Repeated Cocaine Intake Differentially Impacts Striatal D2/3 Receptor Availability, Psychostimulant-Induced Dopamine Release, and Trait Behavioral Markers of Drug Abuse
Abstract
:1. Introduction
2. Results
2.1. Behavioral Phenotype and D2/3R-Related Signaling at Baseline in RHA and RLA Rats
2.2. Intravenous Cocaine Self-Administration
2.3. Effects of Cocaine SA on Impulsivity and Novelty-Seeking
2.4. Effects of Cocaine on Striatal D2/3R Availabilities and AMPH-Induced DA Release
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. General Procedure Animals
4.3. Novelty-Induced Place Preference Test (NIPP)
4.4. Five-Choice Serial Reaction Time Task (5-CSRTT)
4.5. SPECT Imaging
4.6. Intravenous Self-Administration
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanyukov, M.M.; Tarter, R.E.; Kirisci, L.; Kirillova, G.P.; Maher, B.S.; Clark, D.B. Liability to substance use disorders: 1. Common mechanisms and manifestations. Neurosci. Biobehav. Rev. 2003, 27, 507–515. [Google Scholar] [CrossRef]
- Mahoney, J.J., III; Thompson-Lake, D.G.; Cooper, K.; Verrico, C.D.; Newton, T.F.; De La Garza, R., II. A comparison of impulsivity, depressive symptoms, lifetime stress and sensation seeking in healthy controls versus participants with cocaine or methamphetamine use disorders. J Psychopharmacol. 2015, 29, 50–56. [Google Scholar] [CrossRef]
- Foulds, J.A.; Boden, J.M.; Newton-Howes, G.M.; Mulder, R.T.; Horwood, L.J. The role of novelty seeking as a predictor of substance use disorder outcomes in early adulthood. Addiction 2017, 112, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Bardo, M.T.; Donohew, R.L.; Harrington, N.G. Psychobiology of novelty seeking and drug seeking behavior. Behav. Brain Res. 1996, 77, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Ersche, K.D.; Turton, A.J.; Pradhan, S.; Bullmore, E.T.; Robbins, T.W. Drug addiction endophenotypes: Impulsive versus sensation-seeking personality traits. Biol. Psychiatry 2010, 68, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Nigg, J.T.; Wong, M.M.; Martel, M.M.; Jester, J.M.; Puttler, L.I.; Glass, J.M.; Adams, K.M.; Fitzgerald, H.E.; Zucker, R.A. Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Bidwell, L.C.; Knopik, V.S.; Audrain-Mcgovern, J.; Glynn, T.R.; Spillane, N.S.; Ray, L.A.; Riggs, N.R.; Guillot, C.R.; Pang, R.D.; Leventhal, A.M. Novelty Seeking as a Phenotypic Marker of Adolescent Substance Use. Subst. Abus. Res. Treat. 2015, 9, SART-S22440. [Google Scholar] [CrossRef]
- Tarter, R.E.; Kirisci, L.; Habeych, M.; Reynolds, M.; Vanyukov, M. Neurobehavior disinhibition in childhood predisposes boys to substance use disorder by young adulthood: Direct and mediated etiologic pathways. Drug Alcohol Depend. 2004, 73, 121–132. [Google Scholar] [CrossRef]
- Haug, S.; Núñez, C.L.; Becker, J.; Gmel, G.; Schaub, M.P. Predictors of onset of cannabis and other drug use in male young adults: Results from a longitudinal study. BMC Public Health 2014, 14, 1202. [Google Scholar] [CrossRef]
- Gmel, G.; Marmet, S.; Bertholet, N.; Wicki, M.; Studer, J. Longitudinal Associations between Sensation Seeking and Its Components and Alcohol Use in Young SWISS Men-Are There Bidirectional Associations? Int. J. Environ. Res. Public Health 2022, 19, 12475. [Google Scholar] [CrossRef]
