Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity
Abstract
:1. Introduction
2. Cysteine Proteases Secreted by G. duodenalis: An Arsenal of Cathepsin-like Enzymes with Multiple Targets
3. Entamoeba histolytica Cysteine Proteases: Repertoire, Pathogenic Role, Regulation and Possible Intervention Targets
4. Cysteine Proteases of Cryptosporidium: A Family Affair and Beyond
5. Blastocystis Cysteine Proteases: From Subtypes to Pathogenic Mechanisms
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ximénez, C.; Cerritos, R.; Rojas, L.; Dolabella, S.; Morán, P.; Shibayama, M.; González, E.; Valadez, A.; Hernández, E.; Valenzuela, O.; et al. Human Amebiasis: Breaking the Paradigm? Int. J. Environ. Res. Public Health 2010, 7, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.M. Chapter Sixteen—Cryptosporidium. In Microbiology of Waterborne Diseases, 2nd ed.; Percival, S.L., Yates, M.V., Williams, D.W., Chalmers, R.M., Gray, N.F., Eds.; Academic Press: London, UK, 2014; pp. 287–326. ISBN 978-0-12-415846-7. [Google Scholar]
- Dogruman-Al, F.; Simsek, Z.; Boorom, K.; Ekici, E.; Sahin, M.; Tuncer, C.; Kustimur, S.; Altinbas, A. Comparison of Methods for Detection of Blastocystis Infection in Routinely Submitted Stool Samples, and Also in IBS/IBD Patients in Ankara, Turkey. PLoS ONE 2010, 5, e15484. [Google Scholar] [CrossRef] [PubMed]
- Argüello-García, R.; Carrero, J.C.; Ortega-Pierres, G. Host Immune Responses Against Intestinal Unicellular Parasites and Their Role in Pathogenesis and Protection. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Skotarczak, B. Genetic Diversity and Pathogenicity of Blastocystis. Ann. Agric. Environ. Med. 2018, 25, 411–416. [Google Scholar] [CrossRef]
- Arguello-Garcia, R.; Ortega-Pierres, M.G. Giardia duodenalis Virulence—“To Be, or Not To Be”. Curr. Trop. Med. Rep. 2021, 8, 246–256. [Google Scholar] [CrossRef]
- Guérin, A.; Striepen, B. The Biology of the Intestinal Intracellular Parasite Cryptosporidium. Cell Host Microbe 2020, 28, 509–515. [Google Scholar] [CrossRef]
- Guillén, N. Pathogenicity and Virulence of Entamoeba histolytica, the Agent of Amoebiasis. Virulence 2023, 14, 2158656. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Rawat, A.; Kaushik, S.; Jyoti, A.; Srivastava, V.K. Endogenous Cysteine Protease Inhibitors in Upmost Pathogenic Parasitic Protozoa. Microbiol. Res. 2022, 261, 127061. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; McKerrow, J.H. Cysteine Proteases of Parasitic Organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef]
- Siqueira-Neto, J.L.; Debnath, A.; McCall, L.-I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine Proteases in Protozoan Parasites. PLoS Negl. Trop. Dis. 2018, 12, e0006512. [Google Scholar] [CrossRef]
- Savioli, L.; Smith, H.; Thompson, A. Giardia and Cryptosporidium Join the “Neglected Diseases Initiative”. Trends Parasitol. 2006, 22, 203–208. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention. Bioterrorism Agents/Diseases. Available online: https://emergency.cdc.gov/agent/agentlist-category.asp (accessed on 9 August 2023).
- Emery, S.J.; Mirzaei, M.; Vuong, D.; Pascovici, D.; Chick, J.M.; Lacey, E.; Haynes, P.A. Induction of Virulence Factors in Giardia duodenalis Independent of Host Attachment. Sci. Rep. 2016, 6, 20765. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.B.; Cedillo-Rivera, R.; Fonseca-Liñán, R.; Argüello-García, R.; Muñoz, O.; Ortega-Pierres, G.; Yépez-Mulia, L. Giardia duodenalis: Analysis of Secreted Proteases upon Trophozoite-Epithelial Cell Interaction in vitro. Mem. Inst. Oswaldo Cruz. 2006, 101, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Touz, M.C.; Nores, M.J.; Slavin, I.; Carmona, C.; Conrad, J.T.; Mowatt, M.R.; Nash, T.E.; Coronel, C.E.; Luján, H.D. The Activity of a Developmentally Regulated Cysteine Proteinase Is Required for Cyst Wall Formation in the Primitive Eukaryote Giardia lamblia. J. Biol. Chem. 2002, 277, 8474–8481. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.; Alvarado, L.; Rawlings, N.D.; Engel, J.C.; Franklin, C.; McKerrow, J.H. A Primitive Enzyme for a Primitive Cell: The Protease Required for Excystation of Giardia. Cell 1997, 89, 437–444. [Google Scholar] [CrossRef]
- DuBois, K.N.; Abodeely, M.; Sajid, M.; Engel, J.C.; McKerrow, J.H. Giardia lamblia Cysteine Proteases. Parasitol. Res. 2006, 99, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.C.; Uzcanga, G.; Zambrano, A.; Di Prisco, M.C.; Lynch, N.R. Identification and Partial Characterization of Excretory/Secretory Products with Proteolytic Activity in Giardia intestinalis. J. Parasitol. 2000, 86, 859–862. [Google Scholar] [CrossRef]
- Cabrera-Licona, A.; Solano-González, E.; Fonseca-Liñán, R.; Bazán-Tejeda, M.L.; Raúl Argüello-García, M.L.; Bermúdez-Cruz, R.M.; Ortega-Pierres, G. Expression and Secretion of the Giardia duodenalis Variant Surface Protein 9B10A by Transfected Trophozoites Causes Damage to Epithelial Cell Monolayers Mediated by Protease Activity. Exp. Parasitol. 2017, 179, 49–64. [Google Scholar] [CrossRef]
- Kang, J.-M.; Ju, H.-L.; Yu, J.-R.; Sohn, W.-M.; Na, B.-K. Cryptostatin, a Chagasin-Family Cysteine Protease Inhibitor of Cryptosporidium parvum. Parasitology 2012, 139, 1029–1037. [Google Scholar] [CrossRef]
- Yan, B.; Ren, Y.; Liu, C.; Shu, L.; Wang, C.; Zhang, L. Cystatin SN in Type 2 Inflammatory Airway Diseases. J. Allergy Clin. Immunol. 2023, 151, 1191–1203.e3. [Google Scholar] [CrossRef]
- Liu, J.; Svärd, S.G.; Klotz, C. Giardi iIntestinalis Cystatin Is a Potent Inhibitor of Papain, Parasite Cysteine Proteases and, to a Lesser Extent, Human Cathepsin B. FEBS Lett. 2019, 593, 1313–1325. [Google Scholar] [CrossRef]
- Ringqvist, E.; Avesson, L.; Söderbom, F.; Svärd, S.G. Transcriptional Changes in Giardia during Host-Parasite Interactions. Int. J. Parasitol. 2011, 41, 277–285. [Google Scholar] [CrossRef]
