Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis
Abstract
:1. Introduction
2. Results
2.1. Morphometric and Metabolomic Profile during the Course of a Healthy Pregnancy
2.2. Walker-256 Tumour Evolution Jeopardized Foetal Growth
2.3. Walker-256 Tumour Evolution Induced Changes Serum Metabolomic Profile
2.4. Walker-256 Tumour Evolution Induced Changes in Placental Metabolomic Profile
2.5. Walker-256 Tumour Evolution Induced Changes in Foetal Metabolomic Profile
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Design
4.2. Tumour Implant
4.3. Sample Prepared for Metabolomic Assay
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernard, W.S.; Christopher, P.W. World Cancer Report 2020; World Health Organization: Geneva, Switzerland, 2020. Available online: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-Cancer-Research-For-Cancer-Prevention-2020 (accessed on 1 April 2022).
- McCormick, A.; Peterson, E. Cancer in Pregnancy. Obstet. Gynecol. Clin. N. Am. 2018, 45, 187–200. [Google Scholar] [CrossRef]
- Strulov Shachar, S.; Gallagher, K.; McGuire, K.; Zagar, T.M.; Faso, A.; Muss, H.B.; Sweeting, R.; Anders, C.K. Multidisciplinary Management of Breast Cancer During Pregnancy. Oncologist 2018, 23, 746. [Google Scholar] [CrossRef]
- Loibl, S.; Schmidt, A.; Gentilini, O.; Kaufman, B.; Kuhl, C.; Denkert, C.; Von Minckwitz, G.; Parokonnaya, A.; Stensheim, H.; Thomssen, C.; et al. Breast Cancer Diagnosed during Pregnancy Adapting Recent Advances in Breast Cancer Care for Pregnant Patients. JAMA Oncol. 2015, 1, 1145–1153. [Google Scholar] [CrossRef]
- Zagouri, F.; Dimitrakakis, C.; Marinopoulos, S.; Tsigginou, A.; Dimopoulos, M.A. Cancer in Pregnancy: Disentangling Treatment Modalities. ESMO Open 2016, 1, e000016. [Google Scholar] [CrossRef]
- Viana, L.R.L.R.; Gomes-Marcondes, M.C.C. Leucine-Rich Diet Improves the Serum Amino Acid Profile and Body Composition of Fetuses from Tumor-Bearing Pregnant Mice. Biol. Reprod. 2013, 88, 121. [Google Scholar] [CrossRef]
- Cruz, B.L.G.; da Silva, P.C.; Tomasin, R.; Oliveira, A.G.; Viana, L.R.; Salomao, E.M.; Gomes-Marcondes, M.C.C. Dietary Leucine Supplementation Minimises Tumour-Induced Damage in Placental Tissues of Pregnant, Tumour-Bearing Rats. BMC Cancer 2016, 16, 58. [Google Scholar] [CrossRef]
- Toledo, M.T.; Ventrucci, G.; Gomes Marcondes, M.C.C. Cancer during Pregnancy Alters the Activity of Rat Placenta and Enchances the Expression of Cleaved PARP, Cytochrome-c and Caspase 3. BMC Cancer 2006, 6, 168. [Google Scholar] [CrossRef]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer Cachexia: Understanding the Molecular Basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. What Is the Placenta? Am. J. Obstet. Gynecol. 2015, 213, S6.e1–S6.e4. [Google Scholar] [CrossRef]
- Carbo, N.; Lopez-Soriano, F.J.; Fiers, W.; Argiles, J.M.; Carbó, N.; López-Soriano, F.J.; Fiers, W.; Argilés, J.M. Tumour Growth Results in Changes in Placental Amino Acid Transport in the Rat: A Tumour Necrosis Factor Alpha-Mediated Effect. Biochem. J. 1996, 313 Pt 1, 77–82. [Google Scholar] [CrossRef]
