Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception
Abstract
:1. Introduction
2. Potential Fates of GluN1 Subunit in the Cellular Nucleus
2.1. GluN1 Subunit Signaling Induces Nuclear Translocation
2.2. GluN1 Subunit Staining in the Cellular Nucleus
3. Selected Animal Models of Nociception, Cell Cultures, and Tissues Highlighting In Vitro Cellular GluN1 Subunit Activity
4. Roles and Potential Fates of GluN1 Subunit in The Cellular Nucleus
5. Nucleolar Stress and Pain
6. Epigenetic Influence on GluN1 Subunit in Nuclear Organelles
7. Priming vs. Unprimed Target Activation: Or More of a Second Hit?
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ab’s | Antibodies. |
ACPD | Aminocyclopentane-1,3-dicarboxylic acid |
ACC | Anterior cingulate cortex |
ASP | Aspartic acid, aspartate |
aCSF | Artificial cerebrospinal fluid |
AP-1 | Activating protein-1 |
ARC | The arcuate nucleus of the mediobasal hypothalamus |
BDNF | Brain-Derived Neurotrophic Factor |
conc | concentration |
D1 | Dopamine receptor |
D | Day, as in D7 = Day 7 |
HDAC | Histone deacetylase |
i.a. | intra-articular |
ICC | Immunocytochemistry |
IE | Immediate Early |
IEG | Immediate Early Gene |
IHC | Immunohistochemistry |
IP | Intraparenchymal |
K/C | kaolin/carrageenan |
lncRNA | Long non-coding RNA, group of RNAs of >200 nucleotides, with limited protein-.coding potential, and having widespread biological functions, including regulation. of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs), and natural microRNA (miRNA) sponges |
LPS | Lipopolysaccharide |
LTP | Long term potentiation |
MEF2 | Myocyte Enhancer Factor 2, is a transcription factor with four specific numbers such as MEF2A, B, C, and D. Each MEF2 gene is located on a specific chromosome |
NFkB/Rel | Nuclear Factor kappa B/Rel family |
NGF | Nerve growth factor |
NLS | Nuclear localization sequence (GluN1 amino acid sequence 82–99) |
NMDA | N-methyl-D-aspartate |
NoLS | Nucleolar Localization sequence: (GluN1 amino acid sequence 84–95) |
NOR | Nucleolus organizing region of a specific chromosome located in the nucleolus |
NPC | Neuroprogenitor cells |
NPM1 | Nucleophosmin-1 |
NR1 | NMDA receptor 1 |
NR2 | NMDA receptor 2 |
NR3 | NMDA receptor 3 |
Nrf1 | Nuclear respiratory factor 1 (transcription factor) |
OFT | Open field testing |
PC12 | Rat clonal cell line derived from a pheochromocytoma of the adrenal medulla |
p53 | Phosphorylated 53: an oncogene involved in apoptosis |
PKA | Protein kinase A |
PKC | Protein kinase C |
PMA | Phorbol myristate acetate |
Pol I: II, III | Polymerase I, II, III |
PTK | Non-receptor protein tyrosine kinase |
PVN | Paraventricular nucleus |
PWL | Paw withdrawal reflex |
RE1 | Repressor element 1 |
REV-ERB | Nuclear transcriptional repressor |
sc | subcutaneous |
siRNA | Small interfering RNA |
sol’n | solution |
Sp1 | Specific protein 1 |
SH-SY5Y | Human neuroblastoma clonal cells |
TSS | Transcription start site |
UBF | Upstream Binding Factor |
References
- Harding, S.D.; Armstrong, J.F.; Faccenda, E.; Southan, C.; Alexander, S.P.H.; Davenport, A.P.; Pawson, A.J.; Spedding, M.; Davies, J.A.; Iuphar, N. The IUPHAR/BPS guide to PHARMACOLOGY in 2022: Curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Res. 2021, 50, D1282–D1294. [Google Scholar] [CrossRef]
- Marini, A.M.; Rabin, S.J.; Lipsky, R.H.; Mocchetti, I. Activity-dependent Release of Brain-derived Neurotrophic Factor Underlies the Neuroprotective Effect of N-Methyl-d-aspartate. J. Biol. Chem. 1998, 273, 29394–29399. [Google Scholar] [CrossRef]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73, 1469–1658. [Google Scholar] [CrossRef]
- Chandrasekar, R. Alcohol and NMDA receptor: Current research and future direction. Front. Mol. Neurosci. 2013, 6, 14. [Google Scholar] [CrossRef]
- Bai, G.; Hoffman, P.W. Chapter 5 Biology of the NMDA Receptor; Van Dongen, A.M., Ed.; CRC Press; Taylor & Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Willis, W.D., Jr. The role of TRPV1 receptors in pain evoked by noxious thermal and chemical stimuli. Exp. Brain Res. 2009, 196, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, J.D.; Svensson, B.; Gordh, T. The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain 1992, 51, 249–253. [Google Scholar] [CrossRef]