- Ma’ayeh, S.Y.; Brook-Carter, P.T. Representational Difference Analysis Identifies Specific Genes in the Interaction of Giardia duodenalis with the Murine Intestinal Epithelial Cell Line, IEC-6. Int. J. Parasitol. 2012, 42, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ma’ayeh, S.Y.; Liu, J.; Peirasmaki, D.; Hörnaeus, K.; Bergström Lind, S.; Grabherr, M.; Bergquist, J.; Svärd, S.G. Characterization of the Giardia intestinalis Secretome during Interaction with Human Intestinal Epithelial Cells: The Impact on Host Cells. PLoS Negl. Trop. Dis. 2017, 11, e0006120. [Google Scholar] [CrossRef]
- Dubourg, A.; Xia, D.; Winpenny, J.P.; Al Naimi, S.; Bouzid, M.; Sexton, D.W.; Wastling, J.M.; Hunter, P.R.; Tyler, K.M. Giardia Secretome Highlights Secreted Tenascins as a Key Component of Pathogenesis. Gigascience 2018, 7, giy003. [Google Scholar] [CrossRef]
- Ortega-Pierres, G.; Argüello-García, R.; Laredo-Cisneros, M.S.; Fonseca-Linán, R.; Gómez-Mondragón, M.; Inzunza-Arroyo, R.; Flores-Benítez, D.; Raya-Sandino, A.; Chavez-Munguía, B.; Ventura-Gallegos, J.L.; et al. Giardipain-1, a Protease Secreted by Giardia duodenalis Trophozoites, Causes Junctional, Barrier and Apoptotic Damage in Epithelial Cell Monolayers. Int. J. Parasitol. 2018, 48, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Quezada-Lázaro, R.; Vázquez-Cobix, Y.; Fonseca-Liñán, R.; Nava, P.; Hernández-Cueto, D.D.; Cedillo-Peláez, C.; López-Vidal, Y.; Huerta-Yepez, S.; Ortega-Pierres, M.G. The Cysteine Protease Giardipain-1 from Giardia duodenalis Contributes to a Disruption of Intestinal Homeostasis. Int. J. Mol. Sci. 2022, 23, 13649. [Google Scholar] [CrossRef]
- Gavinho, B.; Sabatke, B.; Feijoli, V.; Rossi, I.V.; da Silva, J.M.; Evans-Osses, I.; Palmisano, G.; Lange, S.; Ramirez, M.I. Peptidylarginine Deiminase Inhibition Abolishes the Production of Large Extracellular Vesicles from Giardia intestinalis, Affecting Host-Pathogen Interactions by Hindering Adhesion to Host Cells. Front. Cell. Infect. Microbiol. 2020, 10, 417. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Hansson, G.C. Immunological Aspects of Intestinal Mucus and Mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef]
- Allain, T.; Amat, C.B.; Motta, J.-P.; Manko, A.; Buret, A.G. Interactions of Giardia sp. with the Intestinal Barrier: Epithelium, Mucus, and Microbiota. Tissue Barriers 2017, 5, e1274354. [Google Scholar] [CrossRef]
- Fekete, E.; Allain, T.; Amat, C.B.; Mihara, K.; Saifeddine, M.; Hollenberg, M.D.; Chadee, K.; Buret, A.G. Giardia duodenalis Cysteine Proteases Cleave Proteinase-Activated Receptor-2 to Regulate Intestinal Goblet Cell Mucin Gene Expression. Int. J. Parasitol. 2022, 52, 285–292. [Google Scholar] [CrossRef]
- Troeger, H.; Epple, H.-J.; Schneider, T.; Wahnschaffe, U.; Ullrich, R.; Burchard, G.-D.; Jelinek, T.; Zeitz, M.; Fromm, M.; Schulzke, J.-D. Effect of Chronic Giardia lamblia Infection on Epithelial Transport and Barrier Function in Human Duodenum. Gut 2007, 56, 328–335. [Google Scholar] [CrossRef]
- Bhargava, A.; Cotton, J.A.; Dixon, B.R.; Gedamu, L.; Yates, R.M.; Buret, A.G. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase. PLoS ONE 2015, 10, e0136102. [Google Scholar] [CrossRef]
- Liu, J.; Ma’ayeh, S.; Peirasmaki, D.; Lundström-Stadelmann, B.; Hellman, L.; Svärd, S.G. Secreted Giardia intestinalis Cysteine Proteases Disrupt Intestinal Epithelial Cell Junctional Complexes and Degrade Chemokines. Virulence 2018, 9, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, Z.; Hellman, L.; Svärd, S.G. Cleavage Specificity of Recombinant Giardia intestinalis Cysteine Proteases: Degradation of Immunoglobulins and Defensins. Mol. Biochem. Parasitol. 2019, 227, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Roxström-Lindquist, K.; Ringqvist, E.; Palm, D.; Svärd, S. Giardia lamblia-Induced Changes in Gene Expression in Differentiated Caco-2 Human Intestinal Epithelial Cells. Infect. Immun. 2005, 73, 8204–8208. [Google Scholar] [CrossRef] [PubMed]
- Cotton, J.A.; Bhargava, A.; Ferraz, J.G.; Yates, R.M.; Beck, P.L.; Buret, A.G. Giardia duodenalis Cathepsin B Proteases Degrade Intestinal Epithelial Interleukin-8 and Attenuate Interleukin-8-Induced Neutrophil Chemotaxis. Infect. Immun. 2014, 82, 2772–2787. [Google Scholar] [CrossRef]
- Beatty, J.K.; Akierman, S.V.; Motta, J.-P.; Muise, S.; Workentine, M.L.; Harrison, J.J.; Bhargava, A.; Beck, P.L.; Rioux, K.P.; McKnight, G.W.; et al. Giardia duodenalis Induces Pathogenic Dysbiosis of Human Intestinal Microbiota Biofilms. Int. J. Parasitol. 2017, 47, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Keselman, A.; Li, E.; Maloney, J.; Singer, S.M. The Microbiota Contributes to CD8+ T Cell Activation and Nutrient Malabsorption Following Intestinal Infection with Giardia Duodenali. Infect. Immun. 2016, 84, 2853–2860. [Google Scholar] [CrossRef]
- Schaudin, F. Untersuchungen Über Die Fortpflanzung Einiger Rhizopoden (Vorläufige Mittheilung). Arb. Aus Dem Kais. Gesundheitsamte 1903, 19, 547–576. [Google Scholar]
- Dobell, C. The Amoebae Living in Man. A Zoological Monograph; Published for the Medical Research Committee; John Bale, Sons & Danielsson, Ltd.: London, UK, 1919. [Google Scholar]
- McLaughlin, J.; Faubert, G. Partial Purification and Some Properties of a Neutral Sulfhydryl and an Acid Proteinase from Entamoeba histolytica. Can. J. Microbiol. 1977, 23, 420–425. [Google Scholar] [CrossRef]
