Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Laboratory Methods
4.3. Measurements of IgA Antibody Titers against tTG and Acetaldehyde-Modified Antigens
4.4. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | alcoholic liver disease |
ALP | alkaline phosphatase |
AUD | alcohol use disorder |
CTx, (CrossLaps) | crosslinked isomerized fragment of type I collagen |
CDT | desialylated (carbohydrate-deficient) transferrin |
ECM | extracellular matrix |
GT | gamma-glutamyl transferase |
HA | hyaluronic acid |
ICTP | carboxy-terminal telopeptide of type I procollagen |
IL | interleukin |
LPS | lipopolysaccharide |
PIIINP | aminoterminal propeptide of type III procollagen |
PINP | aminoterminal propeptide of type I procollagen |
TNF | tumor necrosis factor |
TGF | transforming growth factor |
References
- Bala, S.; Marcos, M.; Gattu, A.; Catalano, D.; Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 2014, 9, e96864. [Google Scholar] [CrossRef] [PubMed]
- Bataller, R.; Gao, B. Liver fibrosis in alcoholic liver disease. Semin. Liver Dis. 2015, 35, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Caslin, B.; Mohler, K.; Thiagarajan, S.; Melamed, E. Alcohol as friend or foe in autoimmune diseases: A role for gut microbiome? Gut Microbes 2021, 13, 1916278. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Feng, Y.; Wang, X.; Feng, Y. Recent insights into the role of immune cells in alcoholic liver disease. Front Immunol. 2019, 10, 1328. [Google Scholar] [CrossRef]
- Miller, A.M.; Horiguchi, N.; Jeong, W.I.; Radaeva, S.; Gao, B. Molecular mechanisms of alcoholic liver disease: Innate immunity and cytokines. Alcohol Clin. Exp. Res. 2011, 35, 787–793. [Google Scholar] [CrossRef]
- Nivukoski, U.; Bloigu, A.; Bloigu, R.; Kultti, J.; Tuomi, H.; Niemelä, O. Comparison of serum calprotectin, a marker of neutrophil activation, and other mediators of inflammation in response to alcohol consumption. Alcohol 2021, 95, 45–50. [Google Scholar] [CrossRef]
- Stadlbauer, V.; Horvath, A.; Komarova, I.; Schmerboeck, B.; Feldbacher, N.; Wurm, S.; Klymiuk, I.; Durdevic, M.; Rainer, F.; Blesl, A.; et al. A single alcohol binge impacts on neutrophil function without changes in gut barrier function and gut microbiome composition in healthy volunteers. PLoS ONE 2019, 14, e0211703. [Google Scholar] [CrossRef]
- Wang, H.J.; Gao, B.; Zakhari, S.; Nagy, L.E. Inflammation in alcoholic liver disease. Annu. Rev. Nutr. 2012, 32, 343–368. [Google Scholar] [CrossRef]
- Amore, A.; Coppo, R.; Roccatello, D.; Piccoli, G.; Mazzucco, G.; Gomez-Chiarri, M.; Lamm, M.E.; Emancipator, S.N. Experimental IgA nephropathy secondary to hepatocellular injury induced by dietary deficiencies and heavy alcohol intake. Lab. Investig. 1994, 70, 68–77. [Google Scholar]
- Van de Wiel, A.; van Hattum, J.; Schuurman, H.J.; Kater, L. Immunoglobulin A in the diagnosis of alcoholic liver disease. Gastroenterology 1988, 94, 457–462. [Google Scholar] [CrossRef]
- Viitala, K.; Israel, Y.; Blake, J.E.; Niemelä, O. Serum IgA, IgG, and IgM antibodies directed against acetaldehyde-derived epitopes: Relationship to liver disease severity and alcohol consumption. Hepatology 1997, 25, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Worrall, S.; de Jersey, J.; Shanley, B.C.; Wilce, P.A. Antibodies against acetaldehyde-modified epitopes: An elevated IgA response in alcoholics. Eur. J. Clin. Investig. 1991, 21, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Bulle, S.; Reddy, V.D.; Padmavathi, P.; Maturu, P.; Puvvada, P.K.; Nallanchakravarthula, V. Association between alcohol-induced erythrocyte membrane alterations and hemolysis in chronic alcoholics. J. Clin. Biochem. Nutr. 2017, 60, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.L.; Tuma, D.J.; Thiele, G.M.; Klassen, L.W.; Worrall, S.; Niemelä, O.; Parkkila, S.; Emery, P.W.; Preedy, V.R. Recent advances in alcohol-induced adduct formation. Alcohol Clin. Exp. Res. 2005, 29, 1310–1316. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021, 53, 168–188. [Google Scholar] [CrossRef]
