Updates on Larynx Cancer: Risk Factors and Oncogenesis
Abstract
:1. Introduction
2. Discussion
2.1. Risk Factors
2.1.1. Smoking
2.1.2. Alcohol
2.1.3. Opium
2.1.4. HPV
2.1.5. EBV
2.1.6. Agent Orange
2.1.7. Helicobacter pylori and Gastroesophageal Reflux Disease
2.1.8. Microbiome
2.1.9. Other Risk Factors
2.2. Oncogenesis
2.3. The Emerging Role of lncRNAs, miRNAs, and mRNAs
2.4. Clinical Correlations of Oncogenesis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavaliere, M.; Bisogno, A.; Scarpa, A.; D’Urso, A.; Marra, P.; Colacurcio, V.; De Luca, P.; Ralli, M.; Cassandro, E.; Cassandro, C. Biomarkers of laryngeal squamous cell carcinoma: A review. Ann. Diagn. Pathol. 2021, 54, 151787. [Google Scholar] [CrossRef] [PubMed]
- Ciolofan, M.S.; Vlăescu, A.N.; Mogoantă, C.A.; Ioniță, E.; Ioniță, I.; Căpitănescu, A.N.; Mitroi, M.R.; Anghelina, F. Clinical, histological and immunohistochemical evaluation of larynx cancer. Curr. Health Sci. J. 2017, 43, 367–375. [Google Scholar] [PubMed]
- Nocini, R.; Molteni, G.; Mattiuzzi, C.; Lippi, G. Updates on larynx cancer epidemiology. Chin. J. Cancer Res. 2020, 32, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ferlito, A.; Silver, C.E.; Bradford, C.R.; Rinaldo, A. Neuroendocrine neoplasms of the larynx: An overview. Head. Neck. 2009, 31, 1634–1646. [Google Scholar] [CrossRef] [PubMed]
- Marioni, G.; Marchese-Ragona, R.; Cartei, G.; Marchese, F.; Staffieri, A. Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat. Rev. 2006, 32, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.D.; Echanique, K.A.; Yip, C.; Hsueh, W.D.; Baredes, S.; Park, R.C.W.; Eloy, J.A. Supraglottic squamous cell carcinoma: A population-based study of 22,675 cases. Laryngoscope 2019, 129, 1822–1827. [Google Scholar] [CrossRef]
- Marchiano, E.; Patel, D.M.; Patel, T.D.; Patel, A.A.; Xue, Y.E.; Eloy, J.A.; Baredes, S.; Park, R.C.W. Subglottic squamous cell carcinoma: A population-based study of 889 cases. Otolaryngol. Head. Neck Surg. 2016, 154, 315–321. [Google Scholar] [CrossRef]
- Rodrigo, J.P.; García-Pedrero, J.M.; Suárez, C.; Takes, R.P.; Thompson, L.D.R.; Slootweg, P.J.; Woolgar, J.A.; Westra, W.H.; Brakenhoff, R.H.; Rinaldo, A.; et al. Biomarkers predicting malignant progression of laryngeal epithelial precursor lesions: A systematic review. Eur. Arch. Otorhinolaryngol. 2012, 269, 1073–1083. [Google Scholar] [CrossRef]
- Hegazy, M.; Elkady, M.A.; Yehia, A.M.; Elsakka, E.G.E.; Abulsoud, A.I.; Abdelmaksoud, N.M.; Elshafei, A.; Abdelghany, T.M.; Elkhawaga, S.Y.; Ismail, A.; et al. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance-A focus on signaling pathways interplay. Pathol. Res. Pract. 2023, 246, 154510. [Google Scholar] [CrossRef]
- Califano, J.; Van Der Riet, P.; Westra, W.; Nawroz, H.; Clayman, G.; Piantadosi, S.; Corio, R.; Lee, D.; Greenberg, B.; Koch, W.; et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996, 56, 2488–2492. [Google Scholar] [CrossRef]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An update on larynx cancer. CA Cancer J. Clin. 2017, 67, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Mody, M.D.; Rocco, J.W.; Yom, S.S.; Haddad, R.I.; Saba, N.F. Head and neck cancer. Lancet 2021, 398, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, T.; Guo, E.; Svider, P.F.; Lin, H.; Syeda, S.; Raza, S.N.; Fribley, A.M. Laryngeal cancer: Global socioeconomic trends in disease burden and smoking habits. Laryngoscope 2018, 128, 2039–2053. [Google Scholar] [CrossRef] [PubMed]
