Old and New Adjunctive Therapies in Celiac Disease and Refractory Celiac Disease: A Review
Abstract
:1. Introduction
2. Results
2.1. Adjunctive Therapies in Celiac Disease
- Old Adjunctive Therapies in CD
2.1.1. Corticosteroid
2.1.2. Mesalamine
2.1.3. Vitamin D
- New Adjunctive Therapies in CD
2.1.4. Tight Junction Modulation
2.1.5. Transglutaminase II Inhibitors
2.1.6. Endopeptidases
2.1.7. Gluten Sequestration
2.1.8. Nanoparticles for Gliadin Presentation
2.1.9. IL-15 Signalling
2.1.10. Therapeutic Vaccine
2.1.11. Prebiotics and Probiotics
2.2. Management of Slow Responder CD Patients
2.3. Adjunctive Therapies in Refractory Celiac Disease
- Old Adjunctive Therapies in RCD
Studies | Study Design | Population | Follow-Up | Biochemical Outcome | Histological Outcome | Clinical Outcome | |||
---|---|---|---|---|---|---|---|---|---|
Analysed Treatment: Prednisolone | |||||||||
Alfred J Wall, 1970 [24] | Prospective | 5 CD | 5 weeks | Faecal fat excretion | n.a. | Enterocyte height, intraepithelial lymphocytes | n.a. | n.a. | n.a. |
Shalimar 2012 [29] | RCT | 33 CD (16 GFD and prednisolone vs. GFD) | 2 months | h2ax | p = 0.04 | n.a. | n.a. | n.a. | n.a. |
P53 | p = 0.15 | ||||||||
AIF | p = 0.7 | ||||||||
M30 | p = 0.9 | ||||||||
CC3 | p = 0.6 | ||||||||
KI-67 | p = 0.5 | ||||||||
Abbas, 2018 [28] | RCT | 28 CD (14 GFD and prednisolone vs. GFD) | 12 months | n.a. | n.a. | Marsh | p = 0.08 | Number stools Weight | p = 0.22 p = 0.9 |
Analysed treatment: Betamethasone valerate and clobetasone butyrate | |||||||||
Bramble, 1981 [25] | Prospective | 10 CD | 12 months | Xylose excretion Faecal fat excretion | p < 0.01 p < 0.02 | Intraepithelial lymphocytes enterocyte height | p < 0.01 p < 0.01 | n.a. | n.a. |
Analysed treatment: Fluticasone propionate | |||||||||
Mitchison, 1991 [26] | Prospective | 12 CD | 6 weeks | Albumin, Hb Lactulose/mannitol excretion ratio | p < 0.01 p < 0.05 | Intraepithelial lymphocytes Enterocyte height Enterocytes/GR ratio Alkaline phoshatase, lactase, sucrase activities | p = 0.002 p < 0.001 p = 0.002 p < 0.05 | Weight gain, bowel frequency, stool consistency | p < 0.05 |
Zaitoun, 2007 [27] | Prospective | 10 CD | 6 weeks | n.a. | n.a. | Reduction intraepithelial lymphocyte Epithelium surface area | p < 0.01 p < 0.001 | n.a. | n.a. |
Analysed treatment: Bifidobacterium longum CECT 7347 | |||||||||
Olivares, 2014 [61] | RCT | 33 CD (17 B. Longum vs. 16 placebo) | 3 months | Decreased peripheral T CD3+ Content of sIgA in stools | p = 0.004 p = 0.011 | no data | n.a. | Height percentile increases | p = 0.048 |
Analysed treatment: Mesalamine | |||||||||
Benedetti, 2018 [33] | In vitro study | 20 organotypic culture | Incubated for 24 h | n.a. | n.a. | Decrease in SOD/catalase ratio 4HNE Decrease NFKb and NOS2 in 5ASA-CD cultures | p < 0.0005 p < 0.005 p < 0.005 | n.a. | n.a. |
Analysed treatment: cholecalciferol (vitamin D3) | |||||||||
Trasciatti, 2022 [36] | Prospective (murine model) | 103 CD (90 cholecalciferol; 13 placebo) | 12 weeks | n.a. | n.a. | Villi lengthCD3 ZO-1 8 | p < 0.0001 p = 0.002 (villus) p = 0.027 (crypt) | n.a. | n.a. |
Analysed treatment: Budesonide | |||||||||
Ciacci, 2009 [30] | RCT | 20 CD (10 GFD and Budesonide vs. GFD) | 1 months | HLA-DR Thirosine phosphorylase ICAM-1 COX-2 | p < 0.005 no data no data p < 0.05 | n.a. | n.a. | Stools weight | 0.016 |
Newnham, 2021 [31] | RCT | 37 CD (19 Budesonide vs. Placebo) | 12 months | n.a. | n.a. | Marsh | p = 0.032 | n.a. | n.a. |
2.3.1. Corticosteroid
2.3.2. Mesalamine
2.3.3. Immunomodulator
- New Adjunctive Therapies in RCD
2.3.4. Biological Therapy and Small Molecules
2.4. Management of Refractory Celiac Disease Patients