- Xu, D.; Thiele, G.M.; Beckenhauer, J.L.; Klassen, L.W.; Sorrell, M.F.; Tuma, D.J. Detection of circulating antibodies to malondialdehyde-acetaldehyde adducts in ethanol-fed rats. Gastroenterology 1998, 115, 686–692. [Google Scholar] [CrossRef]
- Brauckmann, S.; Effenberger-Neidnicht, K.; de Groot, H.; Nagel, M.; Mayer, C.; Peters, J.; Hartmann, M. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane interactions. Sci. Rep. 2016, 6, 35508. [Google Scholar] [CrossRef]
- Izumi, N.; Sakai, Y.; Koyama, W.; Hasumura, Y. Clinical significance of serum antibodies against alcohol-altered hepatocyte membrane in alcoholic liver disease. Alcohol Clin. Exp. Res. 1989, 13, 762–765. [Google Scholar] [CrossRef]
- Niemelä, O.; Klajner, F.; Orrego, H.; Vidins, E.; Blendis, L.; Israel, Y. Antibodies against acetaldehyde-modified protein epitopes in human alcoholics. Hepatology 1987, 7, 1210–1214. [Google Scholar] [CrossRef]
- Viitala, K.; Makkonen, K.; Israel, Y.; Lehtimäki, T.; Jaakkola, O.; Koivula, T.; Blake, J.E.; Niemelä, O. Autoimmune responses against oxidant stress and acetaldehyde-derived epitopes in human alcohol consumers. Alcohol Clin. Exp. Res. 2000, 24, 1103–1109. [Google Scholar] [CrossRef]
- Koivisto, H.; Hietala, J.; Anttila, P.; Niemelä, O. Co-occurrence of IgA antibodies against ethanol metabolites and tissue transglutaminase in alcohol consumers: Correlation with proinflammatory cytokines and markers of fibrogenesis. Dig. Dis. Sci. 2008, 53, 500–505. [Google Scholar] [CrossRef]
- Carroccio, A.; Vitale, G.; Di Prima, L.; Chifari, N.; Napoli, S.; La Russa, C.; Gulotta, G.; Averna, M.R.; Montalto, G.; Mansueto, S.; et al. Comparison of anti-transglutaminase ELISAs and an anti-endomysial antibody assay in the diagnosis of celiac disease: A prospective study. Clin. Chem. 2002, 48, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, W.; Ehnis, T.; Bauer, M.; Donner, P.; Volta, U.; Riecken, E.O.; Schuppan, D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 1997, 3, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Koop, I.; Ilchmann, R.; Izzi, L.; Adragna, A.; Koop, H.; Barthelmes, H. Detection of autoantibodies against tissue transglutaminase in patients with celiac disease and dermatitis herpetiformis. Am. J. Gastroenterol. 2000, 95, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Sulkanen, S.; Halttunen, T.; Laurila, K.; Kolho, K.L.; Korponay-Szabó, I.R.; Sarnesto, A.; Savilahti, E.; Collin, P.; Mäki, M. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 1998, 115, 1322–1328. [Google Scholar] [CrossRef]
- Mohan, M.; Okeoma, C.M.; Sestak, K. Dietary gluten and neurodegeneration: A case for preclinical studies. Int. J. Mol. Sci. 2020, 21, 5407. [Google Scholar] [CrossRef]
- Wodzinska, J.M. Transglutaminases as targets for pharmacological inhibition. Mini Rev. Med. Chem. 2005, 5, 279–292. [Google Scholar] [CrossRef]
- Bao, F.; Yu, L.; Babu, S.; Wang, T.; Hoffenberg, E.J.; Rewers, M.; Eisenbarth, G.S. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J. Autoimmun. 1999, 13, 143–148. [Google Scholar] [CrossRef]
- Berthelot, L.; Papista, C.; Maciel, T.T.; Biarnes-Pelicot, M.; Tissandie, E.; Wang, P.H.; Tamouza, H.; Jamin, A.; Bex-Coudrat, J.; Gestin, A.; et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 2012, 209, 793–806. [Google Scholar] [CrossRef]
- Klöck, C.; Diraimondo, T.R.; Khosla, C. Role of transglutaminase 2 in celiac disease pathogenesis. Semin. Immunopathol. 2012, 34, 513–522. [Google Scholar] [CrossRef]
- Nihei, Y.; Suzuki, H.; Suzuki, Y. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front. Immunol. 2023, 14, 1165394. [Google Scholar] [CrossRef]
