] [CrossRef]
Region | Incidence | Deaths | 5-Year Prevalence (All Ages) | |||||
---|---|---|---|---|---|---|---|---|
Number | % of All Sites | Rank | Number | % of All Sites | Rank | Number | Per 100,000 | |
World | 1,414,259 | 7.3% | 3 | 375,304 | 3.8% | 8 | 4,956,901 | 126.13 |
Europe | 473,344 | 10.8% | 3 | 108,088 | 5.5% | 5 | 1,873,814 | 518.11 |
Northern America | 239,574 | 9.4% | 3 | 37,192 | 5.3% | 5 | 929,921 | - |
Latin America and the Caribbean | 214,522 | 14.6% | 1 | 57,415 | 8.0% | 3 | 709,119 | 220.48 |
Asia | 371,225 | 3.9% | 8 | 120,593 | 2.1% | 14 | 1,176,781 | 49.59 |
Africa | 93,173 | 8.4% | 3 | 47,249 | 6.6% | 4 | 178,197 | 26.60 |
Oceania | 22,421 | 8.8% | 2 | 4767 | 6.9 | 4 | 89,069 | 416.92 |
Russia Federation | 46,454 | 7.9% | 3 | 14,434 | 4.6 | 7 | 169,221 | 250.18 |
miRNA | Function | Experimental Models (Cell Lines, Animal Models) | Patient Cohort, Size, Age, and Geographic Location, Groups of Comparison | Reference |
---|---|---|---|---|
miR-18a | Increasing cancer progression | - | 160 patients, average age 56.8 ± 12 including stage I, II, and IV presenting to the National Cancer Institute Cairo compared to 50 normal control healthy male individuals | [119] |
miR-21 | Accelerating tumor invasion and inducing castration resistance | - | 170 patients older than 45 years from Zagazig University Hospitals, Egypt compared to 70 healthy men | [125] |
miR-32 | Inhibition of apoptosis and increased proliferation | transgenic mir-32 mice | - | [30] |
miR-106/miR-25 | Increasing cancer progression | LNCaP cells PC-3 cells | - | [31] |
miR-125b | Increase in cell proliferation and suppression of apoptosis | The human PC cell lines: C4-2 CWR22Rv1 BCa cell lines: T24, TCC-SUP, UMUC3, TCC-5637, and 293T | - | [123] |
miR-141 | Development of castration resistance | LNCaP cells PC-3 cells | - | [125,126,127] |
miR-221/miR-222 | Increased cell proliferation, invasion, cell survival | LNCaP, PC3 | - | [128] |
miR-375 | Diagnostics | LNCaP, PC3 | - | [127] |
miR-650 | Reduced expression of the cellular stress response gene 1 (CSR1). | PC3 | 216 patients aged from 45 through 79 years from Pittsburgh, USA compared to 77 healthy men | [129] |
miR-4534 | Downregulating the tumor suppressor PTEN gene | LNCaP, PC3 | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafikova, G.; Gilyazova, I.; Enikeeva, K.; Pavlov, V.; Kzhyshkowska, J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int. J. Mol. Sci. 2023, 24, 12797. https://doi.org/10.3390/ijms241612797
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. International Journal of Molecular Sciences. 2023; 24(16):12797. https://doi.org/10.3390/ijms241612797
Chicago/Turabian StyleRafikova, Guzel, Irina Gilyazova, Kadriia Enikeeva, Valentin Pavlov, and Julia Kzhyshkowska. 2023. "Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers" International Journal of Molecular Sciences 24, no. 16: 12797. https://doi.org/10.3390/ijms241612797
APA StyleRafikova, G., Gilyazova, I., Enikeeva, K., Pavlov, V., & Kzhyshkowska, J. (2023). Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. International Journal of Molecular Sciences, 24(16), 12797. https://doi.org/10.3390/ijms241612797