Studies | Study Design | Population | Follow-Up | Biochemical Outcome | Histological Outcome | Clinical Outcome | |||
---|---|---|---|---|---|---|---|---|---|
Analysed Treatment: Steroid | |||||||||
Mukewar, 2017 [20] | Retrospective | 52 RCD | 17 Months | n.a. | n.a. | Marsh classification | Histological improvement in 60% of patients with RCD-I; 55% in RCD-II p = 0.19 | Stool frequency, Weight gain | Clinical improvement in 68% of patients with RCD-I77% in RCD II p = 0.48 |
Brar, 2007 [77] | Retrospective | 29 RCD | 7 Months | n.a. | n.a. | n.a. | n.a. | Stool frequency | Clinical improvement |
Analysed treatment: Steroid-Azathioprine | |||||||||
Goerres, 2003 [81] | Prospective | 10 RCD-I; 8 RCD-II | 12 Months | Hemoglobin, serum albumin; folic acid | Biochemical improvement | Marsh classification | Histological improvement in RCD-I | Abdominal pain, diarrhoea and weight loss, prednisone (mg/day) | Clinical improvement |
Tack, 2012 [82] | Prospective | 12 RCD-I | 24 Months | Hemoglobin concentration, serum albumin, | Biochemical improvement | Marsh classification | Histological improvement | Median weight, BMI, prednisone (mg/day) | Clinical improvement |
Analysed treatment: SIRM-Budesonide | |||||||||
Jamma, 2011 [79] | Retrospective | 10 CD (4 SIRM vs. SIRM and Budesonide) | 67.2/62.5 * weeks | n.a. | n.a. | n.a. | n.a. | Global symptoms; bowel movements/ day | Clinical improvement |
Analysed treatment: rHu-IL-10 | |||||||||
Mulder, 2001 [86] | Prospective | 10 CD | 9 Months | n.a. | n.a. | Marsh classification | Very limited efficacy | n.a. | n.a. |
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CD | Celiac Disease |
RCD-I/II | refractory celiac disease type I/type II |
GFD | Gluten-Free Diet |
NAFLD | Non-Alcoholic Fatty Liver Disease |
EATL | Enteropathy-Associated T-cell Lymphoma |
RCT | Randomized Clinical Trial |
NRSI | Non-randomized study of intervention |
SIRM | Small Intestine Release Mesalamine |
TG2 | Tranglutaminase II |
References
- Jabri, B.; Sollid, L.M. Mechanisms of Disease: Immunopathogenesis of celiac disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef]
- Wild, D.; Robins, G.G.; Burley, V.J.; Howdle, P.D. Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment. Pharmacol. Ther. 2010, 32, 573–581. [Google Scholar] [CrossRef]
- Penagini, F.; Dilillo, D.; Meneghin, F.; Mameli, C.; Fabiano, V.; Zuccotti, G. Gluten-Free Diet in Children: An Approach to a Nutritionally Adequate and Balanced Diet. Nutrients 2013, 5, 4553–4565. [Google Scholar] [CrossRef] [Green Version]
- Valvano, M.; Longo, S.; Stefanelli, G.; Frieri, G.; Viscido, A.; Latella, G. Celiac Disease, Gluten-Free Diet, and Metabolic and Liver Disorders. Nutrients 2020, 12, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hujoel, I.A.; Murray, J.A. Refractory Celiac Disease. Curr. Gastroenterol. Rep. 2020, 22, 18. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Murray, J.A. Classification and management of refractory coeliac disease. Gut 2010, 59, 547–557. [Google Scholar] [CrossRef]
- Cellier, C.; Delabesse, E.; Helmer, C.; Patey, N.; Matuchansky, C.; Jabri, B.; Macintyre, E.; Cerf-Bensussan, N.; Brousse, N. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. Lancet 2000, 356, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Daum, S.; Cellier, C.; Mulder, C.J.J. Refractory coeliac disease. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 413–424. [Google Scholar] [CrossRef]
- Al-toma, A.; Verbeek, W.H.M.; Hadithi, M.; von Blomberg, B.M.E.; Mulder, C.J.J. Survival in refractory coeliac disease and enteropathy-associated T-cell lymphoma: Retrospective evaluation of single-centre experience. Gut 2007, 56, 1373–1378. [Google Scholar] [CrossRef] [Green Version]