- Niemelä, O. Predictive risk markers in alcoholism. In Advances in Clinical Chemistry, 1st ed.; Makowski, G., Ed.; Academic Press: Amsterdam, The Netherlands, 2023; Volume 116, ISBN 978-0-443-19292-0. [Google Scholar]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmun. Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef]
- Adams, C.; Conigrave, J.H.; Lewohl, J.; Haber, P.; Morley, K.C. Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 89, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Lawrimore, C.J.; Walter, T.J.; Coleman, L.G., Jr. The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017, 122, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Latvala, J.; Hietala, J.; Koivisto, H.; Järvi, K.; Anttila, P.; Niemelä, O. Immune responses to ethanol metabolites and cytokine profiles differentiate alcoholics with or without liver disease. Am. J. Gastroenterol. 2005, 100, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.E.; Happel, K.I.; Zhang, P.; Kolls, J.K.; Nelson, S. Focus on: Alcohol and the immune system. Alcohol Res. Health 2010, 33, 97–108. [Google Scholar]
- Sureshchandra, S.; Raus, A.; Jankeel, A.; Ligh, B.J.K.; Walter, N.A.R.; Newman, N.; Grant, K.A.; Messaoudi, I. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci. Rep. 2019, 9, 7847. [Google Scholar] [CrossRef]
- Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [Google Scholar] [CrossRef]
- Maher, J.J.; McGuire, R.F. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J. Clin. Investig. 1990, 86, 1641–1648. [Google Scholar] [CrossRef]
- Niemelä, O.; Alatalo, P. Biomarkers of alcohol consumption and related liver disease. Scand. J. Clin. Lab. Investig. 2010, 70, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Bissell, D.M. Noninvasive measures of liver fibrosis. Hepatology 2006, 43, S113–S120. [Google Scholar] [CrossRef] [PubMed]
- Rojkind, M.; Giambrone, M.A.; Biempica, L. Collagen types in normal and cirrhotic liver. Gastroenterology 1979, 76, 710–719. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Jokelainen, K.; Matysiak-Budnik, T.; Mäkisalo, H.; Höckerstedt, K.; Salaspuro, M. High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets. Gut 1996, 39, 100–104. [Google Scholar] [CrossRef]
- Segovia-Rodríguez, L.; Echeverry-Alzate, V.; Rincón-Pérez, I.; Calleja-Conde, J.; Bühler, K.M.; Giné, E.; Albert, J.; Hinojosa, J.A.; Huertas, E.; Gómez-Gallego, F.; et al. Gut microbiota and voluntary alcohol consumption. Transl. Psychiatry 2022, 12, 146. [Google Scholar] [CrossRef]
- Shi, H.; Ter Horst, R.; Nielen, S.; Bloemendaal, M.; Jaeger, M.; Joosten, I.; Koenen, H.; Joosten, L.A.B.; Schweren, L.J.S.; Vasquez, A.A.; et al. The gut microbiome as mediator between diet and its impact on immune function. Sci. Rep. 2022, 12, 5149. [Google Scholar] [CrossRef]
- Niemelä, O. Distribution of ethanol-induced protein adducts in vivo: Relationship to tissue injury. Free Radic. Biol. Med. 2001, 31, 1533–1538. [Google Scholar] [CrossRef]
- Keppler, S.J.; Goess, M.C.; Heinze, J.M. The wanderings of gut-derived IgA plasma cells: Impact on systemic immune responses. Front. Immunol. 2021, 12, 670290. [Google Scholar] [CrossRef]
- Leusen, J.H. IgA as therapeutic antibody. Mol. Immunol. 2015, 68, 35–39. [Google Scholar] [CrossRef]
- Salaspuro, M. Interactions of alcohol and tobacco in gastrointestinal cancer. J. Gastroenterol. Hepatol. 2012, 27 (Suppl. S2), 135–139. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S.; Parkkila, S.; Nagao, T.; Preedy, V.R.; Pasanen, M.; Koivisto, H.; Niemelä, O. Demonstration of ethanol-induced protein adducts in oral leukoplakia (pre-cancer) and cancer. J. Oral. Pathol. Med. 2008, 37, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A.; Yokoyama, T.; Muramatsu, T.; Omori, T.; Matsushita, S.; Higuchi, S.; Maruyama, K.; Ishii, H. Macrocytosis, a new predictor for esophageal squamous cell carcinoma in Japanese alcoholic men. Carcinogenesis 2003, 24, 1773–1778. [Google Scholar] [CrossRef]