- Riccardi, A.; Guarino, M.; Serra, S.; Spampinato, M.D.; Vanni, S.; Shiffer, D.; Voza, A.; Fabbri, A.; De Iaco, F.; on behalf of the Study and Research Center of the Italian Society of Emergency Medicine. Narrative Review: Low-Dose Ketamine for Pain Management. J. Clin. Med. 2023, 12, 3256. [Google Scholar] [CrossRef]
- South, S.M.; Kohno, T.; Kaspar, B.K.; Hegarty, D.; Vissel, B.; Drake, C.T.; Ohata, M.; Jenab, S.; Sailer, A.W.; Malkmus, S.; et al. A Conditional Deletion of the NR1 Subunit of the NMDA Receptor in Adult Spinal Cord Dorsal Horn Reduces NMDA Currents and Injury-Induced Pain. J. Neurosci. 2003, 23, 5031–5040. [Google Scholar] [CrossRef] [PubMed]
- Hietamies, T.M.; McInnes, L.A.; Klise, A.J.; Worley, M.J.; Qian, J.J.; Williams, L.M.; Heifets, B.D.; Levine, S.P. The effects of ketamine on symptoms of depression and anxiety in real-world care settings: A retrospective controlled analysis. J. Affect. Disord. 2023, 335, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hertz, E.; Zhang, X.; Leinartaité, L.; Lundius, E.G.; Li, J.; Svenningsson, P. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity. Neurosci. Lett. 2016, 611, 51–58. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.-S.; Yung, K.K.-L. Roles of Glutamate Receptors in Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 4391. [Google Scholar] [CrossRef]
- Lewerenz, J.; Maher, P. Chronic Glutamate Toxicity in Neurodegenerative Diseases—What Is the Evidence? Front. Neurosci. 2015, 9, 469. [Google Scholar] [CrossRef]
- Lipton, S.A. NMDA Receptors, Glial Cells, and Clinical Medicine. Neuron 2006, 50, 9–11. [Google Scholar] [CrossRef]
- Nagu, P.; Parashar, A.; Behl, T.; Mehta, V. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer’s Disease. J. Mol. Neurosci. 2021, 71, 1436–1455. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, M.; Sánchez-Blázquez, P.; Garzón, J. Fenfluramine diminishes NMDA receptor-mediated seizures via its mixed activity at serotonin 5HT2A and type 1 sigma receptors. Oncotarget 2018, 9, 23373–23389. [Google Scholar] [CrossRef]
- Levite, M.; Goldberg, H. Autoimmune Epilepsy—Novel Multidisciplinary Analysis, Discoveries and Insights. Front. Immunol. 2022, 12, 762743. [Google Scholar] [CrossRef]
- Holmes, K.D.; Mattar, P.; Marsh, D.R.; Jordan, V.; Weaver, L.C.; Dekaban, G.A. The C-terminal C1 cassette of the N-methyl-d-aspartate receptor 1 subunit contains a bi-partite nuclear localization sequence. J. Neurochem. 2002, 81, 1152–1165. [Google Scholar] [CrossRef]
- Zhou, L.; Duan, J. The NMDAR GluN1-1a C-terminus binds to CaM and regulates synaptic function. Biochem. Biophys. Res. Commun. 2021, 534, 323–329. [Google Scholar] [CrossRef]
- Ulbrich, M.H.; Isacoff, E.Y. Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci. USA 2008, 105, 14163–14168. [Google Scholar] [CrossRef]
- Jeffrey, R.A.; Ch’Ng, T.H.; O’Dell, T.J.; Martin, K.C. Activity-Dependent Anchoring of Importin α at the Synapse Involves Regulated Binding to the Cytoplasmic Tail of the NR1-1a Subunit of the NMDA Receptor. J. Neurosci. 2009, 29, 15613–15620. [Google Scholar] [CrossRef]
- Niu, M.; Yang, X.; Li, Y.; Sun, Y.; Wang, L.; Ha, J.; Xie, Y.; Gao, Z.; Tian, C.; Wang, L.; et al. Progresses in GluN2A-containing NMDA Receptors and their Selective Regulators. Cell. Mol. Neurobiol. 2023, 43, 139–153. [Google Scholar] [CrossRef]
- Zhou, L.; Duan, J. The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function. Front. Cell. Neurosci. 2018, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Garraway, S.M.; Xu, Q.; Inturrisi, C.E. Design and Evaluation of Small Interfering RNAs That Target Expression of the N-Methyl-d-aspartate Receptor NR1 Subunit Gene in the Spinal Cord Dorsal Horn. Experiment 2007, 322, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Samra, Y.A.; Kira, D.; Rajpurohit, P.; Mohamed, R.; Owen, L.A.; Shakoor, A.; Kim, I.K.; DeAngelis, M.M.; Sheibani, N.; Al-Shabrawey, M.; et al. Implication of N-Methyl-d-Aspartate Receptor in Homocysteine-Induced Age-Related Macular Degeneration. Int. J. Mol. Sci. 2021, 22, 9356. [Google Scholar] [CrossRef]
- Mashkina, A.P.; Cizkova, D.; Vanicky, I.; Boldyrev, A.A. NMDA Receptors are Expressed in Lymphocytes Activated Both In Vitro and In Vivo. Cell. Mol. Neurobiol. 2010, 30, 901–907. [Google Scholar] [CrossRef]