- Ramroth, H.; Dietz, A.; Becher, H. Intensity and inhalation of smoking in the aetiology of laryngeal cancer. Int. J. Environ. Res. Public. Health 2011, 8, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Henley, S.J.; Thun, M.J.; Chao, A.; Calle, E.E. Association between exclusive pipe smoking and mortality from cancer and other diseases. J. Natl. Cancer Inst. 2004, 96, 853–861. [Google Scholar] [CrossRef]
- Bilano, V.; Gilmour, S.; Moffiet, T.; d’Espaignet, E.T.; Stevens, G.A.; Commar, A.; Tuyl, F.; Hudson, I.; Shibuya, K. Global trends and projections for tobacco use, 1990–2025: An analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet 2015, 385, 966–976. [Google Scholar] [CrossRef]
- Hashibe, M.; Brennan, P.; Benhamou, S.; Castellsague, X.; Chen, C.; Curado, M.P.; Dal Maso, L.; Daudt, A.W.; Fabianova, E.; Fernandez, L.; et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: Pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J. Natl. Cancer Inst. 2007, 99, 777–789. [Google Scholar] [CrossRef]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- World Cancer Research Fund; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; Continuous Update Project Expert Report; World Cancer Research Fund: London, UK, 2018. [Google Scholar]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose–response meta-analysis. Br. J. Cancer 2014, 112, 580. [Google Scholar] [CrossRef]
- Levesque, C.; Sanger, N.; Edalati, H.; Sohi, I.; Shield, K.D.; Sherk, A.; Stockwell, T.; Butt, P.R.; Paradis, C. A systematic review of relative risks for the relationship between chronic alcohol use and the occurrence of disease. Alcoholism 2023, 47, 1238–1255. [Google Scholar] [CrossRef]
- Druesne-Pecollo, N.; Tehard, B.; Mallet, Y.; Gerber, M.; Norat, T.; Hercberg, S.; Latino-Martel, P. Alcohol and genetic polymorphisms: Effect on risk of alcohol-related cancer. Lancet Oncol. 2009, 10, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, E.; Hadji, M.; Rashidian, H.; Rezaianzadeh, A.; Marzban, M.; Haghdoost, A.A.; Naghibzadeh Tahami, A.; Moradi, A.; Gholipour, M.; Najafi, F.; et al. Opium use and the risk of head and neck squamous cell carcinoma. Int. J. Cancer. 2021, 148, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.; Shakeri, R.; Poustchi, H.; Pourshams, A.; Etemadi, A.; Islami, F.; Khoshnia, M.; Gharavi, A.; Roshandel, G.; Khademi, H.; et al. Opium use and subsequent incidence of cancer: Results from the Golestan Cohort Study. Lancet Glob. Health 2020, 8, e649–e660. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Tenorio, C.; Calle-Gómez, I.; Moya-Megías, R.; Rodríguez-Granges, J.; Omar, M.; López Hidalgo, J.; García-Martínez, C. HPV Infection of the Oropharyngeal, Genital and Anal Mucosa and Associated Dysplasia in People Living with HIV. Viruses 2023, 15, 1170. [Google Scholar] [CrossRef]
- Drago, F.; Herzum, A.; Ciccarese, G.; Dezzana, M.; Pastorino, A.; Casazza, S.; Nozza, P.; Rebora, A.; Parodi, A. Prevalence and persistence of oral HPV infection in Italy. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e150–e151. [Google Scholar] [CrossRef]