- Goller, S.S.; Markert, U.R.; Fröhlich, K. Trastuzumab in the Treatment of Pregnant Breast Cancer Patients—An Overview of the Literature. Geburtshilfe Frauenheilkd. 2019, 79, 618–625. [Google Scholar] [CrossRef]
- Karahalil, B. Overview of Systems Biology and Omics Technologies. Curr. Med. Chem. 2016, 23, 4221–4230. [Google Scholar] [CrossRef]
- Svensson-Arvelund, J.; Ernerudh, J.; Buse, E.; Cline, J.M.; Haeger, J.D.; Dixon, D.; Markert, U.R.; Pfarrer, C.; de Vos, P.; Faas, M.M. The Placenta in Toxicology. Part II:Systemic and Local Immune Adaptations in Pregnancy. Toxicol. Pathol. 2014, 42, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Charest, P.L.; Vrolyk, V.; Herst, P.; Lessard, M.; Sloboda, D.M.; Dalvai, M.; Haruna, J.; Bailey, J.L.; Benoit-Biancamano, M.O. Histomorphologic Analysis of the Late-Term Rat Fetus and Placenta. Toxicol. Pathol. 2018, 46, 158–168. [Google Scholar] [CrossRef]
- Furukawa, S.; Hayashi, S.; Usuda, K.; Abe, M.; Ogawa, I. The Relationship between Fetal Growth Restriction and Small Placenta in 6-Mercaptopurine Exposed Rat. Exp. Toxicol. Pathol. 2011, 63, 89–95. [Google Scholar] [CrossRef]
- Napso, T.; Yong, H.E.J.; Lopez-Tello, J.; Sferruzzi-Perri, A.N. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front. Physiol. 2018, 9, 1091. [Google Scholar] [CrossRef] [PubMed]
- Ranzil, S.; Walker, D.W.; Borg, A.J.; Wallace, E.M.; Ebeling, P.R.; Murthi, P. The Relationship between the Placental Serotonin Pathway and Fetal Growth Restriction. Biochimie 2019, 161, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Toledo, M.T.; Gomes-Marcondes, M.C. Morphologic Aspect of the Placenta in Young and Adult Pregnant Rats Bearing Walker 256 Carcinoma. Oncol. Res. 1999, 11, 359–366. [Google Scholar]
- Toledo, M.T.T.; Ventrucci, G.; Gomes-Marcondes, M.C. Increased Oxidative Stress in the Placenta Tissue and Cell Culture of Tumour-Bearing Pregnant Rats. Placenta 2011, 32, 859–864. [Google Scholar] [CrossRef]
- Hayward, C.E.; Lean, S.; Sibley, C.P.; Jones, R.L.; Wareing, M.; Greenwood, S.L.; Dilworth, M.R. Placental Adaptation: What Can We Learn from Birthweight:Placental Weight Ratio? Front. Physiol. 2016, 7, 28. [Google Scholar] [CrossRef]
- Mahendran, D. Transcellular Transport in Human Placenta; Changes in Fetal Growth Retardation and during Gestation; Faculty of Medicine, University of Manchester: Manchester, UK, 1993. [Google Scholar]
- Glazier, J.D.; Cetin, I.; Perugino, G.; Ronzoni, S.; Grey, A.M.; Mahendran, D.; Marconi, A.M.; Pardi, G.; Sibley, C.P. Association between the Activity of the System A Amino Acid Transporter in the Microvillous Plasma Membrane of the Human Placenta and Severity of Fetal Compromise in Intrauterine Growth Restriction. Pediatr. Res. 1997, 42, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Cosmi, E.; Bilardo, C.M.; Wolf, H.; Berg, C.; Rigano, S.; Germer, U.; Moyano, D.; Turan, S.; Hartung, J.; et al. Predictors of Neonatal Outcome in Early-Onset Placental Dysfunction. Obstet. Gynecol. 