- Rubio–Tapia, A.; Kelly, D.G.; Lahr, B.D.; Dogan, A.; Wu, T.; Murray, J.A. Clinical Staging and Survival in Refractory Celiac Disease: A Single Center Experience. Gastroenterology 2009, 136, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Malamut, G.; Cellier, C. Refractory Celiac Disease. Gastroenterol. Clin. N. Am. 2019, 48, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef] [PubMed]
- Malamut, G.; Afchain, P.; Verkarre, V.; Lecomte, T.; Amiot, A.; Damotte, D.; Bouhnik, Y.; Colombel, J.; Delchier, J.; Allez, M.; et al. Presentation and Long-Term Follow-up of Refractory Celiac Disease: Comparison of Type I With Type II. Gastroenterology 2009, 136, 81–90. [Google Scholar] [CrossRef]
- Maurino, E.; Niveloni, S.; Chernavsky, A.; Pedreira, S.; Mazure, R.; Vazquez, H.; Reyes, H.; Fiorini, A.; Smecuol, E.; Cabanne, A.; et al. Azathioprine in refractory sprue: Results from a prospective, open-label study. Am. J. Gastroenterol. 2002, 97, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Costantino, G.; della Torre, A.; Lo Presti, M.A.; Caruso, R.; Mazzon, E.; Fries, W. Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig. Liver Dis. 2008, 40, 74–77. [Google Scholar] [CrossRef]
- Green, P.H.R.; Lebwohl, B. Mesalamine for Refractory Celiac Disease. J. Clin. Gastroenterol. 2011, 45, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Tack, G.J. Evaluation of Cladribine treatment in refractory celiac disease type II. World J. Gastroenterol. 2011, 17, 506. [Google Scholar] [CrossRef]
- Mukewar, S.S.; Sharma, A.; Rubio-Tapia, A.; Wu, T.-T.; Jabri, B.; Murray, J.A. Open-Capsule Budesonide for Refractory Celiac Disease. Am. J. Gastroenterol. 2017, 112, 959–967. [Google Scholar] [CrossRef]
- Machado, M.V. New Developments in Celiac Disease Treatment. Int. J. Mol. Sci. 2023, 24, 945. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, G.; Navisse, S.; Valvano, M.; Vernia, F.; Ciccone, A.; Melideo, D.; Necozione, S.; Calvisi, G.; Coletti, G.; Viscido, A.; et al. Serum transglutaminase antibodies do not always detect the persistent villous atrophy in patients with celiac disease on a gluten-free diet. Eur. J. Gastroenterol. Hepatol. 2021, 33, e650–e655. [Google Scholar] [CrossRef] [PubMed]
- Farrell, R.; Kelleher, D. Glucocorticoid resistance in inflammatory bowel disease. J. Endocrinol. 2003, 178, 339–346. [Google Scholar] [CrossRef]
- Wall, A.J.; Douglas, A.P.; Booth, C.C.; Pearse, A.G.E. Response of the jejunal mucosa in adult coeliac disease to oral prednisolone. Gut 1970, 11, 7–14. [Google Scholar] [CrossRef]
- Bramble, M.G.; Watson, A.J.; Scott, J.; Peters, T.J.; Record, C.O. Clinical, Biochemical and Morphological Responses of Patients with Villous Atrophy to Oral Betamethasone Valerate and Clobetasone Butyrate. Digestion 1981, 22, 281–288. [Google Scholar] [CrossRef]
- Mitchison, H.C.; al Mardini, H.; Gillespie, S.; Laker, M.; Zaitoun, A.; Record, C.O. A pilot study of fluticasone propionate in untreated coeliac disease. Gut 1991, 32, 260–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaitoun, A.; Record, C.O. Morphometric studies in duodenal biopsies from patients with coeliac disease: The effect of the steroid fluticasone propionate. Aliment. Pharmacol. Ther. 2007, 5, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Shahab, T.; Sherwani, R.K.; Alam, S. Addition of a Short Course of Prednisolone to a Gluten-Free Diet vs. Gluten-Free Diet Alone in Recovery of Celiac Disease: A Pilot Randomized Controlled Trial. Cureus 2018, 10, e2118. [Google Scholar] [CrossRef] [Green Version]