- Niemelä, O.; Parkkila, S. Alcoholic macrocytosis--is there a role for acetaldehyde and adducts? Addict. Biol. 2004, 9, 3–10. [Google Scholar] [CrossRef]
- Tuma, D.J.; Newman, M.R.; Donohue, T.M., Jr.; Sorrell, M.F. Covalent binding of acetaldehyde to proteins: Participation of lysine residues. Alcohol Clin. Exp. Res. 1987, 11, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Klassen, L.W.; Tuma, D.; Sorrell, M.F. Immune mechanisms of alcohol-induced liver disease. Hepatology 1995, 22, 355–357. [Google Scholar]
- Niemelä, O.; Halkola, A.S.; Bloigu, A.; Bloigu, R.; Nivukoski, U.; Pohjasniemi, H.; Kultti, J. Blood cell responses following heavy alcohol consumption coincide with changes in acute phase reactants of inflammation, indices of hemolysis and immune responses to ethanol metabolites. Int. J. Mol. Sci. 2022, 23, 12738. [Google Scholar] [CrossRef]
- Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef]
- Lo Iacono, O.; Petta, S.; Venezia, G.; Di Marco, V.; Tarantino, G.; Barbaria, F.; Mineo, C.; De Lisi, S.; Almasio, P.L.; Craxi, A. Anti-tissue transglutaminase antibodies in patients with abnormal liver tests: Is it always coeliac disease? Am. J. Gastroenterol. 2005, 100, 2472–2477. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Murray, J.A. The liver in celiac disease. Hepatology 2007, 46, 1650–1658. [Google Scholar] [CrossRef]
- Vecchi, M.D.; Folli, C.; Donato, M.F.; Formenti, S.; Arosio, E.; de Franchis, R. High rate of positive anti-tissue transglutaminase antibodies in chronic liver disease. Scand. J. Gastroenterol. 2003, 38, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Villalta, D.; Crovatto, M.; Stella, S.; Tonutti, E.; Tozzoli, R.; Bizzaro, N. False positive reactions for IgA and IgG anti-tissue transglutaminase antibodies in liver cirrhosis are common and method-dependent. Clin. Chim. Acta 2005, 356, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: Nature’s biological glues. Biochem. J. 2002, 368, 377–396. [Google Scholar] [CrossRef]
- Stephens, P.; Grenard, P.; Aeschlimann, P.; Langley, M.; Blain, E.; Errington, R.; Kipling, D.; Thomas, D.; Aeschlimann, D. Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J. Cell Sci. 2004, 117, 3389–3403. [Google Scholar] [CrossRef]
- Dieterich, W.; Esslinger, B.; Trapp, D.; Hahn, E.; Huff, T.; Seilmeier, W.; Wieser, H.; Schuppan, D. Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 2006, 55, 478–484. [Google Scholar] [CrossRef]
- Gianfrani, C.; Auricchio, S.; Troncone, R. Adaptive and innate immune responses in celiac disease. Immunol. Lett. 2005, 99, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hansson, T.; Dannaeus, A.; Klareskog, L. Cytokine-producing cells in peripheral blood of children with coeliac disease secrete cytokines with a type 1 profile. Clin. Exp. Immunol. 1999, 116, 246–250. [Google Scholar] [CrossRef]
- Israel, Y.; Hurwitz, E.; Niemelä, O.; Arnon, R. Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts. Proc. Natl. Acad. Sci. USA 1986, 83, 7923–7927. [Google Scholar] [CrossRef]
- Metzger, M.H.; Heier, M.; Mäki, M.; Bravi, E.; Schneider, A.; Löwel, H.; Illig, T.; Schuppan, D.; Wichmann, H.E. Mortality excess in individuals with elevated IgA anti-transglutaminase antibodies: The KORA/MONICA Augsburg cohort study 1989–1998. Eur. J. Epidemiol. 2006, 21, 359–365. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Ludvigsson, J.F.; Choung, R.S.; Brantner, T.L.; Rajkumar, S.V.; Landgren, O.; Murray, J.A. Increased mortality among men aged 50 years old or above with elevated IgA anti-transglutaminase antibodies: NHANES III. BMC. Gastroenterol. 2016, 16, 136. [Google Scholar] [CrossRef]
- Bode, C.; Bode, J.C. Activation of the innate immune system and alcoholic liver disease: Effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin. Exp. Res. 2005, 29, 166S–171S. [Google Scholar] [CrossRef] [PubMed]