- Li, X.; Gao, L.; Li, H.; Gao, J.; Yang, Y.; Zhou, F.; Gao, C.; Li, M.; Jin, Q. Human papillomavirus infection and laryngeal cancer risk: A systematic review and meta-analysis. J. Infect. Dis. 2013, 207, 479–488. [Google Scholar] [CrossRef]
- Stephen, J.K.; Chen, K.M.; Shah, V.; Havard, S.; Lu, M.; Schweitzer, V.P.; Gardner, G.; Worsham, M.J. Human papillomavirus out- comes in an access-to-care laryngeal cancer cohort. Otolaryngol. Head. Neck Surg. 2012, 146, 730–738. [Google Scholar] [CrossRef]
- Gama, R.R.; Carvalho, A.L.; Filho, A.L.; Scorsato, A.P.; López, R.V.M.; Rautava, J.; Syrjänen, S.; Syrjänen, K. Detection of human papillomavirus in laryngeal squamous cell carcinoma: Systematic review and meta-analysis. Laryngoscope 2016, 126, 885–893. [Google Scholar] [CrossRef]
- Erkul, E.; Yilmaz, I.; Narli, G.; Babayigit, M.A.; Gungor, A.; Demirel, D. The presence and prognostic significance of human papillomavirus in squamous cell carcinoma of the larynx. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 2921–2926. [Google Scholar] [CrossRef]
- Brichácek, B.; Hirsch, I.; Síbl, O.; Vilikusová, E.; Vonka, V. Association of some supraglottic laryngeal carcinomas with EB virus. Int. J. Cancer 1983, 32, 193–197. [Google Scholar] [CrossRef]
- De Lima, M.A.P.; Silva, Á.D.L.; do Nascimento Filho, A.C.S.; Cordeiro, T.L.; Bezerra, J.P.d.S.; Rocha, M.A.B.; Pinheiro, S.d.F.L.; Pinheiro Junior, R.F.F.; Gadelha, M.d.S.V.; da Silva, C.G.L. Epstein-Barr Virus-Associated Carcinoma of the Larynx: A Systematic Review with Meta-Analysis. Pathogens 2021, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Shi, Y.; Tang, Y.; Yin, H.; Guo, Y.; Wen, S.; Wang, B.; An, C.; Wu, Y.; Gao, W. Effect of HPV infection on the occurrence and development of laryngeal cancer: A review. J. Cancer 2019, 10, 4455–4462. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Guillen, J.M.; Palacios-Saucedo, G.C.; Alanis-Valdez, A.Y.; Huerta-Escobedo, A.; Zavala-Pompa, A.; Rivera-Morales, L.G.; Martinez-Torres, A.C.; Gonzalez-Villasana, V.; Serna-Hernandez, J.C.; Hernandez-Martinez, S.J.; et al. p16INK4a and pRb expression in laryngeal squamous cell carcinoma with and without infection by EBV or different genotypes of HPV: A retrospective study. Infect. Agent. Cancer 2023, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Mowery, A.; Conlin, M.; Clayburgh, D. Increased risk of head and neck cancer in Agent Orange exposed Vietnam Era veterans. Oral. Oncol. 2020, 100, 104483. [Google Scholar] [CrossRef] [PubMed]
- Kociba, R.J.; Keyes, D.G.; Beyer, J.E.; Carreon, R.M.; Wade, C.E.; Dittenber, D.A.; Kalnins, R.P.; Frauson, L.E.; Park, C.N.; Barnard, S.D.; et al. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol. Appl. Pharmacol. 1978, 46, 279–303. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Atherton, J.; Axon, A.T.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; et al. Management of Helicobacter pylori infection–the Maastricht IV/Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef]