2007, 109, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Dumolt, J.H.; Powell, T.L.; Jansson, T. Placental Function and the Development of Fetal Overgrowth and Fetal Growth Restriction. Obstet. Gynecol. Clin. N. Am. 2021, 48, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Aye, I.L.M.H.; Jansson, T.; Powell, T.L. Interleukin-1β Inhibits Insulin Signaling and Prevents Insulin-Stimulated System A Amino Acid Transport in Primary Human Trophoblasts. Mol. Cell. Endocrinol. 2013, 381, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Cao, Y.; Jia, X.; Huang, Y.; Cai, M.; Lu, C.; Zhu, H. Downregulation of Placental Amino Acid Transporter Expression and MTORC1 Signaling Activity Contributes to Fetal Growth Retardation in Diabetic Rats. Int. J. Mol. Sci. 2020, 21, 1549. [Google Scholar] [CrossRef]
- Jansson, N.; Rosario, F.J.; Gaccioli, F.; Lager, S.; Jones, H.N.; Roos, S.; Jansson, T.; Powell, T.L. Activation of Placental MTOR Signaling and Amino Acid Transporters in Obese Women Giving Birth to Large Babies. J. Clin. Endocrinol. Metab. 2013, 98, 105–113. [Google Scholar] [CrossRef]
- Aye, I.L.M.H.; Aiken, C.E.; Charnock-Jones, D.S.; Smith, G.C.S. Placental Energy Metabolism in Health and Disease—Significance of Development and Implications for Preeclampsia. Am. J. Obstet. Gynecol. 2020, 226, S928–S944. [Google Scholar] [CrossRef]
- Zhang, S.; Regnault, T.R.H.; Barker, P.L.; Botting, K.J.; McMillen, I.C.; McMillan, C.M.; Roberts, C.T.; Morrison, J.L. Placental Adaptations in Growth Restriction. Nutrients 2015, 7, 360–389. [Google Scholar] [CrossRef]
- Cetin, I. Placental Transport of Amino Acids in Normal and Growth-Restricted Pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110, 50–54. [Google Scholar] [CrossRef]
- Ellery, S.J.; Della Gatta, P.A.; Bruce, C.R.; Kowalski, G.M.; Davies-Tuck, M.; Mockler, J.C.; Murthi, P.; Walker, D.W.; Snow, R.J.; Dickinson, H. Creatine Biosynthesis and Transport by the Term Human Placenta. Placenta 2017, 52, 86–93. [Google Scholar] [CrossRef]
- Ellery, S.J.; Murthi, P.; Davies-Tuck, M.L.; Della Gatta, P.A.; May, A.K.; Kowalski, G.M.; Callahan, D.L.; Bruce, C.R.; Alers, N.O.; Miller, S.L.; et al. Placental Creatine Metabolism in Cases of Placental Insufficiency and Reduced Fetal Growth. Mol. Hum. Reprod. 2019, 25, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Pathophysiology of Placental-Derived Fetal Growth Restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Murray, A.J. Oxygen and Placental Development; Parallels and Differences with Tumour Biology. Placenta 2017, 56, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Pacl, H.T.; Chinta, K.C.; Reddy, V.P.; Nadeem, S.; Sevalkar, R.R.; Nargan, K.; Lumamba, K.; Naidoo, T.; Glasgow, J.N.; Agarwal, A.; et al. NAD(H) Homeostasis Is Essential for Host Protection Mediated by Glycolytic Myeloid Cells 1 in Tuberculosis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Angel, M.; Gomez, R.; Ibba, M. Aminoacyl-TRNA Synthetases. RNA 2020, 26, 910–936. [Google Scholar] [CrossRef]
- Woese, C.R.; Olsen, G.J.; Ibba, M.; Söll, D.; Söll, S. Aminoacyl-TRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiol. Mol. Biol. Rev. 2000, 64, 202–236. [Google Scholar] [CrossRef]