- Shalimar; Das, P.; Sreenivas, V.; Datta Gupta, S.; Panda, S.K.; Makharia, G.K. Effect of Addition of Short Course of Prednisolone to Gluten-Free Diet on Mucosal Epithelial Cell Regeneration and Apoptosis in Celiac Disease: A Pilot Randomized Controlled Trial. Dig. Dis. Sci. 2012, 57, 3116–3125. [Google Scholar] [CrossRef]
- Ciacci, C.; Maiuri, L.; Russo, I.; Tortora, R.; Bucci, C.; Cappello, C.; Santonicola, A.; Luciani, A.; Passananti, V.; Iovino, P. Efficacy of budesonide therapy in the early phase of treatment of adult coeliac disease patients with malabsorption: An in vivo/in vitro pilot study. Clin. Exp. Pharmacol. Physiol. 2009, 36, 1170–1176. [Google Scholar] [CrossRef]
- Newnham, E.D.; Clayton-Chubb, D.; Nagarethinam, M.; Hosking, P.; Gibson, P.R. Randomised clinical trial: Adjunctive induction therapy with oral effervescent budesonide in newly diagnosed coeliac disease. Aliment. Pharmacol. Ther. 2021, 54, 419–428. [Google Scholar] [CrossRef]
- Słoka, J.; Madej, M.; Strzalka-Mrozik, B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023, 28, 5081. [Google Scholar] [CrossRef]
- Benedetti, E.; Viscido, A.; Castelli, V.; Maggiani, C.; D’Angelo, M.; Di Giacomo, E.; Antonosante, A.; Picarelli, A.; Frieri, G. Mesalazine treatment in organotypic culture of celiac patients: Comparative study with gluten free diet. J. Cell. Physiol. 2018, 233, 4383–4390. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.W. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008, 88, 491S–499S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valvano, M.; Magistroni, M.; Cesaro, N.; Carlino, G.; Monaco, S.; Fabiani, S.; Vinci, A.; Vernia, F.; Viscido, A.; Latella, G. Effectiveness of Vitamin D Supplementation on Disease Course in Inflammatory Bowel Disease Patients: Systematic Review with Meta-Analysis. Inflamm. Bowel Dis. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Trasciatti, S.; Piras, F.; Bonaretti, S.; Marini, S.; Nencioni, S.; Biasci, E.; Egan, C.G.; Nannipieri, F. Effect of oral cholecalciferol in a murine model of celiac disease: A dose ranging study. J. Steroid Biochem. Mol. Biol. 2022, 220, 106083. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Durai, M.; Kitchens, K.; Tamiz, A.P.; Somerville, R.; Ginski, M.; Paterson, B.M.; Murray, J.A.; Verdu, E.F.; Alkan, S.S.; et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides 2012, 35, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Paterson, B.M.; Lammers, K.M.; Arrieta, M.C.; Fasano, A.; Meddings, J.B. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: A proof of concept study. Aliment. Pharmacol. Ther. 2007, 26, 757–766. [Google Scholar] [CrossRef]
- Kelly, C.P.; Green, P.H.R.; Murray, J.A.; DiMarino, A.; Colatrella, A.; Leffler, D.A.; Alexander, T.; Arsenescu, R.; Leon, F.; Jiang, J.G.; et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: A randomised placebo-controlled study. Aliment. Pharmacol. Ther. 2013, 37, 252–262. [Google Scholar] [CrossRef]
- Leffler, D.A.; Kelly, C.P.; Green, P.H.R.; Fedorak, R.N.; DiMarino, A.; Perrow, W.; Rasmussen, H.; Wang, C.; Bercik, P.; Bachir, N.M.; et al. Larazotide Acetate for Persistent Symptoms of Celiac Disease Despite a Gluten-Free Diet: A Randomized Controlled Trial. Gastroenterology 2015, 148, 1311–1319.e6. [Google Scholar] [CrossRef] [Green Version]