- Akbayir, N.; Başak, T.; Seven, H.; Sungun, A.; Erdem, L. Investigation of Helicobacter pylori colonization in laryngeal neoplasia. Eur. Arch. Oto-Rhino-Laryngol. Head Neck 2005, 262, 170–172. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, D.; Yang, Y.; Zhou, L.; Tao, L. Association between helicobacter pylori infection and carcinoma of the larynx or pharynx. Head. Neck. 2016, 38 (Suppl. S1), E2291–E2296. [Google Scholar] [CrossRef] [PubMed]
- Lewin, J.S.; Gillenwater, A.M.; Garrett, J.D.; Bishop-Leone, J.K.; Nguyen, D.D.; Callender, D.L.; Ayers, G.D.; Myers, J.N. Characterization oflaryngopharyngeal reflux in patients with premalignant orearly carcinomas of the larynx. Cancer 2003, 97, 1010–1014. [Google Scholar] [CrossRef]
- Sadri, M.; McMahon, J.; Parker, A. Laryngeal dysplasia: Aetiology and molecular biology. J. Laryngol. Otol. 2006, 120, 170–177. [Google Scholar] [CrossRef]
- Vaezi, M.F.; Qadeer, M.A.; Lopez, R.; Colabianchi, N. Laryngealcancer and gastroesophageal reflux disease: A case–controlstudy. Am. J. Med. 2006, 119, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.L.; Shi, Y.; Zhou, L.; Wu, C.P.; Cao, P.Y.; Tao, L.; Xu, C.; Hou, D.S.; Wang, Y.Z. The Composition of Microbiome in Larynx and the Throat Biodiversity between Laryngeal Squamous Cell Carcinoma Patients and Control Population. PLoS ONE 2013, 8, e66476. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, G.; Guo, Y.; Zhao, Y.; Zhao, M.; Lai, Y.; Sui, P.; Shi, T.; Guo, W.; Huang, Z. Variations in oral microbiota composition are associated with a risk of throat cancer. Front. Cell. Infect. Microbiol. 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, J.; Zhao, Y.; Yan, F.; Fan, Y.; Xia, X.; Shan, G.; Zhang, P.; Chen, X. Oral-microbiome-derived signatures enable non-invasive diagnosis of laryngeal cancers. J. Transl. Med. 2023, 21, 438. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, X.; Zhao, X.; Xu, Z.; Dai, W.; Duan, W.; Huang, S.; Zhang, E.; Liu, J.; Zhang, S.; et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral. Oncol. 2020, 107, 104710. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef]
- Kelly, D.; Mulder, I.E. Microbiome and immunological interactions. Nutr. Rev. 2012, 70 (Suppl. S1), S18–S30. [Google Scholar] [CrossRef]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef]
- Hayes, R.B.; Ahn, J.; Fan, X.; Peters, B.A.; Ma, Y.; Yang, L.; Agalliu, I.; Burk, R.D.; Ganly, I.; Purdue, M.P.; et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018, 4, 358–365. [Google Scholar] [CrossRef]
- Copper, M.P.; Jovanovic, A.; Nauta, J.J.P.; Braakhuis, B.J.M.; de Vries, N.; van der Waal, I.; Snow, G.B. Role of genetic factors in the etiology of squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head. Neck Surg. 1995, 121, 157–160. [Google Scholar] [CrossRef]
- Hashibe, M.; Straif, K.; Tashkin, D.P.; Morgenstern, H.; Greenland, S.; Zhang, Z.F. Epidemiologic review of marijuana use and cancer risk. Alcohol 2005, 35, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Califano, J.; Westra, W.H.; Meininger, G.; Corio, R.; Koch, W.M.; Sidransky, D. Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin. Cancer Res. 2000, 6, 347–352. [Google Scholar]
- Perez-Ordoñez, B.; Beauchemin, M.; Jordan, R.C. Molecular biology of squamous cell carcinoma of the head and neck. J. Clin. Pathol. 2006, 59, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Van Der Riet, P.; Nawroz, H.; Hruban, R.H.; Corio, R.; Tokino, K.; Koch, W.; Sidransky, D. Frequent loss of chromosome 9p21–22 early in head and neck cancer progression. Cancer Res. 1994, 54, 1156–1158. [Google Scholar] [PubMed]