- McNearney, T.A.; Ma, Y.; Chen, Y.; Taglialatela, G.; Yin, H.; Zhang, W.-R.; Westlund, K.N. A peripheral neuroimmune link: Glutamate agonists upregulate NMDA NR1 receptor mRNA and protein, vimentin, TNF-α, and RANTES in cultured human synoviocytes. Am. J. Physiol. Integr. Comp. Physiol. 2010, 298, R584–R598. [Google Scholar] [CrossRef]
- Flood, S.; Parri, R.; Williams, A.; Duance, V.; Mason, D. Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synoviocytes by functional ionotropic glutamate receptors. Arthritis Rheum. 2007, 56, 2523–2534. [Google Scholar] [CrossRef]
- Baatout, S.; Chatelain, B.; Staquet, P.; Symann, M.; Chatelain, C. Interaction between protein kinase C and actin in megakaryocyte polyploidization. Anticancer Res. 1999, 19, 4193–4198. [Google Scholar]
- Hitchcock, I.S.; Skerry, T.M.; Howard, M.R.; Genever, P.G. NMDA receptor–mediated regulation of human megakaryocytopoiesis. Blood 2003, 102, 1254–1259. [Google Scholar] [CrossRef]
- Chenu, C.; Serre, C.; Raynal, C.; Burt-Pichat, B.; Delmas, P. Glutamate Receptors Are Expressed by Bone Cells and Are Involved in Bone Resorption. Bone 1998, 22, 295–299. [Google Scholar] [CrossRef]
- Ghosh, K.; Pan, H.-L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Nasca, C.; Zelli, D.; Bigio, B.; Piccinin, S.; Scaccianoce, S.; Nisticò, R.; McEwen, B.S. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc. Natl. Acad. Sci. USA 2015, 112, 14960–14965. [Google Scholar] [CrossRef] [PubMed]
- Gascón, S.; Deogracias, R.; Sobrado, M.; Roda, J.M.; Renart, J.; Rodríguez-Peña, A.; Díaz-Guerra, M. Transcription of the NR1 Subunit of the N-Methyl-d-aspartate Receptor Is Down-regulated by Excitotoxic Stimulation and Cerebral Ischemia. J. Biol. Chem. 2005, 280, 35018–35027. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, X.; Li, Y.; Wang, C.; Wang, T.; Liu, G.; Baskys, A.; Uéda, K.; Chan, P.; Yu, S. α-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death. J. Neurochem. 2011, 119, 815–825. [Google Scholar] [CrossRef]
- Zidovska, A. The rich inner life of the cell nucleus: Dynamic organization, active flows, and emergent rheology. Biophys. Rev. 2020, 12, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Yan, D.; Wan, C.; Hu, B. Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022, 11, 3017. [Google Scholar] [CrossRef]
- Holmes, K.D.; Mattar, P.A.; Marsh, D.R.; Weaver, L.C.; Dekaban, G.A. The N-Methyl-d-aspartate Receptor Splice Variant NR1–4 C-terminal Domain. Deletion analysis and role in subcellular distribution. J. Biol. Chem. 2002, 277, 1457–1468. [Google Scholar] [CrossRef]
- Thompson, K.R.; Otis, K.O.; Chen, D.Y.; Zhao, Y.; O’Dell, T.J.; Martin, K.C. Synapse to Nucleus Signaling during Long-Term Synaptic Plasticity: A Role for the Classical Active Nuclear Import Pathway. Neuron 2004, 44, 997–1009. [Google Scholar] [CrossRef]
- Westlund, K.N.; Lu, Y.; Zhang, L.; Pappas, T.C.; Zhang, W.-R.; Taglialatela, G.; McIlwrath, S.L.; McNearney, T.A. Tyrosine Kinase Inhibitors Reduce NMDA NR1 Subunit Expression, Nuclear Translocation, and Behavioral Pain Measures in Experimental Arthritis. Front. Physiol. 2020, 11, 440. [Google Scholar] [CrossRef]
- Lawand, N.B.; McNearney, T.; Westlund, K.N. Amino acid release into the knee joint: Key role in nociception and inflammation. Pain 2000, 86, 69–74. [Google Scholar] [CrossRef]
- Sorkin, L.; Westlund, K.; Sluka, K.; Dougherty, P.; Willis, W. Neural changes in acute arthritis in monkeys. IV. Time-course of amino acid release into the lumbar dorsal horn. Brain Res. Rev. 1992, 17, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Pol, A.N.v.D.; Obrietan, K.; Chen, G. Excitatory Actions of GABA after Neuronal Trauma. J. Neurosci. 1996, 16, 4283–4292. [Google Scholar] [CrossRef] [PubMed]
- Coull, J.A.M.; Boudreau, D.; Bachand, K.; Prescott, S.A.; Nault, F.; Sík, A.; De Koninck, P.; De Koninck, Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Westlund, K.N. Ultrastructural localization of glutamate receptor subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract cells. Neuroreport 1996, 7, 2581–2586. [Google Scholar] [CrossRef]
- Satoh, T.; Nakatsuka, D.; Watanabe, Y.; Nagata, I.; Kikuchi, H.; Namura, S. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci. Lett. 2000, 288, 163–166. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Liu, X.; Wang, Y.; Zhao, X.; Zhang, Y.; Zhang, C. U0126 protects hippocampal CA1 neurons against forebrain ischemia-induced apoptosis via the ERK1/2 signaling pathway and NMDA receptors. Neurol. Res. 2018, 40, 318–323. [Google Scholar] [CrossRef]