- Maiuri, L.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Raia, V.; Rispo, A.; Griffin, M.; Issekutz, T.; Quaratino, S.; Londei, M. Unexpected Role of Surface Transglutaminase Type II in Celiac Disease. Gastroenterology 2005, 129, 1400–1413. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, C.; Ménard, S.; Abed, J.; Moura, I.C.; Coppo, R.; Dugave, C.; Monteiro, R.C.; Fricot, A.; Traore, M.G.; Griffin, M.; et al. Interactions Among Secretory Immunoglobulin A, CD71, and Transglutaminase-2 Affect Permeability of Intestinal Epithelial Cells to Gliadin Peptides. Gastroenterology 2012, 143, 698–707.e4. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Mäki, M.; Lundin, K.E.A.; Isola, J.; Friesing-Sosnik, T.; Taavela, J.; Popp, A.; Koskenpato, J.; Langhorst, J.; Hovde, Ø.; et al. A Randomized Trial of a Transglutaminase 2 Inhibitor for Celiac Disease. N. Engl. J. Med. 2021, 385, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Garber, M.E.; Spencer, A.G.; Botwick, W.; Kumar, P.; Williams, R.N.; Kozuka, K.; Shreeniwas, R.; Pratha, V.; Adelman, D.C. Safety, Tolerability, and Activity of ALV003: Results from Two Phase 1 Single, Escalating-Dose Clinical Trials. Dig. Dis. Sci. 2012, 57, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Pultz, I.S.; Hill, M.; Vitanza, J.M.; Wolf, C.; Saaby, L.; Liu, T.; Winkle, P.; Leffler, D.A. Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology 2021, 161, 81–93.e3. [Google Scholar] [CrossRef]
- Murray, J.A.; Kelly, C.P.; Green, P.H.R.; Marcantonio, A.; Wu, T.-T.; Mäki, M.; Adelman, D.C.; Ansari, S.; Ayub, K.; Basile, A.; et al. No Difference Between Latiglutenase and Placebo in Reducing Villous Atrophy or Improving Symptoms in Patients with Symptomatic Celiac Disease. Gastroenterology 2017, 152, 787–798.e2. [Google Scholar] [CrossRef] [Green Version]
- Syage, J.A.; Murray, J.A.; Green, P.H.R.; Khosla, C. Latiglutenase Improves Symptoms in Seropositive Celiac Disease Patients While on a Gluten-Free Diet. Dig. Dis. Sci. 2017, 62, 2428–2432. [Google Scholar] [CrossRef]
- Syage, J.A.; Green, P.H.R.; Khosla, C.; Adelman, D.C.; Sealey-Voyksner, J.A.; Murray, J.A. Latiglutenase treatment for celiac disease: Symptom and quality of life improvement for seropositive patients on a gluten-free diet. GastroHep 2019, 1, 293–301. [Google Scholar] [CrossRef]
- Murray, J.A.; Syage, J.A.; Wu, T.-T.; Dickason, M.A.; Ramos, A.G.; Van Dyke, C.; Horwath, I.; Lavin, P.T.; Mäki, M.; Hujoel, I.; et al. Latiglutenase Protects the Mucosa and Attenuates Symptom Severity in Patients with Celiac Disease Exposed to a Gluten Challenge. Gastroenterology 2022, 163, 1510–1521.e6. [Google Scholar] [CrossRef]
- Tack, G.J. Consumption of gluten with gluten-degrading enzyme by celiac patients: A pilot-study. World J. Gastroenterol. 2013, 19, 5837. [Google Scholar] [CrossRef] [Green Version]
- Dauphinee, S.W.; Gauthier, L.; Gandek, B.; Magnan, L.; Pierre, U. Readying a US measure of health status, the SF-36, for use in Canada. Clin. Investig. Med. 1997, 20, 224–238. [Google Scholar]
- Sample, D.A.; Sunwoo, H.H.; Huynh, H.Q.; Rylance, H.L.; Robert, C.L.; Xu, B.-W.; Kang, S.H.; Gujral, N.; Dieleman, L.A. AGY, a Novel Egg Yolk-Derived Anti-gliadin Antibody, Is Safe for Patients with Celiac Disease. Dig. Dis. Sci. 2017, 62, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P.; Murray, J.A.; Leffler, D.A.; Getts, D.R.; Bledsoe, A.C.; Smithson, G.; First, M.R.; Morris, A.; Boyne, M.; Elhofy, A.; et al. TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology 2021, 161, 66–80.e8. [Google Scholar] [CrossRef] [PubMed]
- Di Sabatino, A. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006, 55, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Lähdeaho, M.-L.; Scheinin, M.; Vuotikka, P.; Taavela, J.; Popp, A.; Laukkarinen, J.; Koffert, J.; Koivurova, O.-P.; Pesu, M.; Kivelä, L.; et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: A phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol. Hepatol. 2019, 4, 948–959. [Google Scholar] [CrossRef]