- Lushbaugh, W.B.; Kairalla, A.B.; Cantey, J.R.; Hofbauer, A.F.; Pittman, F.E. Isolation of a Cytotoxin-Enterotoxin from Entamoeba histolytica. J. Infect. Dis. 1979, 139, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Bos, H.J.; Leijendekker, W.J.; van den Eijk, A.A. Entamoeba histolytica: Cytopathogenicity, Including Serum Effects on Contact-Dependent and Toxin-Induced Lysis of Hamster Kidney Cell Monolayers. Exp. Parasitol. 1980, 50, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Ravdin, J.I.; Croft, B.Y.; Guerrant, R.L. Cytopathogenic Mechanisms of Entamoeba histolytica. J. Exp. Med. 1980, 152, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Ravdin, J.I.; Guerrant, R.L. Role of Adherence in Cytopathogenic Mechanisms of Entamoeba histolytica. Study with Mammalian Tissue Culture Cells and Human Erythrocytes. J. Clin. Investig. 1981, 68, 1305–1313. [Google Scholar] [CrossRef]
- McGowan, K.; Deneke, C.F.; Thorne, G.M.; Gorbach, S.L. Entamoeba histolytica Cytotoxin: Purification, Characterization, Strain Virulence, and Protease Activity. J. Infect. Dis. 1982, 146, 616–625. [Google Scholar] [CrossRef]
- Gadasi, H.; Kobiler, D. Entamoeba histolytica: Correlation between Virulence and Content of Proteolytic Enzymes. Exp. Parasitol. 1983, 55, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Lushbaugh, W.B.; Hofbauer, A.F.; Kairalla, A.A.; Robert Cantey, J.; Pittman, F.E. Relationship of Cytotoxins of Axenically Cultivated Entamoeba histolytica to Virulence. Gastroenterology 1984, 86, 1488–1495. [Google Scholar] [CrossRef]
- Lushbaugh, W.B.; Hofbauer, A.F.; Pittman, F.E. Entamoeba histolytica: Purification of Cathepsin B. Exp. Parasitol. 1985, 59, 328–336. [Google Scholar] [CrossRef]
- Gadasi, H.; Kessler, E. Correlation of Virulence and Collagenolytic Activity in Entamoeba histolytica. Infect. Immun. 1983, 39, 528–531. [Google Scholar] [CrossRef]
- Scholze, H.; Werries, E. A Weakly Acidic Protease Has a Powerful Proteolytic Activity in Entamoeba histolytica. Mol. Biochem. Parasitol. 1984, 11, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Bruchhaus, I.; Loftus, B.J.; Hall, N.; Tannich, E. The Intestinal Protozoan Parasite Entamoeba histolytica Contains 20 Cysteine Protease Genes, of Which Only a Small Subset Is Expressed during in vitro Cultivation. Eukaryot. Cell 2003, 2, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V.K. Cysteine Proteases: Battling Pathogenic Parasitic Protozoans with Omnipresent Enzymes. Microbiol. Res. 2021, 249, 126784. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.G.; Alsmark, U.C.M.; Tazreiter, M.; Saito-Nakano, Y.; Ali, V.; Marion, S.; Weber, C.; Mukherjee, C.; Bruchhaus, I.; Tannich, E.; et al. Structure and Content of the Entamoeba histolytica Genome. In Advances in Parasitology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 65, ISBN 9780123741660. [Google Scholar]
- Perez-Montfort, R.; Ostoa-Saloma, P.; Velazquez-Medina, L.; Montfort, I.; Becker, I. Catalytic Classes of Proteinases of Entamoeba histolytica. Mol. Biochem. Parasitol. 1987, 26, 87–97. [Google Scholar] [CrossRef]
- Torres-Padilla, M.E.; Carrero, J.C.; Ortiz-Ortiz, L. A 148-KDa Secretory Proteinase from Entamoeba histolytica. Arch. Med. Res. 1997, 28, 186–187. [Google Scholar] [PubMed]
- Scholze, H.; Schulte, W. On the Specificity of a Cysteine Proteinase from Entamoeba histolytica. Biomed. Biochim. Acta 1988, 47, 115–123. [Google Scholar] [PubMed]
- Luaces, A.L.; Barrett, A.J. Affinity Purification and Biochemical Characterization of Histolysin, the Major Cysteine Proteinase of Entamoeba histolytica. Biochem. J. 1988, 250, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.; Bruchhaus, I.; Dandekar, T.; Tannich, E.; Leippe, M. Isolation and Molecular Characterization of a Surface-Bound Proteinase of Entamoeba histolytica. Mol. Microbiol. 1998, 27, 269–276. [Google Scholar] [CrossRef]
- Bruchhaus, I.; Jacobs, T.; Leippe, M.; Tannich, E. Entamoeba histolytica and Entamoeba dispar: Differences in Numbers and Expression of Cysteine Proteinase Genes. Mol. Microbiol. 1996, 22, 255–263. [Google Scholar] [CrossRef]
- Leippe, M.; Sievertsen, H.J.; Tannich, E.; Horstmann, R.D. Spontaneous Release of Cysteine Proteinases but Not of Pore-Forming Peptides by Viable Entamoeba histolytica. Parasitology 1995, 111, 569–574. [Google Scholar] [CrossRef]
- Tillack, M.; Nowak, N.; Lotter, H.; Bracha, R.; Mirelman, D.; Tannich, E.; Bruchhaus, I. Increased Expression of the Major Cysteine Proteinases by Stable Episomal Transfection Underlines the Important Role of EhCP5 for the Pathogenicity of Entamoeba histolytica. Mol. Biochem. Parasitol. 2006, 149, 58–64. [Google Scholar] [CrossRef]
- García-Rivera, G.; Rodríguez, M.A.; Ocádiz, R.; Martínez-López, M.C.; Arroyo, R.; González-Robles, A.; Orozco, E. Entamoeba histolytica: A Novel Cysteine Protease and an Adhesin Form the 112 KDa Surface Protein. Mol. Microbiol. 1999, 33, 556–568. [Google Scholar] [CrossRef]
- Becker, I.; Pérez-Montfort, R.; Pérez-Torres, A.; Rondán-Zárate, A.; Montfort, I.; Pérez-Tamayo, R. Entamoeba histolytica: Localization of a 30-KDa Cysteine Proteinase Using a Monoclonal Antibody. Exp. Parasitol. 1996, 82, 171–181. [Google Scholar] [CrossRef]
- Temesvari, L.A.; Harris, E.N.; Stanley, S.L., Jr.; Cardelli, J.A. Early and Late Endosomal Compartments of Entamoeba histolytica Are Enriched in Cysteine Proteases, Acid Phosphatase and Several Ras-Related Rab GTPases. Mol. Biochem. Parasitol. 1999, 103, 225–241. [Google Scholar] [CrossRef]