- Long, E.C.; Kaneva, R.; Vasilev, G.; Moeller, F.G.; Vassileva, J. Neurocognitive and Psychiatric Markers for Addiction: Common vs. Specific Endophenotypes for Heroin and Amphetamine Dependence. Curr. Top. Med. Chem. 2020, 20, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-Garcia, A.; Lawrence, A.J.; Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 2008, 32, 777–810. [Google Scholar] [CrossRef] [PubMed]
- De Wit, H. Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addict. Biol. 2009, 14, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, J.D.; Ashenhurst, J.R.; Cervantes, M.C.; Groman, S.M.; James, A.S.; Pennington, Z.T. Dissecting impulsivity and its relationships to drug addictions. Ann. N. Y. Acad. Sci. 2014, 1327, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-Garcia, A.; Albein-Urios, N. Impulsivity traits and neurocognitive mechanisms conferring vulnerability to substance use disorders. Neuropharmacology 2021, 183, 108402. [Google Scholar] [CrossRef]
- Dalley, J.W.; Fryer, T.D.; Brichard, L.; Robinson, E.S.J.; Theobald, D.E.H.; Lääne, K.; Peña, Y.; Murphy, E.R.; Shah, Y.; Probst, K.; et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007, 315, 1267–1270. [Google Scholar] [CrossRef]
- Mathieson, E.; Irving, C.; Koberna, S.; Nicholson, M.; Otto, M.W.; Kantak, K.M. Role of preexisting inhibitory control deficits vs. drug use history in mediating insensitivity to aversive consequences in a rat model of polysubstance use. Psychopharmacology 2022, 239, 2377–2394. [Google Scholar] [CrossRef] [PubMed]
- Diergaarde, L.; Pattij, T.; Poortvliet, I.; Hogenboom, F.; de Vries, W.; Schoffelmeer, A.N.; De Vries, T.J. Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol. Psychiatry 2008, 63, 301–308. [Google Scholar] [CrossRef]
- Radwanska, K.; Kaczmarek, L. Characterization of an alcohol addiction-prone phenotype in mice. Addict. Biol. 2012, 17, 601–612. [Google Scholar] [CrossRef]
- Belin, D.; Mar, A.C.; Dalley, J.W.; Robbins, T.W.; Everitt, B.J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 2008, 320, 1352–1355. [Google Scholar] [CrossRef]
- Caprioli, D.; Hong, Y.T.; Sawiak, S.J.; Ferrari, V.; Williamson, D.J.; Jupp, B.; Carpenter, T.A.; Aigbirhio, F.I.; Everitt, B.J.; Robbins, T.W.; et al. Baseline-dependent effects of cocaine pre-exposure on impulsivity and D2/3 receptor availability in the rat striatum: Possible relevance to the attention-deficit hyperactivity syndrome. Neuropsychopharmacology 2013, 38, 1460–1471. [Google Scholar] [CrossRef]
- Pattij, T.; van Mourik, Y.; Diergaarde, L.; de Vries, T.J. The role of impulsivity as predisposing behavioural trait in different aspects of alcohol self-administration in rats. Drug Alcohol Depend. 2020, 212, 107984. [Google Scholar] [CrossRef] [PubMed]
- Abbott, M.S.; Seaman, R.W., Jr.; Doyle, M.R.; Maguire, D.R.; Rice, K.C.; Collins, G.T. Interactions between impulsivity and MDPV self-administration in rats. Addict. Biol. 2022, 27, e13168. [Google Scholar] [CrossRef] [PubMed]
- Sauton, P.; Jeanblanc, J.; Benzerouk, F.; Gierski, F.; Naassila, M. Sex-specific decision-making impairments and striatal dopaminergic changes after binge drinking history in rats. Front. Pharmacol. 2023, 14, 1076465. [Google Scholar] [CrossRef]