- Hines, I.N.; Wheeler, M.D. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G310–G314. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.J.; Hill, D.B.; Song, Z.; Deaciuc, I.; Barve, S. Monocyte activation in alcoholic liver disease. Alcohol 2002, 27, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Nagy, L.E. The role of innate immunity in alcoholic liver disease. Alcohol Res. 2015, 37, 237–250. [Google Scholar]
- Sarkar, D.; Jung, M.K.; Wang, H.J. Alcohol and the immune system. Alcohol Res. 2015, 37, 153–155. [Google Scholar]
- Szabo, G.; Mandrekar, P. A recent perspective on alcohol, immunity, and host defense. Alcohol Clin. Exp. Res. 2009, 33, 220–232. [Google Scholar] [CrossRef]
- Thurman, R.G., II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. 1998, 275, G605–G611. [Google Scholar] [CrossRef]
- Bertola, A.; Park, O.; Gao, B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: A critical role for E-selectin. Hepatology 2013, 58, 1814–1823. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, M.J.; Koritzinsky, E.H.; Zhou, Z.; Wang, W.; Cao, H.; Yuen, P.S.; Ross, R.A.; Star, R.A.; Liangpunsakul, S.; et al. Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI. Insight 2017, 2, e92634. [Google Scholar] [CrossRef]
- Kawaratani, H.; Tsujimoto, T.; Douhara, A.; Takaya, H.; Moriya, K.; Namisaki, T.; Noguchi, R.; Yoshiji, H.; Fujimoto, M.; Fukui, H. The effect of inflammatory cytokines in alcoholic liver disease. Mediators. Inflamm. 2013, 2013, 495156. [Google Scholar] [CrossRef]
- Li, M.; He, Y.; Zhou, Z.; Ramirez, T.; Gao, Y.; Gao, Y.; Ross, R.A.; Cao, H.; Cai, Y.; Xu, M.; et al. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47(phox)-oxidative stress pathway in neutrophils. Gut 2017, 66, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Di Penta, A.; Moreno, B.; Reix, S.; Fernandez-Diez, B.; Villanueva, M.; Errea, O.; Escala, N.; Vandenbroeck, K.; Comella, J.X.; Villoslada, P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS ONE 2013, 8, e54722. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.X.; Chen, X.; Fukada, H.; Serizawa, N.; Devaraj, S.; Török, N.J. Advanced glycation endproducts induce fibrogenic activity in nonalcoholic steatohepatitis by modulating TNF-alpha-converting enzyme activity in mice. Hepatology 2013, 58, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Lipcsey, M.; Hanslin, K.; Stålberg, J.; Smekal, D.; Larsson, A. The time course of calprotectin liberation from human neutrophil granulocytes after Escherichia coli and endotoxin challenge. Innate. Immun. 2019, 25, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Lowe, P.P.; Gyongyosi, B.; Satishchandran, A.; Iracheta-Vellve, A.; Ambade, A.; Kodys, K.; Catalano, D.; Ward, D.V.; Szabo, G. Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. PLoS ONE 2017, 12, e0174544. [Google Scholar] [CrossRef]
- Vidali, M.; Hietala, J.; Occhino, G.; Ivaldi, A.; Sutti, S.; Niemelä, O.; Albano, E. Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers. Free Radic. Biol. Med. 2008, 45, 306–311. [Google Scholar] [CrossRef]
- Huizinga, R.; Kreft, K.L.; Onderwater, S.; Boonstra, J.G.; Brands, R.; Hintzen, R.Q.; Laman, J.D. Endotoxin- and ATP-neutralizing activity of alkaline phosphatase as a strategy to limit neuroinflammation. J. Neuroinflamm. 2012, 9, 266. [Google Scholar] [CrossRef]
- Crews, F.T.; Bechara, R.; Brown, L.A.; Guidot, D.M.; Mandrekar, P.; Oak, S.; Qin, L.; Szabo, G.; Wheeler, M.; Zou, J. Cytokines and alcohol. Alcohol Clin. Exp. Res. 2006, 30, 720–730. [Google Scholar] [CrossRef]
- Hill, D.B.; Marsano, L.S.; McClain, C.J. Increased plasma interleukin-8 concentrations in alcoholic hepatitis. Hepatology 1993, 18, 576–580. [Google Scholar] [CrossRef]
- Khoruts, A.; Stahnke, L.; McClain, C.J.; Logan, G.; Allen, J.I. Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology 1991, 13, 267–276. [Google Scholar] [CrossRef]