- Nakada-Tsukui, K.; Tsuboi, K.; Furukawa, A.; Yamada, Y.; Nozaki, T. A Novel Class of Cysteine Protease Receptors That Mediate Lysosomal Transport. Cell. Microbiol. 2012, 14, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Marumo, K.; Nakada-Tsukui, K.; Tomii, K.; Nozaki, T. Ligand Heterogeneity of the Cysteine Protease Binding Protein Family in the Parasitic Protist Entamoeba histolytica. Int. J. Parasitol. 2014, 44, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Ceballos, M.P.; Martínez-Gallardo, N.A.; Anaya-Velázquez, F.; Mirelman, D.; Padilla-Vaca, F. A Novel Protease from Entamoeba histolytica Homologous to Members of the Family S28 of Serine Proteases. Exp. Parasitol. 2005, 110, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Yang, W.-G.; Zhang, T.; Stanley, S.L., Jr. Interaction of Laminin with Entamoeba histolytica Cysteine Proteinases and Its Effect on Amebic Pathogenesis. Infect. Immun. 1995, 63, 4150–4153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, L.; Wang, L.; Seydel, K.B.; Li, E.; Ankri, S.; Mirelman, D.; Stanley, S.L., Jr. Entamoeba histolytica Cysteine Proteinases with Interleukin-1 Beta Converting Enzyme (ICE) Activity Cause Intestinal Inflammation and Tissue Damage in Amoebiasis. Mol. Microbiol. 2000, 37, 542–548. [Google Scholar] [CrossRef]
- Meléndez-López, S.G.; Herdman, S.; Hirata, K.; Choi, M.-H.; Choe, Y.; Craik, C.; Caffrey, C.R.; Hansell, E.; Chávez-Munguía, B.; Yen, T.C.; et al. Use of Recombinant Entamoeba histolytica Cysteine Proteinase 1 to Identify a Potent Inhibitor of Amebic Invasion in a Human Colonic Model. Eukaryot. Cell 2007, 6, 1130–1136. [Google Scholar] [CrossRef]
- Irmer, H.; Tillack, M.; Biller, L.; Handal, G.; Leippe, M.; Roeder, T.; Tannich, E.; Bruchhaus, I. Major Cysteine Peptidases of Entamoeba histolytica Are Required for Aggregation and Digestion of Erythrocytes but Are Dispensable for Phagocytosis and Cytopathogenicity. Mol. Microbiol. 2009, 72, 658–667. [Google Scholar] [CrossRef]
- Que, X.; Kim, S.-H.; Sajid, M.; Eckmann, L.; Dinarello, C.A.; McKerrow, J.H.; Reed, S.L. A Surface Amebic Cysteine Proteinase Inactivates Interleukin-18. Infect. Immun. 2003, 71, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Pertuz Belloso, S.; Ostoa Saloma, P.; Benitez, I.; Soldevila, G.; Olivos, A.; García-Zepeda, E. Entamoeba histolytica Cysteine Protease 2 (EhCP2) Modulates Leucocyte Migration by Proteolytic Cleavage of Chemokines. Parasite Immunol. 2004, 26, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Luna, J.; Piña-Vázquez, C.; Reyes-López, M.; Ortiz-Estrada, G.; De La Garza, M. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J. Trop. Med. 2013, 2013, 890603. [Google Scholar] [CrossRef] [PubMed]
- Gastelum-Martínez, A.; León-Sicairos, C.; Plata-Guzmán, L.; Soto-Castro, L.; León-Sicairos, N.; De La Garza, M. Iron-Modulated Virulence Factors of Entamoeba histolytica. Future Microbiol. 2018, 13, 1329–1341. [Google Scholar] [CrossRef]
- He, C.; Nora, G.P.; Schneider, E.L.; Kerr, I.D.; Hansell, E.; Hirata, K.; Gonzalez, D.; Sajid, M.; Boyd, S.E.; Hruz, P.; et al. A Novel Entamoeba histolytica Cysteine Proteinase, EhCP4, Is Key for Invasive Amebiasis and a Therapeutic Target. J. Biol. Chem. 2010, 285, 18516–18527. [Google Scholar] [CrossRef]
- Hellberg, A.; Nowak, N.; Leippe, M.; Tannich, E.; Bruchhaus, I. Recombinant Expression and Purification of an Enzymatically Active Cysteine Proteinase of the Protozoan Parasite Entamoeba histolytica. Protein Expr. Purif. 2002, 24, 131–137. [Google Scholar] [CrossRef]
- Moncada, D.; Keller, K.; Ankri, S.; Mirelman, D.; Chadee, K. Antisense Inhibition of Entamoeba histolytica Cysteine Proteases Inhibits Colonic Mucus Degradation. Gastroenterology 2006, 130, 721–730. [Google Scholar] [CrossRef]
- Thibeaux, R.; Dufour, A.; Roux, P.; Bernier, M.; Baglin, A.-C.; Frileux, P.; Olivo-Marin, J.C.; Guillén, N.; Labruyère, E. Newly Visualized Fibrillar Collagen Scaffolds Dictate Entamoeba histolytica Invasion Route in the Human Colon. Cell. Microbiol. 2012, 14, 609–621. [Google Scholar] [CrossRef]
- Cornick, S.; Moreau, F.; Chadee, K. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via Avβ3 Integrin. PLoS Pathog. 2016, 12, e1005579. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, S.-M.; Lee, J.; Yong, T.-S. Differential Gene Expression by Iron-Limitation in Entamoeba histolytica. Mol. Biochem. Parasitol. 2001, 114, 257–260. [Google Scholar] [CrossRef]
- Ghosh, A.; Raha, S. Molecular and Functional Characterisation of a Stress Responsive Cysteine Protease, EhCP6 from Entamoeba histolytica. Protein Expr. Purif. 2015, 109, 55–61. [Google Scholar] [CrossRef]
- Ocádiz, R.; Orozco, E.; Carrillo, E.; Quintas, L.I.; Ortega-López, J.; García-Pérez, R.M.; Sánchez, T.; Castillo-Juárez, B.A.; García-Rivera, G.; Rodríguez, M.A. EhCP112 Is an Entamoeba histolytica Secreted Cysteine Protease That May Be Involved in the Parasite-Virulence. Cell. Microbiol. 2005, 7, 221–232. [Google Scholar] [CrossRef]
- Cuellar, P.; Hernández-Nava, E.; García-Rivera, G.; Chávez-Munguía, B.; Schnoor, M.; Betanzos, A.; Orozco, E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front. Cell. Infect. Microbiol. 2017, 7, 372. [Google Scholar] [CrossRef]
- Hernández-Nava, E.; Cuellar, P.; Nava, P.; Chávez-Munguía, B.; Schnoor, M.; Orozco, E.; Betanzos, A. Adherens Junctions and Desmosomes Are Damaged by Entamoeba histolytica: Participation of EhCPADH Complex and EhCP112 Protease. Cell. Microbiol. 2017, 19, e12761. [Google Scholar] [CrossRef]
- Reed, S.; Bouvier, J.; Pollack, A.S.; Engel, J.C.; Brown, M.; Hirata, K.; Que, X.; Eakin, A.; Hagblom, P.; Gillin, F.; et al. Cloning of a Virulence Factor of Entamoeba histolytica: Pathogenic Strains Possess a Unique Cysteine Proteinase Gene. J. Clin. Investig. 1993, 91, 1532–1540. [Google Scholar] [CrossRef]
- Willhoeft, U.; Hamann, L.; Tannich, E. A DNA Sequence Corresponding to the Gene Encoding Cysteine Proteinase 5 in Entamoeba histolytica Is Present and Positionally Conserved but Highly Degenerated in Entamoeba dispar. Infect. Immun. 1999, 67, 5925–5929. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Bribiesca, L.; Orozco, E.; Martínez, G.; García-Rivera, G. Neutral Proteinase Activities in Different Strains and Clones of Entamoeba histolytica. Correlation with Virulence. Arch. Med. Res. 1992, 23, 231–233. [Google Scholar]