- Dalley, J.W.; Laane, K.; Pena, Y.; Theobald, D.E.; Everitt, B.J.; Robbins, T.W. Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology 2005, 182, 579–587. [Google Scholar] [CrossRef]
- Paine, T.A.; Dringenberg, H.C.; Olmstead, M.C. Effects of chronic cocaine on impulsivity: Relation to cortical serotonin mechanisms. Behav. Brain Res. 2003, 147, 135–147. [Google Scholar] [CrossRef]
- Ferland, J.-M.N.; Winstanley, C.A. Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addict. Biol. 2017, 22, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Winstanley, C.A.; Bachtell, R.K.; Theobald, D.E.; Laali, S.; Green, T.A.; Kumar, A.; Chakravarty, S.; Self, D.W.; Nestler, E.J. Increased impulsivity during withdrawal from cocaine self-administration: Role for DeltaFosB in the orbitofrontal cortex. Cereb. Cortex 2009, 19, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Moschak, T.M.; Carelli, R.M. A sex-dependent role for the prelimbic cortex in impulsive action both before and following early cocaine abstinence. Neuropsychopharmacology 2021, 46, 1565–1573. [Google Scholar] [CrossRef]
- Broos, N.; van Mourik, Y.; Schetters, D.; De Vries, T.J.; Pattij, T. Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking. Psychopharmacology 2017, 234, 3343–3351. [Google Scholar] [CrossRef]
- Cain, M.E.; Saucier, D.A.; Bardo, M.T. Novelty seeking and drug use: Contribution of an animal model. Exp. Clin. Psychopharmacol. 2005, 13, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.C.; Rahman, S.; Charnigo, R.J.; Dwoskin, L.P.; Crabbe, J.C.; Bardo, M.T. Genetics of novelty seeking, amphetamine self-administration and reinstatement using inbred rats. Genes Brain Behav. 2010, 9, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.S.; Marusich, J.A.; Gipson, C.D.; Bardo, M.T. Novelty seeking, incentive salience and acquisition of cocaine self-administration in the rat. Behav. Brain Res. 2011, 216, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Belin, D.; Berson, N.; Balado, E.; Piazza, P.V.; Deroche-Gamonet, V. High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 2011, 36, 569–579. [Google Scholar] [CrossRef]
- O’Connor, S.L.; Aston-Jones, G.; James, M.H. Novelty preference does not predict trait cocaine behaviors in male rats. Addict. Neurosci. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Jupp, B.; Dalley, J.W. Behavioral endophenotypes of drug addiction: Etiological insights from neuroimaging studies. Neuropharmacology 2014, 76, 487–497. [Google Scholar] [CrossRef]
- Wingo, T.; Nesil, T.; Choi, J.S.; Li, M.D. Novelty Seeking and Drug Addiction in Humans and Animals: From Behavior to Molecules. J. Neuroimmune Pharmacol. 2016, 11, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Zuhlsdorff, K.; Dalley, J.W. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J. Neurochem. 2021, 157, 1525–1546. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.J.; Polling, C.; Stokes, P.R.; Lappin, J.M.; Shotbolt, P.P.; Mehta, M.A.; Howes, O.D.; Egerton, A. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res. Neuroimaging 2012, 202, 60–64. [Google Scholar] [CrossRef]
- Caravaggio, F.; Fervaha, G.; Chung, J.K.; Gerretsen, P.; Nakajima, S.; Plitman, E.; Iwata, Y.; Wilson, A.; Graff-Guerrero, A. Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans. Eur. Neuropsychopharmacol. 2016, 26, 644–652. [Google Scholar] [CrossRef]