- Neuman, M.G.; Cohen, L.; Zakhari, S.; Nanau, R.M.; Mueller, S.; Schneider, M.; Parry, C.; Isip, R.; Seitz, H.K. Alcoholic liver disease: A synopsis of the Charles Lieber’s Memorial Symposia 2009–2012. Alcohol Alcohol. 2014, 49, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Uemura, M.; Nakatani, Y.; Tsujita, S.; Hoppo, K.; Tamagawa, T.; Kitano, H.; Kikukawa, M.; Ann, T.; Ishii, Y.; et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: Relation to severity of liver disturbance. Alcohol Clin. Exp. Res. 2000, 24, 48S–54S. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.B.; Marsano, L.; Cohen, D.; Allen, J.; Shedlofsky, S.; McClain, C.J. Increased plasma interleukin-6 concentrations in alcoholic hepatitis. J. Lab. Clin. Med. 1992, 119, 547–552. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; González-Reimers, E.; Santolaria-Fernández, F.; Milena-Abril, A.; Rodríguez-Moreno, F.; Oramas-Rodríguez, J.; Martínez-Riera, A. Cytokine levels in acute alcoholic hepatitis: A sequential study. Drug. Alcohol Depend. 1995, 39, 23–27. [Google Scholar] [CrossRef]
- Bird, G.L.; Sheron, N.; Goka, A.K.; Alexander, G.J.; Williams, R.S. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann. Intern. Med. 1990, 112, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Ernandez, T.; Mayadas, T.N. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 2009, 76, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Felver, M.E.; Mezey, E.; McGuire, M.; Mitchell, M.C.; Herlong, H.F.; Veech, G.A.; Veech, R.L. Plasma tumor necrosis factor alpha predicts decreased long-term survival in severe alcoholic hepatitis. Alcohol Clin. Exp. Res. 1990, 14, 255–259. [Google Scholar] [CrossRef]
- Huang, Y.S.; Chan, C.Y.; Wu, J.C.; Pai, C.H.; Chao, Y.; Lee, S.D. Serum levels of interleukin-8 in alcoholic liver disease: Relationship with disease stage, biochemical parameters and survival. J. Hepatol. 1996, 24, 377–384. [Google Scholar] [CrossRef]
- McClain, C.; Barve, S.; Joshi-Barve, S.; Song, Z.; Deaciuc, I.; Chen, T.; Hill, D. Dysregulated cytokine metabolism, altered hepatic methionine metabolism and proteasome dysfunction in alcoholic liver disease. Alcohol Clin. Exp. Res. 2005, 29, 180S–188S. [Google Scholar] [CrossRef]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int. J. Inflam. 2011, 2011, 908468. [Google Scholar] [CrossRef]
- Swiatkowska-Stodulska, R.; Bakowska, A.; Drobinska-Jurowiecka, A. Interleukin-8 in the blood serum of patients with alcoholic liver disease. Med. Sci. Monit. 2006, 12, CR215–CR220. [Google Scholar]
- Colantoni, A.; Idilman, R.; De Maria, N.; La Paglia, N.; Belmonte, J.; Wezeman, F.; Emanuele, N.; Van Thiel, D.H.; Kovacs, E.J.; Emanuele, M.A. Hepatic apoptosis and proliferation in male and female rats fed alcohol: Role of cytokines. Alcohol Clin. Exp. Res. 2003, 27, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Davizon-Castillo, P.; McMahon, B.; Aguila, S.; Bark, D.; Ashworth, K.; Allawzi, A.; Campbell, R.A.; Montenont, E.; Nemkov, T.; D’Alessandro, A.; et al. TNF-alpha-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood 2019, 134, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Iimuro, Y.; Gallucci, R.M.; Luster, M.I.; Kono, H.; Thurman, R.G. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 1997, 26, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Wheeler, M.D.; Kono, H.; Bradford, B.U.; Gallucci, R.M.; Luster, M.I.; Thurman, R.G. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 1999, 117, 942–952. [Google Scholar] [CrossRef]
- Joshi-Barve, S.; Barve, S.S.; Butt, W.; Klein, J.; McClain, C.J. Inhibition of proteasome function leads to NF-kappaB-independent IL-8 expression in human hepatocytes. Hepatology 2003, 38, 1178–1187. [Google Scholar] [CrossRef]
- Streetz, K.L.; Luedde, T.; Manns, M.P.; Trautwein, C. Interleukin 6 and liver regeneration. Gut 2000, 47, 309–312. [Google Scholar] [CrossRef]
- Taub, R. Hepatoprotection via the IL-6/Stat3 pathway. J. Clin. Investig. 2003, 112, 978–980. [Google Scholar] [CrossRef]