- Sluka, K.; Jordan, H.; Willis, W.; Westlund, K. Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on spinal release of amino acids after development of acute arthritis in rats. Brain Res. 1994, 664, 77–84. [Google Scholar] [CrossRef]
- Lucke, T.; Schaible, H.-G.; Zhang, J.; Mense, S.; Treede, R.-D.; Hoheisel, U.; Sun, R.-Q.; Lawand, N.B.; Lin, Q.; Willis, W.D.; et al. N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists block the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat’s knee joint. J. Neurophysiol. 1993, 70, 1365–1377. [Google Scholar] [CrossRef]
- Skilling, S.R.; Smullin, D.H.; Beitz, A.J.; Larson, A.A. Extracellular Amino Acid Concentrations in the Dorsal Spinal Cord of Freely Moving Rats Following Veratridine and Nociceptive Stimulation. J. Neurochem. 1988, 51, 127–132. [Google Scholar] [CrossRef]
- McNearney, T.; Speegle, D.; Lawand, N.; Lisse, J.; Westlund, K.N. Excitatory amino acid profiles of synovial fluid from patients with arthritis. J. Rheumatol. 2000, 27, 739–745. [Google Scholar]
- Botto, R.; Callai, N.; Cermelli, A.; Causarano, L.; Rainero, I. Anxiety and depression in Alzheimer’s disease: A systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol. Sci. 2022, 43, 4107–4124. [Google Scholar] [CrossRef]
- Flood, P.M.; Qian, L.; Peterson, L.J.; Zhang, F.; Shi, J.-S.; Gao, H.-M.; Hong, J.-S. Transcriptional Factor NF-κB as a Target for Therapy in Parkinson’s Disease. Park. Dis. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Li, Y.-L.; Fang, Z.-H.; Liao, H.-L.; Zhang, Y.-Y.; Lin, J.; Liu, F.; Shen, J.-F. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front. Cell. Neurosci. 2022, 16, 999509. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, R.H.; Xu, K.; Zhu, D.; Kelly, C.; Terhakopian, A.; Novelli, A.; Marini, A.M. Nuclear factor κB is a critical determinant in N-methyl-d-aspartate receptor-mediated neuroprotection. J. Neurochem. 2001, 78, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-O.; Yukhananov, R.; Standaert, D.G.; Crosby, G. NMDA-R1 antisense oligodeoxynucleotides modify formalin-induced nociception and spinal c-Fos expression in rat spinal cord. Pharmacol. Biochem. Behav. 2004, 79, 183–188. [Google Scholar] [CrossRef]
- Peet, N.M.; Grabowski, P.S.; Laketić-Ljubojević, I.; Skerry, T.M. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J. 1999, 13, 2179–2185. [Google Scholar] [CrossRef]
- Tan, P.-H.; Yu, S.-W.; Lin, V.C.-H.; Liu, C.-C.; Chien, C.-F.C. RNA interference-mediated gene silence of the NR1 subunit of the NMDA receptor by subcutaneous injection of vector-encoding short hairpin RNA reduces formalin-induced nociception in the rat. Pain 2011, 152, 573–581. [Google Scholar] [CrossRef]
- Sluka, K.; Westlund, K. An experimental arthritis model in rats: The effects of NMDA and non-NMDA antagonists on aspartate and glutamate release in the dorsal horn. Neurosci. Lett. 1993, 149, 99–102. [Google Scholar] [CrossRef]
- Salter, M.G.; Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005, 438, 1167–1171. [Google Scholar] [CrossRef]
- Peng, J.-M.; Xu, L.-S.; Zhu, Q.; Gong, S.; Yu, X.-M.; Guo, S.-Y.; Wu, G.-C.; Tao, J.; Jiang, X.-H. Enhanced NMDA receptor NR1 phosphorylation and neuronal activity in the arcuate nucleus of hypothalamus following peripheral inflammation. Acta Pharmacol. Sin. 2011, 32, 160–166. [Google Scholar] [CrossRef]
- Zhou, Q.; Price, D.D.; Caudle, R.M.; Verne, G.N. Spinal NMDA NR1 subunit expression following transient TNBS colitis. Brain Res. 2009, 1279, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Kay, J.C.; Shen, S.; Qiao, L.-Y. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. J. Neuroinflamm. 2015, 12, 151. [Google Scholar] [CrossRef]
- Tan, L.-H.; Li, K.-G.; Wu, Y.-Y.; Guo, M.-W.; Lan, Y.; Wang, S.; Zhu, W.-L.; Ren, X.-X. Effect of Electroacupuncture at Different Acupoints on the Expression of NMDA Receptors in ACC and Colon in IBS Rats. Evid.-Based Complement. Altern. Med. 2019, 2019, 4213928. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Kim, H. Anti-Inflammatory Effect of Protopine through MAPK and NF-κB Signaling Regulation in HepG2 Cell. Molecules 2022, 27, 4601. [Google Scholar] [CrossRef]