- Ghahremani, D.G.; Lee, B.; Robertson, C.L.; Tabibnia, G.; Morgan, A.T.; De Shetler, N.; Brown, A.K.; Monterosso, J.R.; Aron, A.A.; Mandelkern, M.A.; et al. Striatal dopamine D2/D3 receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. J. Neurosci. 2012, 32, 7316–7324. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.L.; Ishibashi, K.; Mandelkern, M.A.; Brown, A.K.; Ghahremani, D.G.; Sabb, F.; Bilder, R.; Cannon, T.; Borg, J.; London, E.D. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J. Neurosci. 2015, 35, 5990–5997. [Google Scholar] [CrossRef] [PubMed]
- Gjedde, A.; Kumakura, Y.; Cumming, P.; Linnet, J.; Møller, A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc. Natl. Acad. Sci. USA 2010, 107, 3870–3875. [Google Scholar] [CrossRef] [PubMed]
- Buckholtz, J.W.; Treadway, M.T.; Cowan, R.L.; Woodward, N.D.; Li, R.; Ansari, M.S.; Baldwin, R.M.; Schwartzman, A.N.; Shelby, E.S.; Smith, C.E.; et al. Dopaminergic network differences in human impulsivity. Science 2010, 329, 532. [Google Scholar] [CrossRef] [PubMed]
- Cherkasova, M.V.; Faridi, N.; Casey, K.F.; O’Driscoll, G.A.; Hechtman, L.; Joober, R.; Baker, G.B.; Palmer, J.; Dagher, A.; Leyton, M.; et al. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology 2014, 39, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Leyton, M.; Boileau, I.; Benkelfat, C.; Diksic, M.; Baker, G.; Dagher, A. Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: A PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 2002, 27, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, N.; Cox, S.M.; Casey, K.F.; Boileau, I.; Cherkasova, M.; Larcher, K.; Dagher, A.; Benkelfat, C.; Leyton, M. Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness? PLoS ONE 2017, 12, e0174219. [Google Scholar] [CrossRef]
- Drevets, W.C.; Gautier, C.; Price, J.C.; Kupfer, D.J.; Kinahan, P.E.; Grace, A.A.; Price, J.L.; Mathis, C.A. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry 2001, 49, 81–96. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009, 56 (Suppl. S1), 3–8. [Google Scholar] [CrossRef]
- Jupp, B.; Caprioli, D.; Saigal, N.; Reverte, I.; Shrestha, S.; Cumming, P.; Everitt, B.J.; Robbins, T.W.; Dalley, J.W. Dopaminergic and GABA-ergic markers of impulsivity in rats: Evidence for anatomical localisation in ventral striatum and prefrontal cortex. Eur. J. Neurosci. 2013, 37, 1519–1528. [Google Scholar] [CrossRef]
- Caprioli, D.; Jupp, B.; Hong, Y.T.; Sawiak, S.J.; Ferrari, V.; Wharton, L.; Williamson, D.J.; McNabb, C.; Berry, D.; Aigbirhio, F.I.; et al. Dissociable rate-dependent effects of oral methylphenidate on impulsivity and D2/3 receptor availability in the striatum. J. Neurosci. 2015, 35, 3747–3755. [Google Scholar] [CrossRef] [PubMed]
- Bellés, L.; Dimiziani, A.; Tsartsalis, S.; Millet, P.; Herrmann, F.R.; Ginovart, N. Dopamine D2/3 Receptor Availabilities and Evoked Dopamine Release in Striatum Differentially Predict Impulsivity and Novelty Preference in Roman High- and Low-Avoidance Rats. Int. J. Neuropsychopharmacol. 2021, 24, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.H.; Mizuno, Y.; Volkow, N.D.; Howes, O.D. Association of Stimulant Use With Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Nutt, D.J.; Lingford-Hughes, A.; Erritzoe, D.; Stokes, P.R.A. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 2015, 16, 305–312. [Google Scholar] [CrossRef]