- Zimmers, T.A.; McKillop, I.H.; Pierce, R.H.; Yoo, J.Y.; Koniaris, L.G. Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology 2003, 38, 326–334. [Google Scholar] [CrossRef]
- Nagareddy, P.R.; Murphy, A.J.; Stirzaker, R.A.; Hu, Y.; Yu, S.; Miller, R.G.; Ramkhelawon, B.; Distel, E.; Westerterp, M.; Huang, L.S.; et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013, 17, 695–708. [Google Scholar] [CrossRef]
- Marshall, J.B.; Burnett, D.A.; Zetterman, R.K.; Sorrell, M.F. Clinical and biochemical course of alcoholic liver disease following sudden discontinuation of alcoholic consumption. Alcohol Clin. Exp. Res. 1983, 7, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.K.; Chen, H.Y.; Hsu, Y.C. Comparing the prognosis of patient with alcohol and nonalcohol-associated cirrhosis with bacteremia. Alcohol Alcohol. 2020, 55, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Linderoth, G.; Jepsen, P.; Schonheyder, H.C.; Johnsen, S.P.; Sørensen, H.T. Short-term prognosis of community-acquired bacteremia in patients with liver cirrhosis or alcoholism: A population-based cohort study. Alcohol Clin. Exp. Res. 2006, 30, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Saha, B. Alcohol’s effect on host defense. Alcohol Res. 2015, 37, 159–170. [Google Scholar]
- Chen, W.X.; Li, Y.M.; Yu, C.H.; Cai, W.M.; Zheng, M.; Chen, F. Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease. World J. Gastroenterol. 2002, 8, 379–381. [Google Scholar] [CrossRef]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef]
- Koivisto, H.; Hietala, J.; Niemelä, O. An inverse relationship between markers of fibrogenesis and collagen degradation in patients with or without alcoholic liver disease. Am. J. Gastroenterol. 2007, 102, 773–779. [Google Scholar] [CrossRef]
- Li, J.; Rosman, A.S.; Leo, M.A.; Nagai, Y.; Lieber, C.S. Tissue inhibitor of metalloproteinase is increased in the serum of precirrhotic and cirrhotic alcoholic patients and can serve as a marker of fibrosis. Hepatology 1994, 19, 1418–1423. [Google Scholar] [CrossRef]
- Niemelä, O.; Parkkila, S.; Ylä-Herttuala, S.; Villanueva, J.; Ruebner, B.; Halsted, C.H. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology 1995, 22, 1208–1214. [Google Scholar] [CrossRef]
- Seki, E.; De Minicis, S.; Osterreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. 2007, 13, 1324–1332. [Google Scholar] [CrossRef]
- Seki, E.; Schwabe, R.F. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 2015, 61, 1066–1079. [Google Scholar] [CrossRef]
- Yokoyama, H.; Nagata, S.; Moriya, S.; Kato, S.; Ito, T.; Kamegaya, K.; Ishii, H. Hepatic fibrosis produced in guinea pigs by chronic ethanol administration and immunization with acetaldehyde adducts. Hepatology 1995, 21, 1438–1442. [Google Scholar] [PubMed]
- Iredale, J.P. Cirrhosis: New research provides a basis for rational and targeted treatments. BMJ 2003, 327, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Feinman, L.; Fainsilber, Z.; Nakano, M.; Okazaki, I.; Lieber, C.S. Mammalian collagenase increases in early alcoholic liver disease and decreases with cirrhosis. Life Sci. 1982, 30, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, M.; Lindvig, K.P.; Thorhauge, K.H.; Andersen, P.; Hansen, J.K.; Kastrup, N.; Jensen, J.M.; Hansen, C.D.; Johansen, S.; Israelsen, M.; et al. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease. J. Hepatol. 2023, 79, 277–286. [Google Scholar] [CrossRef]
ALD | AUD without Liver Disease | Healthy Controls | ||||
---|---|---|---|---|---|---|
N = 83 | N = 105 | N = 88 | pa | pb | pc | |
Age, mean (SD) | 49.7 (11.3) | 43.3 (10.6) | 48.5 (16.1) | <0.0005 | 0.921 | 0.031 |
Men, n (%) | 61 (73.5) | 90 (85.7) | 52 (59.1) | 0.036 | 0.047 | <0.0005 |
Women, n (%) | 22 (26.5) | 15 (14.3) | 36 (40.9) | |||
Ethanol consumption, g/week, mean (SD) | 680 (650) | 950 (622) | 3.0 (8.3) | <0.0005 | <0.0005 |
AUC (95% CI) | ||||
---|---|---|---|---|