- Banik, S.D.; Nandi, N. Mechanism of the Activation Step of the Aminoacylation Reaction: A Significant Difference between Class I and Class II Synthetases. J. Biomol. Struct. Dyn. 2012, 30, 701–715. [Google Scholar] [CrossRef]
- Chen, M.C.; Song, Y.; Song, W.O. Fetal Growth Retardation and Death in Pantothenic Acid-Deficient Rats Is Due to Impaired Placental Function. J. Nutr. Biochem. 1996, 7, 451–456. [Google Scholar] [CrossRef]
- Sacks, D.A. Determinants of Fetal Growth. Curr. Diab. Rep. 2004, 4, 281–287. [Google Scholar] [CrossRef]
- Roos, S.; Powell, T.L.; Jansson, T. Placental MTOR Links Maternal Nutrient Availability to Fetal Growth. Biochem. Soc. Trans. 2009, 37 Pt 1, 295–298. [Google Scholar] [CrossRef]
- Joseph, S.; Walejko, J.M.; Zhang, S.; Edison, A.S.; Keller-Wood, M. Maternal Hypercortisolemia Alters Placental Metabolism: A Multiomics View. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E950–E960. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, J. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76 Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Marcondes, M.C.C.; Honma, H.N.; Areas, M.A.; Cury, L. Effect of Walker 256 Tumor Growth on Intestinal Absorption of Leucine, Methionine and Glucose in Newly Weaned and Mature Rats. Braz. J. Med. Biol. Res. 1998, 31, 1345–1348. [Google Scholar] [CrossRef]
- Vale, C.; Stewart, L.; Tierney, J.; UK Coordinating Committee for Cancer Research National Register of Cancer. Trends in UK Cancer Trials: Results from the UK Coordinating Committee for Cancer Research National Register of Cancer Trials. Br. J. Cancer 2005, 92, 811–814. [Google Scholar] [CrossRef]
- Le Belle, J.E.; Harris, N.G.; Williams, S.R.; Bhakoo, K.K. A Comparison of Cell and Tissue Extraction Techniques Using High-Resolution 1 H-NMR Spectroscopy. NMR Biomed. 2002, 15, 37–44. [Google Scholar] [CrossRef] [PubMed]
- De Matuoka E Chiocchetti, G.; Lopes-Aguiar, L.; Da Silva Miyaguti, N.A.; Viana, L.R.; De Moraes Salgado, C.; Orvoën, O.O.; Florindo, D.; Dos Santos, R.W.; Gomes-Marcondes, M.C.C. A Time-Course Comparison of Skeletal Muscle Metabolomic Alterations in Walker-256 Tumour-Bearing Rats at Different Stages of Life. Metabolites 2021, 11, 404. [Google Scholar] [CrossRef]
- Gad, S.; Weil, C. Statistics for Toxicologists. In Principles and Methods of Toxicology; Hayes, A.W., Ed.; Raven Press: New York, NY, USA, 1994; pp. 221–274. [Google Scholar]
- Chong, J.; Xia, J. Systems Biology MetaboAnalystR: An R Package for Flexible and Reproducible Analysis of Metabolomics Data. Bioinformatic 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
W vs. C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Serum | Placenta | Foetus | ||||||||
12 dpc | 16 dpc | 19 dpc | 12 dpc | 16 dpc | 19 dpc | 12 dpc | 16 dpc | 19 dpc | ||
Genetic Processing—Translation | Aminoacyl-tRNA Biosynthesis | |||||||||
Alanine | - | ⇑ | ⇑ | - | ⇑ | ⇑ | - | - | - | |
Arginine | ⇓ | - | - | - | - | - | - | - | - | |
Asparagine | ⇓ | ⇑ | ⇑ | - | - | - | - | - | - | |
Aspartate | ⇓ | ⇑ | ⇓ | - | - | - | - | - | - | |
Glutamate | - | - | - | - | - | - | - | - | - | |
Glutamine | ⇓ | - | - | ⇓ | - | ⇑ | - | - | - | |