- Kundu-Michalik, S.; Bisotti, M.-A.; Lipsius, E.; Bauche, A.; Kruppa, A.; Klokow, T.; Kammler, G.; Kruppa, J. Nucleolar Binding Sequences of the Ribosomal Protein S6e Family Reside in Evolutionary Highly Conserved Peptide Clusters. Mol. Biol. Evol. 2008, 25, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Kass-Simon, G.; Zompa, M.A.; Scappaticci, A.A.; Zackroff, R.V.; Hufnagel, L.A. Nucleolar binding of an anti-NMDA receptor antibody in hydra: A non-canonical role for an NMDA receptor protein? J. Exp. Zool. Part A Ecol. Integr. Physiol. 2009, 311, 763–775. [Google Scholar] [CrossRef]
- Fan, W.; Xing, Y.; Zhong, Y.; Chen, C.; Shen, Y. Expression of NMDA receptor subunit 1 in the rat retina. Acta Histochem. 2013, 115, 42–47. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Sumino, A.; Kajioka, D.; Shibagaki, F.; Yamamuro, A.; Yoshioka, Y.; Maeda, S. Apelin protects against NMDA-induced retinal neuronal death via an APJ receptor by activating Akt and ERK1/2, and suppressing TNF-α expression in mice. J. Pharmacol. Sci. 2017, 133, 34–41. [Google Scholar] [CrossRef]
- Del Caño, G.G.; Gerrikagoitia, I.; Sarasa, M.; Matute, C.; Martínez-Millán, L. Ionotropic glutamate receptor subunits are differentially regulated in the motoneuronal pools of the rat hypoglossal nucleus in response to axotomy. J. Neurocytol. 2000, 29, 509–523. [Google Scholar] [CrossRef]
- Awobuluyi, M.; Lipton, S.A.; Sucher, N.J. Translationally distinct populations of NMDA receptor subunit NR1 mRNA in the developing rat brain. J. Neurochem. 2003, 87, 1066–1075. [Google Scholar] [CrossRef]
- Irfan, J.; Febrianto, M.R.; Sharma, A.; Rose, T.; Mahmudzade, Y.; Di Giovanni, S.; Nagy, I.; Torres-Perez, J.V. DNA Methylation and Non-Coding RNAs during Tissue-Injury Associated Pain. Int. J. Mol. Sci. 2022, 23, 752. [Google Scholar] [CrossRef]
- Loureiro, C.M.; Fachim, H.A.; Corsi-Zuelli, F.; Shuhama, R.; Joca, S.; Menezes, P.R.; Dalton, C.F.; Del-Ben, C.M.; Louzada-Junior, P.; Reynolds, G.P. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020, 12, 1983–1997. [Google Scholar] [CrossRef] [PubMed]
- Guglietti, B.; Sivasankar, S.; Mustafa, S.; Corrigan, F.; Collins-Praino, L.E. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: A Potential Universal Target? Mol. Neurobiol. 2021, 58, 5986–6005. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, O.N.; Wilhelmi, V.; Raiss, S.; Ananthaseshan, S.; Lindström, M.S.; Bartek, J.; Söderberg-Naucler, C. Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes. Oncotarget 2017, 8, 96536–96552. [Google Scholar] [CrossRef]
- Lafita-Navarro, M.; Conacci-Sorrell, M. Nucleolar stress: From development to cancer. Semin. Cell Dev. Biol. 2023, 136, 64–74. [Google Scholar] [CrossRef]
- He, J.; Qin, Z.; Chen, X.; He, W.; Li, D.; Zhang, L.; Le, Y.; Xiong, Q.; Zhang, B.; Wang, H. HIF-1α Ameliorates Diabetic Neuropathic Pain via Parkin-Mediated Mitophagy in a Mouse Model. BioMed Res. Int. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Nazari-Khanamiri, F.; Ghasemnejad-Berenji, M. Resveratrol may ameliorate rheumatoid arthritis via the STAT3/HIF-1/VEGF molecular pathway. J. Food Biochem. 2022, 46, e14182. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lim, G.; Mao, J.; Sung, B.; Mao, J. Regulation of the trigeminal NR1 subunit expression induced by inflammation of the temporomandibular joint region in rats. Pain 2009, 141, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Z.; Wang, Y.; Wang, H.; Guo, Y. The role and mechanism of glutamic NMDA receptor in the mechanical hyperalgesia in diabetic rats. Neurol. Res. 2017, 39, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Matos-Perdomo, E.; Machín, F. Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer. Cells 2019, 8, 779. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Murphy, S.; Coleman, N. The Role of NMDA Receptors in Neural Stem Cell Proliferation and Differentiation. Stem Cells Dev. 2017, 26, 798–807. [Google Scholar] [CrossRef]
- Sharma, N.M.; Cunningham, C.J.; Zheng, H.; Liu, X.; Patel, K.P. Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl-d-Aspartate Receptors in the Paraventricular Nucleus of Rats with Chronic Heart Failure. Circ. Heart Fail. 2016, 9, e003423. [Google Scholar] [CrossRef]