- Bradford, C.R.; Ferlito, A.; Devaney, K.O.; Mäkitie, A.A.; Rinaldo, A. Prognostic factors in laryngeal squamous cell carcinoma. Laryngoscope Investig. Otolaryngol. 2020, 5, 74–81. [Google Scholar] [CrossRef]
- Young, R.J.; Urban, D.; Angel, C.; Corry, J.; Lyons, B.; Vallance, N.; Kleid, S.; Iseli, T.A.; Solomon, B.; Rischin, D. Frequency and prognostic significance of p16(INK4A) protein overexpression and transcriptionally active human papillomavirus infection in laryngeal squamous cell carcinoma. Br. J. Cancer 2015, 112, 1098–1104. [Google Scholar] [CrossRef]
- Baumann, J.L.; Cohen, S.; Evjen, A.N.; Law, J.H.; Vadivelu, S.; Attia, A.; Schindler, J.S.; Chung, C.H.; Wirth, P.S.; Meijer, C.J.; et al. Human papillomavirus in early laryngeal carcinoma. Laryngoscope 2009, 119, 1531–1537. [Google Scholar] [CrossRef]
- Li, X.; Ling, Y.; Hu, L.; Zhang, L.; Lin, S.; Zhang, X.; Zang, S. Detection of HPV DNA, E6/E7 mRNA, and p16INK4a in lung cancer: A systematic review and meta-analysis. J. Infect Dis. 2023, jiad295. [Google Scholar] [CrossRef]
- Soussi, T. p53 alterations in human cancer: More questions than answers. Oncogene 2007, 26, 2145–2156. [Google Scholar] [CrossRef]
- Shin, D.M.; Kim, J.; Ro, J.Y.; Hittelman, J.; Roth, J.A.; Hong, W.K.; Hittelman, W.N. Activation of p53 gene expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 1994, 54, 321–326. [Google Scholar]
- Loyo, M.; Li, R.J.; Bettegowda, C.; Pickering, C.R.; Frederick, M.J.; Myers, J.N.; Agrawal, N. Lessons learned from next-generation sequencing in head and neck cancer. Head. Neck. 2013, 35, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, T.; Reed, J.C. bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 1992, 52, 5407–5411. [Google Scholar] [PubMed]
- Chau, N.G.; Li, Y.Y.; Jo, V.Y.; Rabinowits, G.; Lorch, J.H.; Tishler, R.B.; Margalit, D.N.; Schoenfeld, J.D.; Annino, D.J.; Goguen, L.A.; et al. Incorporation of Next-Generation Sequencing into Routine Clinical Care to Direct Treatment of Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2016, 22, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.X.; Zhang, J.; Wang, J.; et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef]
- Chong, C.R.; Janne, P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013, 19, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin. Cancer Res. 2006, 12, 5268–5272. [Google Scholar] [CrossRef]
- Rubin Grandis, J.; Tweardy, D.J.; Melhem, M.F. Asynchronous modulation of transforming growth factor alpha and epidermal growth factor receptor protein expression in progression of premalignant lesions to head and neck squamous cell carcinoma. Clin. Cancer Res. 1998, 4, 13–20. [Google Scholar]
- Zhu, X.; Zhang, F.; Zhang, W.; He, J.; Zhao, Y.; Chen, X. Prognostic role of epidermal growth factor receptor in head and neck cancer: A meta-analysis. J. Surg. Oncol. 2013, 108, 387–397. [Google Scholar] [CrossRef]
- Rowley, H.; Jones, A.; Spandidos, D.; Field, J. Definition of a tumor suppressor gene locus on the short arm of chromosome 3 in squamous cell carcinoma of the head and neck by means of microsatellite markers. Arch. Otolaryngol. Head. Neck Surg. 1996, 122, 497–501. [Google Scholar] [CrossRef]