- Nader, M.A.; Morgan, D.; Gage, H.D.; Nader, S.H.; Calhoun, T.L.; Buchheimer, N.; Ehrenkaufer, R.; Mach, R.H. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci. 2006, 9, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Groman, S.M.; Lee, B.; Seu, E.; James, A.S.; Feiler, K.; Mandelkern, M.A.; London, E.D.; Jentsch, J.D. Dysregulation of D2-mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure. J. Neurosci. 2012, 32, 5843–5852. [Google Scholar] [CrossRef] [PubMed]
- Say, F.M.; Tryhus, A.M.; Epperly, P.M.; Nader, S.H.; Sai, K.K.S.; George, B.E.; Kirse, H.A.; Czoty, P.W. Effects of chronic cocaine and ethanol self-administration on brain dopamine receptors in a rhesus monkey model of polysubstance abuse. Addict. Biol. 2022, 27, e13219. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Weiss, F.; Koob, G.F.; And, N.E.; Ungerstedt, U. Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: An in vivo microdialysis study. Brain Res. 1989, 498, 199–203. [Google Scholar] [CrossRef]
- Meil, W.M.; Roll, J.M.; Grimm, J.W.; Lynch, A.M.; See, R.E. Tolerance-like attenuation to contingent and noncontingent cocaine-induced elevation of extracellular dopamine in the ventral striatum following 7 days of withdrawal from chronic treatment. Psychopharmacology 1995, 118, 338–346. [Google Scholar] [CrossRef]
- Hooks, M.S.; Duffy, P.; Striplin, C.; Kalivas, P.W. Behavioral and neurochemical sensitization following cocaine self-administration. Psychopharmacology 1994, 115, 265–272. [Google Scholar] [CrossRef]
- Zapata, A.; Chefer, V.I.; Ator, R.; Shippenberg, T.S.; Rocha, B.A. Behavioural sensitization and enhanced dopamine response in the nucleus accumbens after intravenous cocaine self-administration in mice. Eur. J. Neurosci. 2003, 17, 590–596. [Google Scholar] [CrossRef]
- Dimiziani, A.; Belles Ano, L.; Tsartsalis, S.; Millet, P.; Herrmann, F.; Ginovart, N. Differential involvement of D2 and D3 receptors during reinstatement of cocaine-seeking behavior in the Roman high- and low-avoidance rats. Behav. Neurosci. 2019, 133, 77–85. [Google Scholar] [CrossRef]
- Arrondeau, C.; Uruena-Mendez, G.; Belles, L.; Marchessaux, F.; Goutaudier, R.; Ginovart, N. Motor impulsivity but not risk-related impulsive choice is associated to drug intake and drug-primed relapse. Front. Behav. Neurosci. 2023, 17, 1200392. [Google Scholar] [CrossRef]
- Dalley, J.W.; Mar, A.C.; Economidou, D.; Robbins, T.W. Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacol. Biochem. Behav. 2008, 90, 250–260. [Google Scholar] [CrossRef]
- Sanchez-Roige, S.; Pena-Oliver, Y.; Stephens, D.N. Measuring impulsivity in mice: The five-choice serial reaction time task. Psychopharmacology 2012, 219, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Flores-Dourojeanni, J.P.; van Rijt, C.; van den Munkhof, M.H.; Boekhoudt, L.; Luijendijk, M.C.M.; Vanderschuren, L.J.M.J.; Adan, R.A.H. Temporally Specific Roles of Ventral Tegmental Area Projections to the Nucleus Accumbens and Prefrontal Cortex in Attention and Impulse Control. J. Neurosci. 2021, 41, 4293–4304. [Google Scholar] [CrossRef] [PubMed]
- Toschi, C.; Robbins, T.W.; Dalley, J.W. Effects of quinpirole in the ventral tegmental area on impulsive behaviour during performance on the five-choice serial reaction time task. Exp. Brain Res. 2023, 241, 539–546. [Google Scholar] [CrossRef]