- Yokoyama, S.; Perera, P.-Y.; Waldmann, T.A.; Hiroi, T.; Perera, L.P. Tofacitinib, a Janus Kinase Inhibitor Demonstrates Efficacy in an IL-15 Transgenic Mouse Model that Recapitulates Pathologic Manifestations of Celiac Disease. J. Clin. Immunol. 2013, 33, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Tye-Din, J.A.; Stewart, J.A.; Dromey, J.A.; Beissbarth, T.; van Heel, D.A.; Tatham, A.; Henderson, K.; Mannering, S.I.; Gianfrani, C.; Jewell, D.P.; et al. Comprehensive, Quantitative Mapping of T Cell Epitopes in Gluten in Celiac Disease. Sci. Transl. Med. 2010, 2, 41ra51. [Google Scholar] [CrossRef]
- Daveson, A.J.M.; Ee, H.C.; Andrews, J.M.; King, T.; Goldstein, K.E.; Dzuris, J.L.; MacDougall, J.A.; Williams, L.J.; Treohan, A.; Cooreman, M.P.; et al. Epitope-Specific Immunotherapy Targeting CD4-Positive T Cells in Celiac Disease: Safety, Pharmacokinetics, and Effects on Intestinal Histology and Plasma Cytokines with Escalating Dose Regimens of Nexvax2 in a Randomized, Double-Blind, Placebo-Controlled. EBioMedicine 2017, 26, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Goel, G.; King, T.; Daveson, A.J.; Andrews, J.M.; Krishnarajah, J.; Krause, R.; Brown, G.J.E.; Fogel, R.; Barish, C.F.; Epstein, R.; et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: Two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol. Hepatol. 2017, 2, 479–493. [Google Scholar] [CrossRef]
- Truitt, K.E.; Daveson, A.J.M.; Ee, H.C.; Goel, G.; MacDougall, J.; Neff, K.; Anderson, R.P. Randomised clinical trial: A placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment. Pharmacol. Ther. 2019, 50, 547–555. [Google Scholar] [CrossRef]
- Olivares, M.; Castillejo, G.; Varea, V.; Sanz, Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br. J. Nutr. 2014, 112, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smecuol, E.; Hwang, H.J.; Sugai, E.; Corso, L.; Cherñavsky, A.C.; Bellavite, F.P.; González, A.; Vodánovich, F.; Moreno, M.L.; Vázquez, H.; et al. Exploratory, Randomized, Double-blind, Placebo-controlled Study on the Effects of Bifidobacterium infantis Natren Life Start Strain Super Strain in Active Celiac Disease. J. Clin. Gastroenterol. 2013, 47, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sánchez, M.I.; Smecuol, E.C.; Temprano, M.P.; Sugai, E.; González, A.; Moreno, M.L.; Huang, X.; Bercik, P.; Cabanne, A.; Vázquez, H.; et al. Bifidobacterium infantis NLS Super Strain Reduces the Expression of α-Defensin-5, a Marker of Innate Immunity, in the Mucosa of Active Celiac Disease Patients. J. Clin. Gastroenterol. 2017, 51, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, R.; Piccolo, M.; Francavilla, A.; Polimeno, L.; Semeraro, F.; Cristofori, F.; Castellaneta, S.; Barone, M.; Indrio, F.; Gobbetti, M.; et al. Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients with Persistent IBS-type Symptoms. J. Clin. Gastroenterol. 2019, 53, e117–e125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drabińska, N.; Jarocka-Cyrta, E.; Markiewicz, L.; Krupa-Kozak, U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients 2018, 10, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leffler, D.A.; Dennis, M.; Hyett, B.; Kelly, E.; Schuppan, D.; Kelly, C.P. Etiologies and Predictors of Diagnosis in Nonresponsive Celiac Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 445–450. [Google Scholar] [CrossRef]
- Al-toma, A.; Verbeek, W.H.M.; Mulder, C.J.J. The Management of Complicated Celiac Disease. Dig. Dis. 2007, 25, 230–236. [Google Scholar] [CrossRef]
- Tack, G.J.; Verbeek, W.H.M.; Schreurs, M.W.J.; Mulder, C.J.J. The spectrum of celiac disease: Epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 204–213. [Google Scholar] [CrossRef]