Glycine | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Histidine | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Isoleucine | ⇓ | ⇑ | ⇑ | ⇓ | - | - | - | - | - | |
Leucine | ⇓ | ⇑ | ⇑ | - | - | - | - | - | - | |
Lysine | - | ⇑ | ⇑ | - | - | - | - | - | - | |
Methionine | - | ⇑ | - | ⇓ | - | ⇓ | - | - | - | |
Phenylalanine | - | ⇑ | ⇑ | - | ⇓ | - | - | - | - | |
Proline | ⇓ | ⇑ | ⇑ | - | - | - | - | - | ||
Serine | - | - | - | - | ⇓ | ⇓ | - | - | - | |
Threonine | - | - | - | - | ⇓ | ⇓ | - | - | - | |
Tryptophan | ⇑ | ⇑ | ⇑ | ⇓ | - | - | - | - | ||
Tyrosine | ⇓ | ⇑ | - | - | ⇓ | - | - | - | - | |
Valine | - | ⇑ | ⇑ | ⇓ | ⇓ | - | - | - | - | |
Amino acid metabolism | Alanine, Aspartate and Glutamate Metabolism | |||||||||
Alanine | - | ⇑ | ⇑ | - | ⇑ | ⇑ | ⇑ | - | ⇑ | |
Asparagine | ⇓ | ⇑ | ⇑ | - | - | - | - | - | - | |
Aspartate | ⇓ | ⇑ | ⇓ | - | - | - | - | - | - | |
Fumarate | - | ⇑ | - | ⇓ | - | - | ⇓ | - | - | |
Glutamate | - | - | - | - | - | - | - | - | - | |
Glutamine | ⇓ | - | - | ⇓ | ⇓ | ⇓ | ⇑ | - | - | |
Pyruvate | - | ⇑ | ⇑ | ⇓ | - | - | ⇓ | - | - | |
Succinate | - | ⇑ | - | ⇑ | ⇑ | ⇑ | - | - | ⇑ | |
Arginine Biosynthesis | ||||||||||
Arginine | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Aspartate | ⇓ | - | ⇓ | - | - | - | - | - | - | |
Fumarate | - | ⇑ | - | ⇓ | - | - | ⇓ | - | - | |
Glutamate | - | - | - | - | - | - | - | - | - | |
Glutamine | ⇓ | - | - | ⇓ | - | - | ⇑ | - | - | |
Ornithine | - | ⇑ | ⇑ | - | - | - | - | - | - | |
Urea | - | ⇑ | ⇑ | - | - | - | - | - | - | |
Histidine Metabolism | ||||||||||
1-Mehyl-histidine | ⇓ | ⇑ | - | ⇑ | - | - | - | - | - | |
Aspartate | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Glutamine | - | - | - | - | - | - | - | - | - | |
Histamine | - | ⇑ | - | ⇓ | - | - | - | - | - | |
Histidine | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Glycine, Serine and Threonine Metabolism | ||||||||||
Betaine | - | ⇑ | - | - | - | - | - | - | - | |
Choline | - | ⇑ | - | - | - | ⇓ | ⇓ | - | ⇓ | |
Creatine | - | ⇑ | - | ⇓ | - | ⇑ | - | - | ⇓ | |
Glutamine | - | - | - | - | - | - | - | - | ||
Glycine | - | ⇑ | - | - | - | - | - | - | - | |
Guanidoacetate | - | - | - | ⇓ | - | - | - | - | - | |
N,N-DG | - | ⇑ | - | - | - | - | - | - | - | |
Pyruvate | - | ⇑ | - | ⇓ | - | - | ⇓ | - | - | |
Serine | - | - | - | - | ⇓ | ⇓ | - | - | - | |
Threonine | - | - | - | - | ⇓ | ⇓ | - | - | - | |
Arginine and Proline Metabolism | ||||||||||
Arginine | - | - | - | - | - | - | - | - | - | |
Creatine | - | - | - | ⇓ | - | - | - | - | - | |
Glutamine | - | - | - | - | - | - | - | - | - | |
Guanidoacetate | - | - | - | ⇓ | - | - | - | - | - | |
Ornitine | - | - | - | - | - | - | - | - | - | |
Proline | - | - | - | - | - | - | - | - | - | |
Pyruvate | - | - | - | ⇓ | - | - | - | - | - | |
Valine, Leucine and Isoleucine Biosynthesis | ||||||||||
Isoleucine | ⇓ | ⇑ | ⇓ | ⇓ | - | - | - | - | - | |
Leucine | ⇓ | ⇑ | ⇓ | - | - | - | - | - | - | |
Proline | - | - | - | - | - | - | - | - | - | |
Threonine | - | - | - | - | ⇓ | - | - | - | ||
Valine | ⇓ | ⇑ | ⇓ | ⇓ | ⇓ | - | - | - | - | |