- Tong, G.; Takahashi, H.; Tu, S.; Shin, Y.; Talantova, M.; Zago, W.; Xia, P.; Nie, Z.; Goetz, T.; Zhang, D.; et al. Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons. J. Neurophysiol. 2008, 99, 122–132. [Google Scholar] [CrossRef]
- Hajdú, T.; Juhász, T.; Szűcs-Somogyi, C.; Rácz, K.; Zákány, R. NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int. J. Mol. Sci. 2018, 19, 1929. [Google Scholar] [CrossRef]
- Buchheit, T.; Van de Ven, T.; Shaw, A. Epigenetics and the Transition from Acute to Chronic Pain. Pain Med. 2012, 13, 1474–1490. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Das, D.; Barhwal, K.; Kumar, A.; Nag, T.C.; Thakur, M.K.; Hota, S.K.; Kumar, B. Epigenetic Regulation of SNAP25 Prevents Progressive Glutamate Excitotoxicty in Hypoxic CA3 Neurons. Mol. Neurobiol. 2017, 54, 6133–6147. [Google Scholar] [CrossRef] [PubMed]
- Vecino, R.; Burguete, M.C.; Jover-Mengual, T.; Agulla, J.; Bobo-Jiménez, V.; Salom, J.B.; Almeida, A.; Delgado-Esteban, M. The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Sci. Rep. 2018, 8, 1610. [Google Scholar] [CrossRef]
- Noor, S.; Sanchez, J.J.; Vanderwall, A.G.; Sun, M.S.; Maxwell, J.R.; Davies, S.; Jantzie, L.L.; Petersen, T.R.; Savage, D.D.; Milligan, E.D. Prenatal alcohol exposure potentiates chronic neuropathic pain, spinal glial and immune cell activation and alters sciatic nerve and DRG cytokine levels. Brain Behav. Immun. 2017, 61, 80–95. [Google Scholar] [CrossRef]
- Sanchez, J.J.; Sanchez, J.E.; Noor, S.; Ruffaner-Hanson, C.D.; Davies, S.; Wagner, C.R.; Jantzie, L.L.; Mellios, N.; Savage, D.D.; Milligan, E.D. Targeting the β2-integrin LFA-1, reduces adverse neuroimmune actions in neuropathic susceptibility caused by prenatal alcohol exposure. Acta Neuropathol. Commun. 2019, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Sarantis, K.; Antoniou, K.; Matsokis, N.; Angelatou, F. Exposure to novel environment is characterized by an interaction of D1/NMDA receptors underlined by phosphorylation of the NMDA and AMPA receptor subunits and activation of ERK1/2 signaling, leading to epigenetic changes and gene expression in rat hippocampus. Neurochem. Int. 2012, 60, 55–67. [Google Scholar] [CrossRef]
- Stover, J.F.; Sakowitz, O.W.; Kroppenstedt, S.N.; Thomale, U.W.; Kempski, O.S.; Unterberg, A.W.; Flügge, G. Differential effects of prolonged isoflurane anesthesia on plasma, extracellular, and CSF glutamate, neuronal activity, 125I-Mk801 NMDA receptor binding, and brain edema in traumatic brain-injured rats. Acta Neurochir. 2004, 146, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tian, F.; Mearow, K.; Okagaki, P.; Lipsky, R.H. The excitoprotective effect of N-methyl-d-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J. Neurochem. 2005, 94, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-N.; Li, L.-X.; Wang, Y.-X.; Wang, H.-G.; An, D.; Heng, B.; Liu, Y.-Q. Genistein inhibits Aβ25–35-induced SH-SY5Y cell damage by modulating the expression of apoptosis-related proteins and Ca2+ influx through ionotropic glutamate receptors. Phytother. Res. 2019, 33, 431–441. [Google Scholar] [CrossRef] [PubMed]
- McNearney, T.; Baethge, B.A.; Cao, S.; Alam, R.; Lisse, J.R.; Westlund, K.N. Excitatory amino acids, TNF-α, and chemokine levels in synovial fluids of patients with active arthropathies. Clin. Exp. Immunol. 2004, 137, 621–627. [Google Scholar] [CrossRef]
- Genever, P.G.; Maxfield, S.J.; Skerry, T.M.; Kennovin, G.D.; Maltman, J.; Bowgen, C.J.; Raxworthy, M.J. Evidence for a Novel Glutamate-Mediated Signaling Pathway in Keratinocytes. J. Investig. Dermatol. 1999, 112, 337–342. [Google Scholar] [CrossRef]
- Liu, L.; Yang, T.; Simon, S.A. The protein tyrosine kinase inhibitor, genistein, decreases excitability of nociceptive neurons. Pain 2004, 112, 131–141. [Google Scholar] [CrossRef]
Model | Injury and/or Activation | Results | Pretreatment, Conditioning or Intervention | New Results after Pretreatment, Conditioning or Intervention | Reference |
---|---|---|---|---|---|
ARTHRITIS/ Inflammation | |||||
Rat arthritis | Intraarticular (i.a.) kaolin/carrageenan (K/C) injection hind leg | Increased spinal dorsal horn (SCDH) neuron excitability | 1. Ketamine 2. D-AP5 3. CNQX | Decreased spinal dorsal horn neuron hyperexcitability | Neugebauer et al., 1993 [49] |