- Ford, C.P. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014, 282, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Zald, D.H.; Cowan, R.L.; Riccardi, P.; Baldwin, R.M.; Ansari, M.S.; Li, R.; Shelby, E.S.; Smith, C.E.; McHugo, M.; Kessler, R.M. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J. Neurosci. 2008, 28, 14372–14378. [Google Scholar] [CrossRef] [PubMed]
- Song, A.K.; Hay, K.R.; Trujillo, P.; Aumann, M.; Stark, A.J.; Yan, Y.; Kang, H.; Donahue, M.J.; Zald, D.H.; Claassen, D.O. Amphetamine-induced dopamine release and impulsivity in Parkinson’s disease. Brain 2022, 145, 3488–3499. [Google Scholar] [CrossRef]
- Smith, C.T.; Juan, M.D.S.; Dang, L.C.; Katz, D.T.; Perkins, S.F.; Burgess, L.L.; Cowan, R.L.; Manning, H.C.; Nickels, M.L.; Claassen, D.O.; et al. Ventral striatal dopamine transporter availability is associated with lower trait motor impulsivity in healthy adults. Transl. Psychiatry 2018, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Tournier, B.B.; Steimer, T.; Millet, P.; Moulin-Sallanon, M.; Vallet, P.; Ibañez, V.; Ginovart, N. Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int. J. Neuropsychopharmacol. 2013, 16, 1819–1834. [Google Scholar] [CrossRef] [PubMed]
- Neisewander, J.L.; O’Dell, L.E.; Tran-Nguyen, L.T.; Castaneda, E.; Fuchs, R.A. Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology 1996, 15, 506–514. [Google Scholar] [CrossRef]
- Mateo, Y.; Lack, C.M.; Morgan, D.; Roberts, D.C.; Jones, S.R. Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology 2005, 30, 1455–1463. [Google Scholar] [CrossRef]
- Calipari, E.S.; Ferris, M.J.; Melchior, J.R.; Bermejo, K.; Salahpour, A.; Roberts, D.C.S.; Jones, S.R. Methylphenidate and cocaine self-administration produce distinct dopamine terminal alterations. Addict. Biol. 2014, 19, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, C.A.; Ferris, M.J.; Jones, S.R. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. Eur. J. Neurosci. 2015, 42, 2091–2096. [Google Scholar] [CrossRef]
- Goutaudier, R.; Joly, F.; Mallet, D.; Bartolomucci, M.; Guicherd, D.; Carcenac, C.; Vossier, F.; Dufourd, T.; Boulet, S.; Deransart, C.; et al. Hypodopaminergic state of the nigrostriatal pathway drives compulsive alcohol use. Mol. Psychiatry 2023, 28, 463–474. [Google Scholar] [CrossRef]
- Blum, K.; Gardner, E.; Oscar-Berman, M.; Gold, M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): Hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des. 2012, 18, 113–118. [Google Scholar] [CrossRef]
- Leyton, M. What’s deficient in reward deficiency? J. Psychiatry Neurosci. 2014, 39, 291–293. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E. Liking, wanting, and the incentive-sensitization theory of addiction. Am. Psychol. 2016, 71, 670–679. [Google Scholar] [CrossRef]
- Leyton, M.; Vezina, P. Dopamine ups and downs in vulnerability to addictions: A neurodevelopmental model. Trends Pharmacol. Sci. 2014, 35, 268–276. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Drug abuse: Hedonic homeostatic dysregulation. Science 1997, 278, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit Disorder. In Behavioral Neurobiology of Alcohol Addiction. Current Topics in Behavioral Neurosciences; Sommer, W., Spanagel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–30. [Google Scholar]