- Navarro-García, F.; Chávez-Dueñas, L.; Tsutsumi, V.; Del Río, F.P.; López-Revilla, R. Entamoeba histolytica: Increase of Enterotoxicity and of 53- and 75-KDa Cysteine Proteinases in a Clone of Higher Virulence. Exp. Parasitol. 1995, 80, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Keene, W.E.; Petitt, M.G.; Allen, S.; McKerrow, J.H. The Major Neutral Proteinase of Entamoeba histolytica. J. Exp. Med. 1986, 163, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Schulte, W.; Scholze, H. Action of the Major Protease from Entamoeba histolytica on Proteins of the Extracellular Matrix. J. Protozool. 1989, 36, 538–543. [Google Scholar] [CrossRef]
- Hellberg, A.; Nickel, R.; Lotter, H.; Tannich, E.; Bruchhaus, I. Overexpression of Cysteine Proteinase 2 in Entamoeba histolytica or Entamoeba dispar Increases Amoeba-Induced Monolayer Destruction in vitro but Does Not Augment Amoebic Liver Abscess Formation in Gerbils. Cell. Microbiol. 2001, 3, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Banerjee, R.; Nandi, N.; Sardar, A.H.; Das, P. Anoikis Potential of Entameba Histolytica Secretory Cysteine Proteases: Evidence of Contact Independent Host Cell Death. Microb. Pathog. 2012, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Moncada, D.; Keller, K.; Chadee, K. Entamoeba histolytica Cysteine Proteinases Disrupt the Polymeric Structure of Colonic Mucin and Alter Its Protective Function. Infect. Immun. 2003, 71, 838–844. [Google Scholar] [CrossRef]
- Lauwaet, T.; Oliveira, M.J.; Callewaert, B.; De Bruyne, G.; Saelens, X.; Ankri, S.; Vandenabeele, P.; Mirelman, D.; Mareel, M.; Leroy, A. Proteolysis of Enteric Cell Villin by Entamoeba histolytica Cysteine Proteinases. J. Biol. Chem. 2003, 278, 22650–22656. [Google Scholar] [CrossRef]
- De Jesús Serrano-Luna, J.; Negrete, E.; Reyes, M.; De La Garza, M. Entamoeba histolytica HM1:IMSS: Hemoglobin-Degrading Neutral Cysteine Proteases. Exp. Parasitol. 1998, 89, 71–77. [Google Scholar] [CrossRef]
- Gilmartin, A.A.; Ralston, K.S.; Petri, W.A. Inhibition of Amebic Cysteine Proteases Blocks Amebic Trogocytosis but Not Phagocytosis. J. Infect. Dis. 2020, 221, 1734–1739. [Google Scholar] [CrossRef]
- Ocádiz-Ruiz, R.; Fonseca, W.; Linford, A.S.; Yoshino, T.P.; Orozco, E.; Rodríguez, M.A. The Knockdown of Each Component of the Cysteine Proteinase-Adhesin Complex of Entamoeba histolytica (EhCPADH) Affects the Expression of the Other Complex Element as Well as the in vitro and in vivo Virulence. Parasitology 2015, 143, 50–59. [Google Scholar] [CrossRef]
- Lourenssen, S.; Houpt, E.R.; Chadee, K.; Blennerhassett, M.G. Entamoeba histolytica Infection and Secreted Proteins Proteolytically Damage Enteric Neurons. Infect. Immun. 2010, 78, 5332–5340. [Google Scholar] [CrossRef]
- Montfort, I.; Perez-Tamayo, R.; Gonzalez Canto, A.; Del Carmen Garcia De Leon, M.; Olivos, A.; Tello, E. Role of Cysteine Proteinases of Entamoeba histolytica on the Cytopathogenicity of Axenic Trophozoites on Rat and Hamster Hepatocytes in vitro. J. Parasitol. 1993, 79, 98–105. [Google Scholar] [CrossRef]
- Stanley, S.L., Jr.; Zhang, T.; Rubin, D.; Li, E. Role of the Entamoeba histolytica Cysteine Proteinase in Amebic Liver Abscess Formation in Severe Combined Immunodeficient Mice. Infect. Immun. 1995, 63, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Olivos-García, A.; Nequiz-Avendaño, M.; Tello, E.; Martínez, R.D.; González-Canto, A.; López-Vancell, R.; García De León, M.C.; Montfort, I.; Pérez-Tamayo, R. Inflammation, Complement, Ischemia and Amoebic Survival in Acute Experimental Amoebic Liver Abscesses in Hamsters. Exp. Mol. Pathol. 2004, 77, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ghosh, P.; Naik, S.; Naik, S.R. Proteinase Activity and Virulence of Entamoeba histolytica on Passage through Hamster Liver. Indian J. Med. Res. 1998, 107, 173–177. [Google Scholar]
- Olivos-García, A.; González-Canto, A.; López-Vancell, R.; García De León, M.D.C.; Tello, E.; Nequiz-Avendaño, M.; Montfort, I.; Pérez-Tamayo, R. Amebic Cysteine Proteinase 2 (EhCP2) Plays Either a Minor or No Role in Tissue Damage in Acute Experimental Amebic Liver Abscess in Hamsters. Parasitol. Res. 2003, 90, 212–220. [Google Scholar] [CrossRef]
- Matthiesen, J.; Bär, A.-K.; Bartels, A.-K.; Marien, D.; Ofori, S.; Biller, L.; Tannich, E.; Lotter, H.; Bruchhaus, I. Overexpression of Specific Cysteine Peptidases Confers Pathogenicity to a Nonpathogenic Entamoeba histolytica Clone. mBio 2013, 4, e00072-13. [Google Scholar] [CrossRef]
- Ankri, S.; Stolarsky, T.; Bracha, R.; Padilla-Vaca, F.; Mirelman, D. Antisense Inhibition of Expression of Cysteine Proteinases Affects Entamoeba histolytica-Induced Formation of Liver Abscess in Hamsters. Infect. Immun. 1999, 67, 421–422. [Google Scholar] [CrossRef]
- De Jesús Serrano, J.; De La Garza, M.; Reyes, M.; León, G.; Tovar, R.; De Lourdes Muñoz, M. Entamoeba histolytica: Proteinase Secretion Induced by Collagen Type I Is Dependent on Cytoskeleton Integrity. Parasitol. Res. 1996, 82, 200–205. [Google Scholar] [CrossRef]
- Singh, D.; Naik, S.R.; Naik, S. Contact of Entamoeba histolytica with Baby Hamster Kidney-21 (BHK-21) Cell Line on Cysteine Proteinase Activity. Indian J. Med. Res. 2004, 119, 157–161. [Google Scholar] [PubMed]
- Shahi, P.; Moreau, F.; Chadee, K. Entamoeba histolytica Cyclooxygenase-like Protein Regulates Cysteine Protease Expression and Virulence. Front. Cell. Infect. Microbiol. 2019, 9, 447. [Google Scholar] [CrossRef]
- Nakada-Tsukui, K.; Saito-Nakano, Y.; Ali, V.; Nozaki, T. A Retromerlike Complex Is a Novel Rab7 Effector That Is Involved in the Transport of the Virulence Factor Cysteine Protease in the Enteric Protozoan Parasite Entamoeba histolytica. Mol. Biol. Cell 2005, 16, 5294–5303. [Google Scholar] [CrossRef]