Rat arthritis | i.a., K/C injection hind leg | Increased 2–4-fold, i.a. Glu conc 10–120 min after K/C injection | Pretreat with i.a. CNQX, ketamine, lidocaine injection | Increased i.a. GLU conc. significantly blunted | Sluka and Westlund. 1993 [59] Lawand et al., 2000 [41] |
Rat primary cerebellar granule neuron cultures | Glu incubation | Neurotoxicity | Pre-Rx with: 1. NMDA 2. MK-801 3. Transfected with DS oligonucleotide to BDNF NFkB binding site | Pretreatment and BDNF DNA binding activity resulted in neuroprotection | Lipsky et al., 2001 [55] |
Mouse Lumbar SCDH (IPLformalin-induced nociception) | IPL micro-injection rAAV-GFP Lumbar SCDH IPL injection, formalin hind paw | Increased licking, biting pain behaviors Increased EPSC current and synaptic response in Lamina II neurons of SCDH | Conditional GluN1 deletion segments | Significant decrease in pain behaviors Significant decrease in EPSC’s by 60–80% | South et al., 2003 [9] |
Rat (IPLformalin-induced nociception) | IPL injection, formalin hind paw | Increased number of hind paw flinches | GluN1 antisense mRNA | Significant blunting in the number of flinches | Lee et al., 2004 [56] |
Rat Oligodendrocyte spines | Anoxic injury model in oligodendrocytes | GluN1 activation, Intracell Ca2+ activation; cell injury | Pretreat with CNQX or MK-801 | GluR blockade blunted cell inactivation and injury—Specific GluN1 subcellular function by cell region | Salter and Fern, 2005 [60] |
Rat arthritis | IPL injection, CFA hind paw | Nociceptive behavior, secondary mechanical allodynia | GluN1-coded siRNA-AAV vector injection into lumbar SCDH | Reduced pain behaviors by 60–75% for ≥6 mo | Garraway et al., 2007 [24] |
Mouse spinal cord injury | Direct, blunt trauma to spinal cord motoneurons | Incr cell GluN1 perinuclear and nuclear staining | Add’n of PHA I at BsL, then NMDA | Increased GluN1 Staining | Mashkina et al., 2010 [26] |
Rat arthritis | IPL injection CFA hind paw | Incr pGluN1 protein and spontaneous firing discharge rates in hypothalamic slices | Pre-injx MK801 or CNQX | Decreased pGluN1 levels and spontaneous firing | Peng et al., 2011 [61] |
Rat Subcutaneous (s.c.) formalin-induced nociception | s.c. injection, formalin hind leg skin | Significant increase in number of paw flinches and in skin GluN1 staining | shRNA injection into the contralateral paw | Significant blunting of paw flinches and GluN1 staining | Tan et al., 2011 [58] |
Mouse hippocampal neurons | NMDA added to hippocampal neurons and tissue slices | PreRx: neurons/slices transfect with GluN1 isoforms | Incr GluN1 C1 staining, most in neuronal cell nuclei -Incr EPSC activity | Zhou and Duan, 2018 [23] | |
Rat K/C arthritis | i.a. K/C injx hind leg | Secondary mechanical allodynia Incr SCDH GluN1, pGluN1, staining | Genistein Lavendustin A (PTK inhibitors) | Signif blunted pain behaviors, Signif blunted GluN1 staining | Westlund et al., 2020 [40] |
COLITIS | |||||
Rat Transient TNBS colitis | TNBS solution, intra-colonic | Increased GluN1 variants in spinal cord T10-L1 after colitis resolution | Zhou et al., 2009 [62] | ||
Rat TNBS colitis | Day1 TNBS sol’n enema rectum to colon | D7: Incr pGluN1 in SCDH L1 and S1 D7: SCDH slices incubated w/BDNF-> increased pGluN1 | D3: i.v. α-BDNF neutralizing Ab D7: slices pre-incubated P13/Akt, PLC-γ or PKC inhibition | D7: Colitis increased pGluN1 α-BDNF block decreased Western blot pGluN1 and pGluN1 immunostaining | Liu et al., 2015 [63] |
Rat IBS model | 1. Neonatal maternal separation, 2. Acetic acid enema 3. colorectal distension | Increased abdominal withdrawal reflex Decreased open-field activity test Incr GluN1 staining: RT-PCR in ACC; protein by IHC in the colon | Electroacupuncture on Neiguan points PC6 and ST36 | -Decreased abdominal withdrawal reflex; Increased open field activity; Decreased GluN1 in ACC and colon | Tan et al., 2019 [64] |
Non-neural cells, in vitro | |||||
Rat, mouse osteoclasts | In vitro bone resorption model | GluN1 levels noted with bone resorption by osteoclasts | Pretreat with 1 D-AP5 2. MK-801 3. Anti GluN1 Ab | In vitro bone absorption was inhibited | Chenu et al., 1998 [31] |
Rat arthritis, Human synoviocytes | NMDA, ACPD added to human clonal synoviocyte cultures, SW892 | Increased GluN1 staining by ICC | Pre-incubated with microdose PMA | Significant increase in GluN1, TNF-α, and RANTES | McNearney et al., 2010 [27] |
Other models—NFkB translocation | |||||