- Skodje, G.I.; van Megen, F.; Stendahl, M.; Henriksen, C.; Lundin, K.E.A.; Veierød, M.B. Detection of gluten immunogenic peptides and the Celiac Disease Adherence Test to monitor gluten-free diet: A pilot study. Eur. J. Clin. Nutr. 2022, 76, 902–903. [Google Scholar] [CrossRef]
- Paolini, A.; Sarshar, M.; Felli, C.; Bruno, S.P.; Rostami-Nejad, M.; Ferretti, F.; Masotti, A.; Baldassarre, A. Biomarkers to Monitor Adherence to Gluten-Free Diet by Celiac Disease Patients: Gluten Immunogenic Peptides and Urinary miRNAs. Foods 2022, 11, 1380. [Google Scholar] [CrossRef]
- Coto, L.; Mendia, I.; Sousa, C.; Bai, J.C.; Cebolla, A. Determination of gluten immunogenic peptides for the management of the treatment adherence of celiac disease: A systematic review. World J. Gastroenterol. 2021, 27, 6306–6321. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Bibbò, S.; Montalto, M.; Ricci, R.; Gasbarrini, A.; Cammarota, G. Systematic review: Sprue-like enteropathy associated with olmesartan. Aliment. Pharmacol. Ther. 2014, 40, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Andrews, C.N.; Urbanski, S.; Beck, P.L.; Storr, M. The association of coeliac disease and microscopic colitis: A large population-based study. Aliment. Pharmacol. Ther. 2011, 33, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Green, P.H.R.; Paski, S.; Ko, C.W.; Rubio-Tapia, A. AGA Clinical Practice Update on Management of Refractory Celiac Disease: Expert Review. Gastroenterology 2022, 163, 1461–1469. [Google Scholar] [CrossRef]
- Soldera, J.; Salgado, K.; Pêgas, K.L. Refractory celiac disease type 2: How to diagnose and treat? Rev. Assoc. Med. Bras. 2021, 67, 168–172. [Google Scholar] [CrossRef]
- Garrido, A.; Guerrero, F.J.; Lepe, J.A.; Ortega, C.; Muñoz, E. Diagnóstico y tratamiento del esprúe refractario. Gastroenterol. Hepatol. 2002, 25, 594–596. [Google Scholar] [CrossRef]
- Brar, P.; Lee, S.; Lewis, S.; Egbuna, I.; Bhagat, G.; Green, P.H.R. Budesonide in the Treatment of Refractory Celiac Disease. Am. J. Gastroenterol. 2007, 102, 2265–2269. [Google Scholar] [CrossRef]
- Daum, S.; Ipczynski, R.; Heine, B.; Schulzke, J.-D.; Zeitz, M.; Ullrich, R. Therapy with Budesonide in Patients with Refractory Sprue. Digestion 2006, 73, 60–68. [Google Scholar] [CrossRef]
- Jamma, S.; Leffler, D.A.; Dennis, M.; Najarian, R.M.; Schuppan, D.B.; Sheth, S.; Kelly, C.P. Small Intestinal Release Mesalamine for the Treatment of Refractory Celiac Disease Type I. J. Clin. Gastroenterol. 2011, 45, 30–33. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Chambers, R.A.; Wynn-Williams, A. Role of gluten, prednisone, and azathioprine in Non-Responsive cœliac disease. Lancet 1976, 307, 1213–1216. [Google Scholar] [CrossRef]
- Goerres, M.S.; Meijer, J.W.R.; Wahab, P.J.; Kerckhaert, J.A.M.; Groenen, P.J.T.A.; Van Krieken, J.H.J.M.; Mulder, C.J.J. Azathioprine and prednisone combination therapy in refractory coeliac disease. Aliment. Pharmacol. Ther. 2003, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Tack, G.J.; Asseldonk, D.P.; Wanrooij, R.L.J.; Bodegraven, A.A.; Mulder, C.J. Tioguanine in the treatment of refractory coeliac disease—A single centre experience. Aliment. Pharmacol. Ther. 2012, 36, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Gillett, H.R.; Arnott, I.D.R.; McIntyre, M.; Campbell, S.; Dahele, A.; Priest, M.; Jackson, R.; Ghosh, S. Successful infliximab treatment for steroid-refractory celiac disease: A case report. Gastroenterology 2002, 122, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.M.; Moorghen, M.; Probert, C.S.J. Refractory coeliac disease: Remission with infliximab and immunomodulators. Eur. J. Gastroenterol. Hepatol. 