Biomarker | ALD | AUD without Liver Disease | p | |
tTG-IgA | tissue transglutaminase IgA antibodies | 0.95 (0.91–0.99) | 0.59 (0.48–0.71) | <0.0005 |
HbAch-IgA | IgA antibodies against protein adducts with acetaldehyde | 0.68 (0.59–0.77) | 0.63 (0.54–0.73) | 0.472 |
CDT% | carbohydrate-deficient transferrin | 0.87 (0.80–0.94) | 0.87 (0.82–0.93) | 0.957 |
GT | gamma glutamyl transferase | 0.92 (0.88–0.96) | 0.90 (0.85–0.94) | 0.356 |
ALP | alkaline phosphatase | 0.93 (0.89–0.97) | 0.78 (0.71–0.84) | <0.0005 |
IL-6 | interleukin 6 | 0.88 (0.83–0.94) | 0.71 (0.63–0.80) | 0.001 |
IL-8 | interleukin 8 | 0.88 (0.82–0.94) | 0.72 (0.64–0.80) | 0.002 |
TNF-α | tumor necrosis factor-α | 0.97 (0.94–1.00) | 0.65 (0.56–0.74) | <0.0005 |
IL-10 | interleukin 10 | 0.36 (0.27–0.45) | 0.45 (0.36–0.55) | 0.156 |
TGF-β | transforming growth factor-β | 0.26 (0.18–0.34) | 0.58 (0.48–0.68) | <0.0005 |
PIIINP | aminoterminal propeptide of type III procollagen | 0.93 (0.89–0.97) | 0.38 (0.29–0.48) | <0.0005 |
PINP | aminoterminal propeptide of type I procollagen | 0.71 (0.61–0.80) | 0.31 (0.19–0.43) | <0.0005 |
HA | hyaluronic acid | 0.86 (0.80–0.92) | 0.45 (0.35–0.55) | <0.0005 |
ICTP | carboxy-terminal telopeptide of type I procollagen | 0.70 (0.57–0.83) | 0.62 (0.47–0.77) | 0.431 |
CTx | degradation product of type I collagen (CrossLaps) | 0.87 (0.80–0.93) | 0.51 (0.38–0.64) | <0.0005 |
tTG-IgA | HbAch-IgA | CDT% | GT | ALP | IL-6 | IL-8 | TNF-α | IL-10 | TGF-β | PIIINP | PINP | HA | ICTP | CTx | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Autoantibodies | |||||||||||||||
tTG-IgA | 1.000 | ||||||||||||||
HbAch-IgA | 0.462 | 1.000 | |||||||||||||
Markers of alcohol consumption and liver status | |||||||||||||||
CDT% | 0.413 | 0.156 | 1.000 | ||||||||||||
GT | 0.487 | 0.141 | 0.462 | 1.000 | |||||||||||
ALP | 0.466 | 0.134 | 0.304 | 0.599 | 1.000 | ||||||||||
Mediators of inflammation | |||||||||||||||
IL-6 | 0.581 | 0.269 | 0.400 | 0.465 | 0.476 | 1.000 | |||||||||
IL-8 | 0.535 | 0.111 | 0.374 | 0.546 | 0.547 | 0.490 | 1.000 | ||||||||
TNF-α | 0.591 | 0.174 | 0.258 | 0.433 | 0.565 | 0.586 | 0.567 | 1.000 | |||||||
IL-10 | −0.051 | −0.082 | 0.098 | −0.065 | −0.141 | 0.098 | −0.040 | −0.019 | 1.000 | ||||||
TGF-β | −0.366 | −0.102 | −0.174 | −0.128 | −0.244 | −0.241 | −0.171 | −0.221 | 0.164 | 1.000 | |||||
Markers of fibrogenesis | |||||||||||||||
PIIINP | 0.634 | 0.211 | 0.087 | 0.248 | 0.442 | 0.484 | 0.468 | 0.595 | −0.130 | −0.354 | 1.000 | ||||
PINP | 0.189 | 0.126 | −0.154 | −0.152 | 0.292 | 0.137 | 0.246 | 0.387 | −0.084 | −0.180 | 0.601 | 1.000 | |||
HA | 0.575 | 0.186 | 0.087 | 0.347 | 0.428 | 0.494 | 0.557 | 0.550 | −0.183 | −0.473 | 0.647 | 0.379 | 1.000 | ||
ICTP | 0.482 | 0.088 | 0.232 | 0.253 | 0.338 | 0.317 | 0.308 | 0.329 | −0.022 | −0.218 | 0.295 | 0.317 | 0.240 | 1.000 | |
CTx | −0.495 | −0.113 | −0.106 | −0.302 | −0.349 | −0.117 | −0.200 | −0.436 | 0.148 | 0.310 | −0.361 | 0.113 | −0.352 | −0.007 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemelä, O.; Bloigu, A.; Bloigu, R.; Nivukoski, U.; Kultti, J.; Pohjasniemi, H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int. J. Mol. Sci. 2023, 24, 13124. https://doi.org/10.3390/ijms241713124
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. International Journal of Molecular Sciences. 2023; 24(17):13124. https://doi.org/10.3390/ijms241713124
Chicago/Turabian StyleNiemelä, Onni, Aini Bloigu, Risto Bloigu, Ulla Nivukoski, Johanna Kultti, and Heidi Pohjasniemi. 2023. "Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder" International Journal of Molecular Sciences 24, no. 17: 13124. https://doi.org/10.3390/ijms241713124
APA StyleNiemelä, O., Bloigu, A., Bloigu, R., Nivukoski, U., Kultti, J., & Pohjasniemi, H. (2023). Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. International Journal of Molecular Sciences, 24(17), 13124. https://doi.org/10.3390/ijms241713124