- Mitra, B.N.; Saito-Nakano, Y.; Nakada-Tsukui, K.; Sato, D.; Nozaki, T. Rab11B Small GTPase Regulates Secretion of Cysteine Proteases in the Enteric Protozoan Parasite Entamoeba histolytica. Cell. Microbiol. 2007, 9, 2112–2125. [Google Scholar] [CrossRef]
- Reed, S.L.; Keene, W.E.; McKerrow, J.H.; Gigli, I. Cleavage of C3 by a Neutral Cysteine Proteinase of Entamoeba histolytica. J. Immunol. 1989, 143, 189–195. [Google Scholar] [CrossRef]
- Reed, S.L.; Ember, J.A.; Herdman, D.S.; DiScipio, R.G.; Hugli, T.E.; Gigli, I. The Extracellular Neutral Cysteine Proteinase of Entamoeba histolytica Degrades Anaphylatoxins C3a and C5a. J. Immunol. 1995, 155, 266–274. [Google Scholar] [CrossRef]
- Ravdin, J.I.; Kelsall, B.L. Degradation of Human IgA by Entamoeba histolytica. J. Infect. Dis. 1993, 168, 1319–1322. [Google Scholar] [CrossRef]
- Garcia-Nieto, R.M.; Rico-Mata, R.; Arias-Negrete, S.; Avila, E.E. Degradation of Human Secretory IgA1 and IgA2 by Entamoeba histolytica Surface-Associated Proteolytic Activity. Parasitol. Int. 2008, 57, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.Q.; Herdman, D.S.; Torian, B.E.; Reed, S.L. The Neutral Cysteine Proteinase of Entamoeba histolytica Degrades IgG and Prevents Its Binding. J. Infect. Dis. 1998, 177, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Mortimer, L.; Chadee, K. Entamoeba histolytica Cysteine Proteinase 5 Binds Integrin on Colonic Cells and Stimulates NFκB-Mediated pro-Inflammatory Responses. J. Biol. Chem. 2010, 285, 35497–35504. [Google Scholar] [CrossRef]
- Lee, Y.A.; Nam, Y.H.; Min, A.; Kim, K.A.; Nozaki, T.; Saito-Nakano, Y.; Mirelman, D.; Shin, M.H. Entamoeba histolytica-Secreted Cysteine Proteases Induce IL-8 Production in Human Mast Cells via a PAR2-Independent Mechanism. Parasite 2014, 21, 1. [Google Scholar] [CrossRef]
- Guerrero-Manríquez, G.G.; Sánchez-Ibarra, F.; Avila, E.E. Inhibition of Entamoeba histolytica Proteolytic Activity by Human Salivary IgA Antibodies. APMIS 1998, 106, 1088–1094. [Google Scholar] [CrossRef]
- Gupta, S.; Naik, S.; Naik, S.R. Vaccine Potential of 56–66 KDa Protease Secreted by Entamoeba histolytica. Indian J. Med. Res. 1999, 109, 141–146. [Google Scholar]
- Roncolato, E.C.; Teixeira, J.E.; Barbosa, J.E.; Zambelli Ramalho, L.N.; Huston, C.D. Immunization with the Entamoeba histolytica Surface Metalloprotease EhMSP-1 Protects Hamsters from Amebic Liver Abscess. Infect. Immun. 2015, 83, 713–720. [Google Scholar] [CrossRef]
- Xiao, L.; Sulaiman, I.M.; Ryan, U.M.; Zhou, L.; Atwill, E.R.; Tischler, M.L.; Zhang, X.; Fayer, R.; Lal, A.A. Host Adaptation and Host-Parasite Co-Evolution in Cryptosporidium: Implications for Taxonomy and Public Health. Int. J. Parasitol. 2002, 32, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- CDC. Centers for Disease Control and Prevention, Parasites—Cryptosporidium (also know as “Crypto”). Available online: https://www.cdc.gov/parasites/crypto/index.html (accessed on 9 August 2023).
- Sponseller, J.K.; Griffiths, J.K.; Tzipori, S. The Evolution of Respiratory Cryptosporidiosis: Evidence for Transmission by Inhalation. Clin. Microbiol. Rev. 2014, 27, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsen, M.S.; Templeton, T.J.; Enomoto, S.; Abrahante, J.E.; Zhu, G.; Lancto, C.A.; Deng, M.; Liu, C.; Widmer, G.; Tzipori, S.; et al. Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum. Science 2004, 304, 441–445. [Google Scholar] [CrossRef]
- Ju, H.-L.; Kang, J.-M.; Noh, H.S.; Kim, D.R.; Hong, Y.; Sohn, W.-M.; Na, B.-K. Characterization of a Novel Otubain-like Cysteine Protease of Cryptosporidium parvum. Parasitol. Int. 2014, 63, 580–583. [Google Scholar] [CrossRef]
- Azevedo, C.S.; Guido, B.C.; Pereira, J.L.; Nolasco, D.O.; Corrêa, R.; Magalhães, K.G.; Motta, F.N.; Santana, J.M.; Grellier, P.; Bastos, I.M.D. Revealing a Novel Otubain-like Enzyme from Leishmania infantum with Deubiquitinating Activity toward K48-Linked Substrate. Front. Chem. 2017, 5, 13. [Google Scholar] [CrossRef]
- Forney, J.R.; Yang, S.; Healey, M.C. Protease Activity Associated with Excystation of Cryptosporidium parvum Oocysts. J. Parasitol. 1996, 82, 889–892. [Google Scholar] [CrossRef]
- Nesterenko, M.V.; Tilley, M.; Upton, S.J. A Metallo-Dependent Cysteine Proteinase of Cryptosporidium parvum Associated with the Surface of Sporozoites. Microbios 1995, 83, 77–88. [Google Scholar]
- Na, B.-K.; Kang, J.-M.; Cheun, H.-I.; Cho, S.-H.; Moon, S.-U.; Kim, T.-S.; Sohn, W.-M. Cryptopain-1, a Cysteine Protease of Cryptosporidium parvum, Does Not Require the pro-Domain for Folding. Parasitology 2009, 136, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.C.; Sijwali, P.S.; Singh, A.; Na, B.-K.; Rosenthal, P.J. Independent Intramolecular Mediators of Folding, Activity, and Inhibition for the Plasmodium falciparum Cysteine Protease Falcipain-2. J. Biol. Chem. 2004, 279, 3484–3491. [Google Scholar] [CrossRef]
- Ndao, M.; Nath-Chowdhury, M.; Sajid, M.; Marcus, V.; Mashiyama, S.T.; Sakanari, J.; Chow, E.; Mackey, Z.; Land, K.M.; Jacobson, M.P.; et al. A Cysteine Protease Inhibitor Rescues Mice from a Lethal Cryptosporidium parvum Infection. Antimicrob. Agents Chemother. 2013, 57, 6063–6073. [Google Scholar] [CrossRef]
- Knox, D.P. Proteinase Inhibitors and Helminth Parasite Infection. Parasite Immunol. 2007, 29, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.C.S.; Abrahamson, M.; Lima, A.P.C.A.; Vannier-Santos, M.A.; Scharfstein, J. Identification, Characterization and Localization of Chagasin, a Tight-Binding Cysteine Protease Inhibitor in Trypanosoma cruzi. J. Cell Sci. 2001, 114, 3933–3942. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, J.J.; Lantz, L.D.; Caffrey, C.R. Cure of Hookworm Infection with a Cysteine Protease Inhibitor. PLoS Negl. Trop. Dis. 2012, 6, e1680. [Google Scholar] [CrossRef]