- Deroche-Gamonet, V.; Belin, D.; Piazza, P.V. Evidence for addiction-like behavior in the rat. Science 2004, 305, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Calipari, E.S.; Ferris, M.J.; Jones, S.R. Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine. J. Neurochem. 2014, 128, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Koob, G.F. Transition from moderate to excessive drug intake: Change in hedonic set point. Science 1998, 282, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Calipari, E.S.; Siciliano, C.A.; Zimmer, B.A.; Jones, S.R. Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacology 2015, 40, 728–735. [Google Scholar] [CrossRef]
- Weafer, J.; de Wit, H. Sex differences in impulsive action and impulsive choice. Addict. Behav. 2014, 39, 1573–1579. [Google Scholar] [CrossRef]
- Belin, D.; Belin-Rauscent, A.; Everitt, B.J.; Dalley, J.W. In search of predictive endophenotypes in addiction: Insights from preclinical research. Genes Brain Behav. 2016, 15, 74–88. [Google Scholar] [CrossRef]
- Giorgi, O.; Piras, G.; Corda, M.G. The psychogenetically selected Roman high- and low-avoidance rat lines: A model to study the individual vulnerability to drug addiction. Neurosci. Biobehav. Rev. 2007, 31, 148–163. [Google Scholar] [CrossRef]
- Stead, J.D.H.; Clinton, S.; Neal, C.; Schneider, J.; Jama, A.; Miller, S.; Vazquez, D.M.; Watson, S.J.; Akil, H. Selective breeding for divergence in novelty-seeking traits: Heritability and enrichment in spontaneous anxiety-related behaviors. Behav. Genet. 2006, 36, 697–712. [Google Scholar] [CrossRef]
- Jupp, B.; Jones, J.A.; Dalley, J.W. Modelling Differential Vulnerability to Substance Use Disorder in Rodents: Neurobiological Mechanisms. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2019; Volume 258, pp. 203–230. [Google Scholar] [CrossRef]
- Asinof, S.K.; Paine, T.A. The 5-choice serial reaction time task: A task of attention and impulse control for rodents. J. Vis. Exp. 2014, 90, e51574. [Google Scholar] [CrossRef]
- Belles, L.; Dimiziani, A.; Herrmann, F.R.; Ginovart, N. Early environmental enrichment and impoverishment differentially affect addiction-related behavioral traits, cocaine-taking, and dopamine D2/3 receptor signaling in a rat model of vulnerability to drug abuse. Psychopharmacology 2021, 238, 3543–3557. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, W.K.; Mirrione, M.M.; Biegon, A.; Alexoff, D.L.; Patel, V.; Dewey, S.L. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J. Neurosci. Methods 2006, 155, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Alpert, N.M.; Badgaiyan, R.D.; Livni, E.; Fischman, A.J. A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems. Neuroimage 2003, 19, 1049–1060. [Google Scholar] [CrossRef]
- Ginovart, N. Imaging the dopamine system with in vivo [11C]raclopride displacement studies: Understanding the true mechanism. Mol. Imaging Biol. 2005, 7, 45–52. [Google Scholar] [CrossRef]
- Narendran, R.; Slifstein, M.; Hwang, D.-R.; Hwang, Y.; Scher, E.; Reeder, S.; Martinez, D.; Laruelle, M. Amphetamine-induced dopamine release: Duration of action as assessed with the D2/3 receptor agonist radiotracer (—)-N-[(11)C]propyl-norapomorphine ([11C]NPA) in an anesthetized nonhuman primate. Synapse 2007, 61, 106–109. [Google Scholar] [CrossRef]