2005, 17, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Marafini, I.; Sedda, S.; Del Vecchio Blanco, G.; Giuffrida, P.; MacDonald, T.T.; Corazza, G.R.; Pallone, F.; Di Sabatino, A.; Monteleone, G. Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients. Clin. Sci. 2014, 126, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Mulder, C.J.J.; Wahab, P.J.; Meijer, J.W.R.; Metselaar, E. A pilot study of recombinant human interleukin-10 in adults with refractory coeliac disease. Eur. J. Gastroenterol. Hepatol. 2001, 13, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.K.; Kassardjian, A.; Weiss, G.A. Successful novel use of tofacitinib for type II refractory coeliac disease. BMJ Case Rep. 2022, 15, e244692. [Google Scholar] [CrossRef]
- Al–toma, A.; Goerres, M.S.; Meijer, J.W.R.; von Blomberg, B.M.E.; Wahab, P.J.; Kerckhaert, J.A.M.; Mulder, C.J.J. Cladribine Therapy in Refractory Celiac Disease with Aberrant T Cells. Clin. Gastroenterol. Hepatol. 2006, 4, 1322–1327. [Google Scholar] [CrossRef]
- Al-toma, A.; Visser, O.J.; van Roessel, H.M.; von Blomberg, B.M.E.; Verbeek, W.H.M.; Scholten, P.E.T.; Ossenkoppele, G.J.; Huijgens, P.C.; Mulder, C.J.J. Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 2007, 109, 2243–2249. [Google Scholar] [CrossRef] [Green Version]
- Tack, G.J.; Wondergem, M.J.; Al-Toma, A.; Verbeek, W.H.M.; Schmittel, A.; Machado, M.V.; Perri, F.; Ossenkoppele, G.J.; Huijgens, P.C.; Schreurs, M.W.J.; et al. Auto-SCT in refractory celiac disease type II patients unresponsive to cladribine therapy. Bone Marrow Transplant. 2011, 46, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Heijde, D.; Strand, V.; Tanaka, Y.; Keystone, E.; Kremer, J.; Zerbini, C.A.F.; Cardiel, M.H.; Cohen, S.; Nash, P.; Song, Y.; et al. Tofacitinib in Combination with Methotrexate in Patients with Rheumatoid Arthritis: Clinical Efficacy, Radiographic, and Safety Outcomes from a Twenty-Four–Month, Phase III Study. Arthritis Rheumatol. 2019, 71, 878–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellier, C.; Bouma, G.; van Gils, T.; Khater, S.; Malamut, G.; Crespo, L.; Collin, P.; Green, P.H.R.; Crowe, S.E.; Tsuji, W.; et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: A phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol. Hepatol. 2019, 4, 960–970. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valvano, M.; Fabiani, S.; Monaco, S.; Calabrò, M.; Mancusi, A.; Frassino, S.; Rolandi, C.; Mosca, M.; Faenza, S.; Sgamma, E.; et al. Old and New Adjunctive Therapies in Celiac Disease and Refractory Celiac Disease: A Review. Int. J. Mol. Sci. 2023, 24, 12800. https://doi.org/10.3390/ijms241612800
Valvano M, Fabiani S, Monaco S, Calabrò M, Mancusi A, Frassino S, Rolandi C, Mosca M, Faenza S, Sgamma E, et al. Old and New Adjunctive Therapies in Celiac Disease and Refractory Celiac Disease: A Review. International Journal of Molecular Sciences. 2023; 24(16):12800. https://doi.org/10.3390/ijms241612800
Chicago/Turabian StyleValvano, Marco, Stefano Fabiani, Sabrina Monaco, Mauro Calabrò, Antonio Mancusi, Sara Frassino, Claudia Rolandi, Marta Mosca, Susanna Faenza, Emanuele Sgamma, and et al. 2023. "Old and New Adjunctive Therapies in Celiac Disease and Refractory Celiac Disease: A Review" International Journal of Molecular Sciences 24, no. 16: 12800. https://doi.org/10.3390/ijms241612800
APA StyleValvano, M., Fabiani, S., Monaco, S., Calabrò, M., Mancusi, A., Frassino, S., Rolandi, C., Mosca, M., Faenza, S., Sgamma, E., Cesaro, N., & Latella, G. (2023). Old and New Adjunctive Therapies in Celiac Disease and Refractory Celiac Disease: A Review. International Journal of Molecular Sciences, 24(16), 12800. https://doi.org/10.3390/ijms241612800