Inflammation | HepG2 human liver cells Incubation with PMA | Increased levels of nuclear NFkB, Cytoplasmic COX-2,MMP-9 | Pre-incubated with Protopine | Significant decreases in nuclear NFkB, cytoplasm COX-2, and MMP-9 levels | Kim et al., 2022 [65] |
Cellular Nuclear Regions | GluN1 Co-Expressed with | Expression System— Host Cells, Tissues | Added Reagents or Stressors | Cellular or Tissue Responses with NMDA NR1 | References |
---|---|---|---|---|---|
Nuclear membrane | GluN2 GluN2 GluN3 | Rat: primary neurons, dorsal and ventral horn tissue Human: clonal neuro-blastoma cells, SH5YSY Primary human synoviocyte cultures; Clonal human synoviocytes SW892 Clonal human synoviocytes, SW892 Human, mouse, rat brain tissue; Human clonal kidney cells, HEK-293 | Kaolin/carrageenan (K/C) intra-articular (i.a.) rat arthritis model Glutamate Glutamate or NMDA PMA, NMDA, ACPD Elicited EPSC’s | EM: GluN1 increased at the nuclear membrane, secondary heat hyperalgesia Confocal: Increased nuclear and cytoplasmic GluN1 staining GluN1 staining: Increased at nuclear and cytoplasmic regions Whole-cell enlargement Increased supernatant levels: TNF-α, RANTES (Figure 3: Increased nucleoli number) The proposed neuroprotective modulator of GluN1 containing heterodimer | Westlund et al., 2020 [40] Westlund et al., 2020 [40] McNearney et al., 2010 [27] McNearney et al., 2010 [27] Figure 3 Tong et al., 2008 [84] |
Nuclear Pore Complex | GluNA/B | Ipsilateral dorsal and ventral horns | Rat K/C arthritis model, K/C, i.a. | Nuclear access shuttle EM: GluN1 increases at nuclear membrane pores | Westlund et al., 2020 [40] |
Chromatin | HIF-1 | Rat brain PVN: (congestive heart failure model) Rat clonal neuronal cells NG108-15 * cells for hypoxia studies | Hypoxic stress, assess PVN for Glu neuro-excitation; NG108-15 cells for epigenetic changes | HIF-1 binds to GluN1 promoter region; Increased HIF-1 and GluN1 levels, Increased cardiac excitation. | Sharma et al., 2016 [83] |
Chromatin | Mouse–depression and anxiety models–study hippocampus | Acute restraint or forced swim stress on Chronic restraint- +/− increased P300 wave, BDNF levels | Increased GluN1 transcripts in the hippocampus after an acute forced swim on chronic restraint background. Changed behavior | Nasca et al., 2015 [33] | |
Chromatin | GluN2B | Rat, mouse, and human neuronal cells and brain slices | Incubated with added ethanol (ethanol) | Alcohol brain injury; decreased transcription; Increased histone modifications; DNA methylation; HDAC function, some long-term transcriptional changes | Reviewed in Chandrasekar, 2013 [4] |
Nucleolus | GluN2A GluN3B | Human primary melanocytes Clonal melanoma cell lines | Plated and harvested at the confluence | N1/N2A subunits on primary cultures N1/N3B subunits on melanoma cells | Hajdu et al., 2018 [85] |
Nucleolus | GluN3 | Hydra. (Hydra vulgaris) nematoblasts, neuroblasts, and epitheliomuscular cells | Immunocytochemical staining with anti-fibrillarin ** and GluN1 Ab’s | Shuttle mechanism to nucleolus based on putative NoLS in 1 of 2 splice variants detected and GluN1 staining of nucleoli. | Kass-Simon et al., 2009 [67] |
Nucleolus | Importin-α | Mouse primary hippocampal and cortical neuron cultures; Rat hippocampal slices | Cellular and tissue activation via electrical pulses | Importin-α binds to NLS of 3’ tail of cytoplasmic GluN1; GluN1 subunit activation releases importin-α for binding to proteins entering through the nuclear pore complex | Jeffrey et al., 2009 [21] *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNearney, T.A.; Westlund, K.N. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int. J. Mol. Sci. 2023, 24, 13196. https://doi.org/10.3390/ijms241713196
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. International Journal of Molecular Sciences. 2023; 24(17):13196. https://doi.org/10.3390/ijms241713196
Chicago/Turabian StyleMcNearney, Terry A., and Karin N. Westlund. 2023. "Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception" International Journal of Molecular Sciences 24, no. 17: 13196. https://doi.org/10.3390/ijms241713196
APA StyleMcNearney, T. A., & Westlund, K. N. (2023). Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. International Journal of Molecular Sciences, 24(17), 13196. https://doi.org/10.3390/ijms241713196