- Chaparro, J.D.; Cheng, T.; Tran, U.P.; Andrade, R.M.; Brenner, S.B.T.; Hwang, G.; Cohn, S.; Hirata, K.; McKerrow, J.H.; Reed, S.L. Two Key Cathepsins, TgCPB and TgCPL, Are Targeted by the Vinyl Sulfone Inhibitor K11777 in in vitro and in vivo Models of Toxoplasmosis. PLoS ONE 2018, 13, e0193982. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial Effects of Peptide Inhibitors of a Plasmodium falciparum Cysteine Proteinase. J. Clin. Investig. 1991, 88, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Mckerrow, J.H.; Doyle, P.S.; Engel, J.C.; Podust, L.M.; Robertson, S.A.; Ferreira, R.; Saxton, T.; Arkin, M.; Kerr, I.D.; Brinen, L.S.; et al. Two Approaches to Discovering and Developing New Drugs for Chagas Disease. Mem. Inst. Oswaldo Cruz. 2009, 104, 263–269. [Google Scholar] [CrossRef]
- Stensvold, C.R.; Suresh, G.K.; Tan, K.S.W.; Thompson, R.C.A.; Traub, R.J.; Viscogliosi, E.; Yoshikawa, H.; Clark, C.G. Terminology for Blastocystis Subtypes—A Consensus. Trends Parasitol. 2007, 23, 93–96. [Google Scholar] [CrossRef]
- Rauff-Adedotun, A.A.; Termizi, F.H.M.; Shaari, N.; Lee, I.L. The Coexistence of Blastocystis spp. In Humans, Animals and Environmental Sources from 2010–2021 in Asia. Biology 2021, 10, 990. [Google Scholar] [CrossRef]
- Mehlhorn, H. Animal Parasites: Diagnosis, Treatment, Prevention; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319464022. [Google Scholar]
- Maloney, J.G.; Molokin, A.; Seguí, R.; Maravilla, P.; Martínez-Hernández, F.; Villalobos, G.; Tsaousis, A.D.; Gentekaki, E.; Muñoz-Antolí, C.; Klisiowicz, D.R.; et al. Identification and Molecular Characterization of Four New Blastocystis Subtypes Designated ST35-ST38. Microorganisms 2023, 11, 46. [Google Scholar] [CrossRef]
- Alfellani, M.A.; Taner-Mulla, D.; Jacob, A.S.; Imeede, C.A.; Yoshikawa, H.; Stensvold, C.R.; Clark, C.G. Genetic Diversity of Blastocystis in Livestock and Zoo Animals. Protist 2013, 164, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.D.; Sánchez, L.V.; Bautista, D.C.; Corredor, A.F.; Flórez, A.C.; Stensvold, C.R. Blastocystis Subtypes Detected in Humans and Animals from Colombia. Infect. Genet. Evol. 2014, 22, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, P.D.; Stensvold, C.R. Blastocystis: Getting to Grips with Our Guileful Guest. Trends Parasitol. 2013, 29, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.; Stark, D.; Harkness, J.; Ellis, J. Update on the Pathogenic Potential and Treatment Options for Blastocystis sp. Gut Pathog. 2014, 6, 17. [Google Scholar] [CrossRef]
- Gentekaki, E.; Curtis, B.A.; Stairs, C.W.; Klimeš, V.; Eliáš, M.; Salas-Leiva, D.E.; Herman, E.K.; Eme, L.; Arias, M.C.; Henrissat, B.; et al. Extreme Genome Diversity in the Hyper-Prevalent Parasitic Eukaryote Blastocystis. PLoS Biol. 2017, 15, e2003769. [Google Scholar] [CrossRef]
- Denoeud, F.; Roussel, M.; Noel, B.; Wawrzyniak, I.; Da Silva, C.; Diogon, M.; Viscogliosi, E.; Brochier-Armanet, C.; Couloux, A.; Poulain, J.; et al. Genome Sequence of the Stramenopile Blastocystis, a Human Anaerobic Parasite. Genome Biol. 2011, 12, R29. [Google Scholar] [CrossRef]
- Mirza, H.; Tan, K.S.W. Blastocystis Exhibits Inter- and Intra-Subtype Variation in Cysteine Protease Activity. Parasitol. Res. 2009, 104, 355–361. [Google Scholar] [CrossRef]
- Sio, S.W.S.; Puthia, M.K.; Lee, A.S.Y.; Lu, J.; Tan, K.S.W. Protease Activity of Blastocystis hominis. Parasitol. Res. 2006, 99, 126–130. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Waller, M.; Barrett, A.J.; Bateman, A. MEROPS: The Database of Proteolytic Enzymes, Their Substrates and Inhibitors. Nucleic Acids Res. 2014, 42, D503–D509. [Google Scholar] [CrossRef]
- Puthia, M.K.; Lu, J.; Tan, K.S.W. Blastocystis Ratti Contains Cysteine Proteases That Mediate Interleukin-8 Response from Human Intestinal Epithelial Cells in an NF-ΚB-Dependent Manner. Eukaryot. Cell 2008, 7, 435–443. [Google Scholar] [CrossRef]
- Puthia, M.K.; Vaithilingam, A.; Lu, J.; Tan, K.S.W. Degradation of Human Secretory Immunoglobulin a by Blastocystis. Parasitol. Res. 2005, 97, 386–389. [Google Scholar] [CrossRef]
- Wu, Z.; Mirza, H.; Teo, J.D.W.; Tan, K.S.W. Strain-Dependent Induction of Human Enterocyte Apoptosis by Blastocystis Disrupts Epithelial Barrier and ZO-1 Organization in a Caspase 3- and 9-Dependent Manner. Biomed. Res. Int. 2014, 2014, 209163. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Mirza, H.; Tan, K.S.W. Intra-Subtype Variation in Enteroadhesion Accounts for Differences in Epithelial Barrier Disruption and Is Associated with Metronidazole Resistance in Blastocystis Subtype-7. PLoS Negl. Trop. Dis. 2014, 8, e2885. [Google Scholar] [CrossRef]
- Wawrzyniak, I.; Texier, C.; Poirier, P.; Viscogliosi, E.; Tan, K.S.W.; Delbac, F.; El Alaoui, H. Characterization of Two Cysteine Proteases Secreted by Blastocystis ST7, a Human Intestinal Parasite. Parasitol. Int. 2012, 61, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Wawrzyniak, I.; Cian, A.; Livrelli, V.; Viscogliosi, E.; Delbac, F.; Poirier, P. On Blastocystis Secreted Cysteine Proteases: A Legumain-Activated Cathepsin B Increases Paracellular Permeability of Intestinal Caco-2 Cell Monolayers. Parasitology 2016, 143, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Yoshikawa, H.; Yamada, M.; Kimata, I.; Arizono, N. Expression of Interferon Gamma and Proinflammatory Cytokines in the Cecal Mucosa of Rats Experimentally Infected with Blastocystis Sp. Strain RN94-9. Parasitol. Res. 2009, 105, 135–140. [Google Scholar] [CrossRef]
- Lim, M.X.; Png, C.W.; Tay, C.Y.B.; Teo, J.D.W.; Jiao, H.; Lehming, N.; Tan, K.S.W.; Zhang, Y. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection. Infect. Immun. 2014, 82, 4789–4801. [Google Scholar] [CrossRef]