- Nawroz, H.; Van Der Riet, P.; Hruban, R.H.; Koch, W.; Ruppert, J.M.; Sidransky, D. Allelotype of head and neck squamous cell carcinoma. Cancer Res. 1994, 54, 1152–1155. [Google Scholar]
- Boyle, J.O.; Hakim, J.; Koch, W.; Van Der Riet, P.; Hruban, R.H.; Roa, R.A.; Correo, R.; Eby, Y.J.; Ruppert, J.M.; Sidransky, D. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993, 53, 4477–4480. [Google Scholar]
- Meredith, S.D.; Levine, P.A.; Burns, J.A.; Gaffey, M.J.; Boyd, J.C.; Weiss, L.M.; Erickson, N.L.; Williams, M.E. Chromosome 11q13 amplification in head and neck squamous cell carcinoma. Association with poor prognosis. Arch. Otolaryngol. Head. Neck Surg. 1995, 121, 790–794. [Google Scholar] [CrossRef]
- Michalides, R.; Van Veelen, N.; Hart, A.; Loftus, B.; Wientjens, E.; Balm, A. Overexpression of Cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res. 1995, 55, 975–978. [Google Scholar] [PubMed]
- Ha, P.K.; Benoit, N.E.; Yochem, R.; Sciubba, J.; Zahurak, M.; Sidransky, D.; Pevsner, J.; Westra, W.H.; Califano, J. A transcriptional progression model for head and neck cacer. Clin. Cancer Res. 2003, 9, 3058–3064. [Google Scholar] [PubMed]
- López-Verdín, S.; Martínez-Fierro, M.L.; Garza-Veloz, I.; Zamora-Perez, A.; Grajeda-Cruz, J.; González-González, R.; Molina-Frechero, N.; Arocena-Sutz, M.; Bologna-Molina, R. E-Cadherin gene expression in oral cancer: Clinical and prospective data. Med. Oral. Patol. Oral. Cir. Bucal. 2019, 24, e444–e451. [Google Scholar] [CrossRef] [PubMed]
- Abd El Fattah, Y.K.; Abulsoud, A.I.; AbdelHamid, S.G.; Hamdy, N.M. Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int. J. Biol. Macromol. 2022, 222 Pt B, 1676–1687. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Y.; Ma, M. MicroRNA-138 inhibits proliferation and induces apoptosis of laryngeal carcinoma via targeting MAPK6, Eur. Rev. Med. Pharm. Sci. 2018, 22, 5569–5575. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Chen, X.; Fan, J.; Zheng, W.; Cao, C. miR-206 inhibits laryngeal carcinoma cell multiplication, migration, and invasion. J. Healthc. Eng. 2021, 2021, 5614861. [Google Scholar] [CrossRef]
- Zhang, X.W.; Liu, N.; Chen, S.; Wang, Y.; Zhang, Z.X.; Sun, Y.Y.; Qiu, G.B.; Fu, W.N. High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn. Pathol. 2015, 10, 22. [Google Scholar] [CrossRef]
- Gong, L.; Wang, X.F.; Liu, H.; Li, L. MiRNA-106a-5p Promotes Laryngeal Carcinoma Proliferation and Migration Through PI3K/AKT/m-TOR Pathway by AKTIP. Iran. J. Biotechnol. 2023, 21, e3339. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.; Zhang, K.; Dong, Y.; Zhang, A.; Lu, C.; Liu, L. MicroRNA-107 inhibits proliferation and invasion of laryngeal squamous cell carcinoma cells by targeting CACNA2D1 in vitro. Anticancer Drugs 2020, 31, 260–271. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, Y.; Zhang, Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum. Cell 2023, 36, 76–97. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, X.; Zhang, G.; Shi, X.; Bilegsaikhan, E.; Guo, H.; Liu, L.; Cai, Y.; Song, G.; Liu, T.; et al. Comprehensive analysis of long non-coding RNA-messenger RNA-microRNA co-expres- sion network identifies cell cycle-related lncRNA in hepatocel- lular carcinoma. Int. J. Mol. Med. 2019, 44, 1844–1854. [Google Scholar] [CrossRef]