Phenylalanine, Tyrosine and Tryptophan Biosynthesis | ||||||||||
Phenylalanine | - | ⇑ | - | - | ⇓ | - | - | - | - | |
Tyrosine | - | ⇑ | - | - | ⇓ | - | - | - | - | |
Carbohydrate metabolism | Glyoxylate and Dicarboxylate Metabolism | |||||||||
Acetate | ⇓ | - | - | ⇓ | - | - | - | - | - | |
Formate | - | - | - | - | - | - | - | - | - | |
Glutamate | - | - | - | - | - | - | - | - | - | |
Glutamine | ⇓ | - | - | ⇓ | ⇓ | ⇓ | ⇑ | - | - | |
Glycine | ⇓ | - | - | - | - | - | - | - | - | |
Pyruvate | - | - | - | ⇓ | − | − | ⇓ | - | - | |
Serine | - | - | - | - | ⇓ | ⇓ | - | - | - | |
Uracil | - | - | - | - | - | - | - | - | - | |
Valine | - | - | - | - | - | - | - | - | - | |
Pyruvate Metabolism | ||||||||||
Acetate | - | - | - | ⇓ | - | - | - | - | - | |
Fumarate | - | - | - | ⇓ | - | - | ⇓ | - | - | |
Lactate | - | - | - | ⇑ | - | - | ⇑ | - | - | |
Pyruvate | - | - | - | ⇓ | - | - | ⇓ | - | - | |
Glycolysis/Gluconeogenesis | ||||||||||
Acetate | - | - | - | ⇓ | - | - | - | - | - | |
Glucose | - | - | - | - | ⇓ | ⇓ | - | ⇓ | ⇓ | |
G-6-P | - | - | - | - | - | - | - | - | ⇓ | |
Lactate | - | - | - | ⇑ | ⇑ | ⇑ | ⇑ | - | ⇑ | |
Pyruvate | - | - | - | ⇓ | - | - | ⇓ | - | - | |
Citrate Cycle (TCA Cycle) | ||||||||||
Fumarate | - | - | - | ⇓ | - | - | ⇓ | - | - | |
Pyruvate | - | - | - | ⇓ | - | - | ⇓ | - | - | |
Succinate | - | - | - | ⇑ | - | - | - | - | - | |
Metabolism of cofactors and vitamins | Pantothenate and CoA biosynthesis | |||||||||
Aspartate | ⇓ | ⇑ | - | - | - | - | - | - | - | |
Pantothenate | ⇓ | ⇑ | - | ⇓ | - | - | - | - | - | |
Uracil | ⇑ | ⇑ | - | - | - | - | - | - | - | |
Valine | - | ⇑ | - | ⇓ | - | - | - | - | - | |
Nucleotide metabolism | Purine Metabolism | |||||||||
Adenine | - | - | - | ⇓ | - | ⇓ | ⇓ | - | ⇓ | |
Adenosine | - | - | - | ⇓ | ⇓ | - | ⇓ | - | - | |
ADP | - | - | - | - | - | - | - | ⇑ | ⇑ | |
AMP | - | - | - | - | - | - | - | - | ⇑ | |
ATP | - | - | - | - | - | - | ⇑ | - | ⇑ | |
Glutamine | - | - | - | ⇓ | ⇓ | ⇓ | ⇑ | - | - | |
GTP | - | - | - | ⇓ | - | ⇓ | ⇓ | - | - | |
Guanosine | - | - | - | - | - | - | ⇓ | - | ⇓ | |
IMP | - | - | - | - | - | - | ⇓ | ⇓ | ⇓ | |
Inosine | - | - | - | ⇓ | ⇓ | ⇓ | ⇓ | - | ⇓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Moraes Salgado, C.; Viana, L.R.; Gomes-Marcondes, M.C.C. Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis. Int. J. Mol. Sci. 2023, 24, 13026. https://doi.org/10.3390/ijms241713026
De Moraes Salgado C, Viana LR, Gomes-Marcondes MCC. Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis. International Journal of Molecular Sciences. 2023; 24(17):13026. https://doi.org/10.3390/ijms241713026
Chicago/Turabian StyleDe Moraes Salgado, Carla, Laís Rosa Viana, and Maria Cristina Cintra Gomes-Marcondes. 2023. "Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis" International Journal of Molecular Sciences 24, no. 17: 13026. https://doi.org/10.3390/ijms241713026
APA StyleDe Moraes Salgado, C., Viana, L. R., & Gomes-Marcondes, M. C. C. (2023). Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis. International Journal of Molecular Sciences, 24(17), 13026. https://doi.org/10.3390/ijms241713026