- Díaz-Godínez, C.; Ríos-Valencia, D.G.; García-Aguirre, S.; Martínez-Calvillo, S.; Carrero, J.C. Immunomodulatory Effect of Extracellular Vesicles from Entamoeba histolytica Trophozoites: Regulation of NETs and Respiratory Burst during Confrontation with Human Neutrophils. Front. Cell. Infect. Microbiol. 2022, 12, 1018314. [Google Scholar] [CrossRef]
- Norouzi, M.; Pirestani, M.; Arefian, E.; Dalimi, A.; Sadraei, J.; Mirjalali, H. Exosomes Secreted by Blastocystis Subtypes Affect the Expression of Proinflammatory and Anti-Inflammatory Cytokines (TNFα, IL-6, IL-10, IL-4). Front. Med. 2022, 9, 940332. [Google Scholar] [CrossRef] [PubMed]
- Katsarou-Katsari, A.; Vassalos, C.M.; Tzanetou, K.; Spanakos, G.; Papadopoulou, C.; Vakalis, N. Acute Urticaria Associated with Amoeboid Forms of Blastocystis Sp. Subtype 3. Acta Derm. Venereol. 2008, 88, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, D.M.; Hassanin, O.M. Proteaese Activity of Blastocystis hominis Subtype3 in Symptomatic and Asymptomatic Patients. Parasitol. Res. 2011, 109, 321–327. [Google Scholar] [CrossRef]
- Karamati, S.A.; Mirjalali, H.; Niyyati, M.; Yadegar, A.; Asadzadeh Aghdaei, H.; Haghighi, A.; Seyyed Tabaei, S.J. Association of Blastocystis ST6 with Higher Protease Activity among Symptomatic Subjects. BMC Microbiol. 2021, 21, 285. [Google Scholar] [CrossRef]
- Adao, D.E.V.; Rivera, W.L. Variations in Active Proteases of Blastocystis Sp. Obtained from Water and Animal Isolates from the Philippines. J. Parasit. Dis. 2022, 46, 627–636. [Google Scholar] [CrossRef]
- Gonzalez-Arenas, N.R.; Villalobos, G.; Vargas-Sanchez, G.B.; Avalos-Galarza, C.A.; Marquez-Valdelamar, L.M.; Ramirez-Miranda, M.E.; Olivo-Diaz, A.; Romero-Valdovinos, M.; Martinez-Hernandez, F.; Maravilla, P. Is the Genetic Variability of Cathepsin B Important in the Pathogenesis of Blastocystis spp.? Parasitol. Res. 2018, 117, 3935–3943. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, S.; Sogayar, M.I.T.L.; Franco, M.F. Protease Activity in Giardia duodenalis Trophozoites of Axenic Strains Isolated from Symptomatic and Asymptomatic Patients. Mem. Inst. Oswaldo Cruz. 2003, 98, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Arguello-Garcia, R.; de la Vega-Arnaud, M.; Loredo-Rodriguez, I.J.; Mejia-Corona, A.M.; Melgarejo-Trejo, E.; Espinoza-Contreras, E.A.; Fonseca-Linan, R.; Gonzalez-Robles, A.; Perez-Hernandez, N.; Ortega-Pierres, M.G. Activity of Thioallyl Compounds From Garlic Against Giardia duodenalis Trophozoites and in Experimental Giardiasis. Front. Cell. Infect. Microbiol. 2018, 8, 353. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, V.E.; Iribarren, P.A.; Niemirowicz, G.T.; Cazzulo, J.J. Update on Relevant Trypanosome Peptidases: Validated Targets and Future Challenges. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140577. [Google Scholar] [CrossRef]
Cysteine Proteinase | Celular Localization | Involved in … | References |
---|---|---|---|
EhCP1 | Cytoplasmic large vesicles different to those of EhCP3 | Adhesion and cytopathic effect Proteolysis of collagen type-1, villin, IgA, IgG, C3, pro-IL-18 Degrades erythrocytes and hemoglobin | Scholze and Schulte, 1988 [61]; Li et al., (1995) [73]; Zhang et al., (2000) [74]; Melendez-López et al., 2007 [75]; Irmer et al., (2009) [76] |
EhCP2 | Membrane Move to phagocytic vesicles during erythrophagocytosis | Adhesion and cytopathic effect Proteolysis of collagen, proteoglycan, pro-IL-1β, chemokines CXC and CCL Degrades erythrocytes and hemoglobin | Li et al., (1995) [73]; Zhang et al., (2000) [74]; Irmer et al., (2009) [76]; Que et al., (2002) [77]; Pertuz-Belloso et al., (2004) [78] |
EhCP3 | Cytoplasmic large vesicles different to those of EhCP1. Move to phagocytic vesicles during erythrophagocytosis | Probably in digestion of nutrients | Que et al., (2002) [77]; Serrano-Luna et al., (2013) [79]; Gastelum-Martínez et al., (2018) [80] |
EhCP4 | Nucleus, perinuclear endoplasmic reticulum and cytoplasmic acidic compartment | Adhesion and cytopathic effect Proteolysis of laminin, villin, IgA, C3, Pro-IL-1β Pathogenesis of intestinal invasive amoebiasis | Li et al., (1995) [73]; Zhang et al., (2000) [74]; He et al., (2010) [81] |
EhCP5 | Membrane | Proteolysis of collagen, fibrinogen, mucin, pro and mature IL-18 Degrades erythrocytes and hemoglobin Secretagoge activity Pathogenesis of invasive amoebiasis | Jacobs et al., (1998) [63]; Que et al., (2003) [77]; Hellberg et al., (2002) [82]; Moncada et al., (2006) [83]; Thíbeaux et al., (2012) [84]; Cornick et al., (2016) [85] |
EhCP6 | Stress reponse | Park et al., (2001) [86]; Ghosh and Raha (2015) [87] | |
EhCP112 | Membrane, forming a complex with EhAdh112 | Degrades erythrocytes and hemoglobin Proteolysis of claudin 1 and claudin 2 at the tight junctions Proteolysis of β-cat, E-cad, Dsp l/ll, and Dsg-2 in adhesion junctions and desmosomes | Irmer et al., (2009) [76]; Ocádiz et al., (2005) [88]; Cuellar et al., (2017) [89]; Hernández-Nava et al., (2017) [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüello-García, R.; Carrero, J.C.; Ortega-Pierres, M.G. Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity. Int. J. Mol. Sci. 2023, 24, 12850. https://doi.org/10.3390/ijms241612850
Argüello-García R, Carrero JC, Ortega-Pierres MG. Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity. International Journal of Molecular Sciences. 2023; 24(16):12850. https://doi.org/10.3390/ijms241612850
Chicago/Turabian StyleArgüello-García, Raúl, Julio César Carrero, and M. Guadalupe Ortega-Pierres. 2023. "Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity" International Journal of Molecular Sciences 24, no. 16: 12850. https://doi.org/10.3390/ijms241612850
APA StyleArgüello-García, R., Carrero, J. C., & Ortega-Pierres, M. G. (2023). Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity. International Journal of Molecular Sciences, 24(16), 12850. https://doi.org/10.3390/ijms241612850