- Kyurkchiyan, S.G.; Popov, T.M.; Mitev, V.I.; Kaneva, R.P. The Role of miRNAs and lncRNAs in Laryngeal Squamous Cell Carcinoma-a Mini-Review. Folia Med. 2020, 62, 244–252. [Google Scholar] [CrossRef]
- Yang, T.; Li, S.; Liu, J.; Yin, D.; Yang, X.; Tang, Q. lncRNA- NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med. 2018, 7, 2048–2063. [Google Scholar] [CrossRef]
- Park, J.C.; Altman, K.W.; Prasad, V.M.N.; Broadhurst, M.; Akst, L.M. Laryngeal Leukoplakia: State of the Art Review. Otolaryngol. Head. Neck Surg. 2021, 164, 1153–1159. [Google Scholar] [CrossRef]
- Baran, C.A.; Agaimy, A.; Wehrhan, F.; Weber, M.; Hille, V.; Brunner, K.; Wickenhauser, C.; Siebolts, U.; Nkenke, E.; Kesting, M.; et al. MAGE-A expression in oral and laryngeal leukoplakia predicts malignant transformation. Mod. Pathol. 2019, 32, 1068–1081. [Google Scholar] [CrossRef]
- Bukovszky, B.; Fodor, J.; Tóth, E.; Kocsis, Z.S.; Oberna, F.; Ferenczi, Ö.; Polgár, C. Malignant Transformation and Long-Term Outcome of Oral and Laryngeal Leukoplakia. J. Clin. Med. 2023, 12, 4255. [Google Scholar] [CrossRef]
- Iocca, O.; Sollecito, T.P.; Alawi, F.; Weinstein, G.S.; Newman, J.G.; De Virgilio, A.; Di Maio, P.; Spriano, G.; López, S.P.; Shanti, R.M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head. Neck 2020, 42, 539–555. [Google Scholar] [CrossRef]
- de Vicente, J.C.; del Molino, P.D.-P.; Rodrigo, J.P.; Allonca, E.; Hermida-Prado, F.; Granda-Díaz, R.; Santamarta, T.R.; García-Pedrero, J.M. SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. J. Clin. Med. 2019, 8, 1744. [Google Scholar] [CrossRef]
- Anis, M.M.; Diaz, J.; Patel, M.; Lloyd, A.T.; Rosow, D.E. Glottic Keratosis: Significance and Identification of Laryngoscopic Findings. OTO Open 2021, 5, 2473974X21994743. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.; Zidar, N.; Poljak, M.; Cardesa, A. Current views and perspectives on classification of squamous intraepithelial lesions of the head and neck. Head. Neck Pathol. 2014, 8, 16–23. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board (Ed.) WHO Classification of Tumours: Head and Neck Tumours, 5th ed.; IARC: Lyon, France, 2022; Volume 9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberale, C.; Soloperto, D.; Marchioni, A.; Monzani, D.; Sacchetto, L. Updates on Larynx Cancer: Risk Factors and Oncogenesis. Int. J. Mol. Sci. 2023, 24, 12913. https://doi.org/10.3390/ijms241612913
Liberale C, Soloperto D, Marchioni A, Monzani D, Sacchetto L. Updates on Larynx Cancer: Risk Factors and Oncogenesis. International Journal of Molecular Sciences. 2023; 24(16):12913. https://doi.org/10.3390/ijms241612913
Chicago/Turabian StyleLiberale, Carlotta, Davide Soloperto, Alessandro Marchioni, Daniele Monzani, and Luca Sacchetto. 2023. "Updates on Larynx Cancer: Risk Factors and Oncogenesis" International Journal of Molecular Sciences 24, no. 16: 12913. https://doi.org/10.3390/ijms241612913
APA StyleLiberale, C., Soloperto, D., Marchioni, A., Monzani, D., & Sacchetto, L. (2023). Updates on Larynx Cancer: Risk Factors and Oncogenesis. International Journal of Molecular Sciences, 24(16), 12913. https://doi.org/10.3390/ijms241612913