- Laruelle, M.; Iyer, R.N.; Al-Tikriti, M.S.; Zea-Ponce, Y.; Malison, R.; Zoghbi, S.S.; Baldwin, R.M.; Kung, H.F.; Charney, D.S.; Hoffer, P.B.; et al. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 1997, 25, 1–14. [Google Scholar] [CrossRef]
- Ginovart, N.; Galineau, L.; Willeit, M.; Mizrahi, R.; Bloomfield, P.M.; Seeman, P.; Houle, S.; Kapur, S.; Wilson, A.A. Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J. Neurochem. 2006, 97, 1089–1103. [Google Scholar] [CrossRef]
- Carson, R.E. Parameter estimation in positron emission tomography. In Positron Emission Tomography and Autoradiography: Principle Sand Applications for the Brain and Heart; Phelps, M.E., Mazziotta, J.C., Schelbert, H.R., Eds.; Raven Press: New York, NY, USA, 1986; pp. 347–390. [Google Scholar]
Cocaine | Saline | |||||||
---|---|---|---|---|---|---|---|---|
Pre-SA | Post-SA | Pre-SA | Post-SA | |||||
RHA (n = 15) | RLA (n = 15) | RHA (n = 15) | RLA (n = 15) | RHA (n = 12) | RLA (n = 12) | RHA (n = 12) | RLA (n = 12) | |
NIPP | ||||||||
%time in novel compartment | 63.5 ± 2.5 | 32.2 ± 3.4 ** | 56.5 ± 3.9 | 50.6 ± 3.2 †† | 60.0 ± 3.0 | 39.9 ± 3.5 ** | 58.9 ± 4.3 | 41.7 ± 3.0 ** |
5-CSRTT | ||||||||
%Premature | 53.4 ± 5.0 | 21.5 ± 3.5 ** | 30.5 ± 3.3 | 15.3 ± 2.7 ** | 47.7 ± 3.6 | 17.8 ± 2.5 ** | 34.7 ± 3.5 | 12.9 ± 2.3 ** |
%Accuracy | 83.8 ± 1.3 | 94.2 ± 1.0 ** | 88.0 ± 1.4 | 94.7 ± 1.1 ** | 82.7 ± 1.1 | 94.5 ± 1.2 ** | 83.4 ± 1.5 | 91.9 ± 1.6 ** |
%Omission | 16.1 ± 1.7 | 24.9 ± 1.8 ** | 15.0 ± 1.5 | 28.7 ± 2.4 ** | 17.8 ± 2.4 | 25.0 ± 2.6 * | 11.7 ± 1.7 | 26.1 ± 2.3 ** |
Tendency to correct (s) | 0.87 ± 0.02 | 0.89 ± 0.03 | 0.85 ± 0.02 | 0.91 ± 0.03 | 0.87 ± 0.04 | 0.93 ± 0.05 | 0.81 ± 0.02 | 0.95 ± 0.06 |
Tendency to seek reward (s) | 1.36 ± 0.05 | 2.40 ± 0.14 ** | 1.29 ± 0.04 | 2.24 ± 0.09 ** | 1.41 ± 0.05 | 2.06 ± 0.1 ** | 1.44 ± 0.06 | 2.33 ± 0.1 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urueña-Méndez, G.; Dimiziani, A.; Bellés, L.; Goutaudier, R.; Ginovart, N. Repeated Cocaine Intake Differentially Impacts Striatal D2/3 Receptor Availability, Psychostimulant-Induced Dopamine Release, and Trait Behavioral Markers of Drug Abuse. Int. J. Mol. Sci. 2023, 24, 13238. https://doi.org/10.3390/ijms241713238
Urueña-Méndez G, Dimiziani A, Bellés L, Goutaudier R, Ginovart N. Repeated Cocaine Intake Differentially Impacts Striatal D2/3 Receptor Availability, Psychostimulant-Induced Dopamine Release, and Trait Behavioral Markers of Drug Abuse. International Journal of Molecular Sciences. 2023; 24(17):13238. https://doi.org/10.3390/ijms241713238
Chicago/Turabian StyleUrueña-Méndez, Ginna, Andrea Dimiziani, Lidia Bellés, Raphaël Goutaudier, and Nathalie Ginovart. 2023. "Repeated Cocaine Intake Differentially Impacts Striatal D2/3 Receptor Availability, Psychostimulant-Induced Dopamine Release, and Trait Behavioral Markers of Drug Abuse" International Journal of Molecular Sciences 24, no. 17: 13238. https://doi.org/10.3390/ijms241713238
APA StyleUrueña-Méndez, G., Dimiziani, A., Bellés, L., Goutaudier, R., & Ginovart, N. (2023). Repeated Cocaine Intake Differentially Impacts Striatal D2/3 Receptor Availability, Psychostimulant-Induced Dopamine Release, and Trait Behavioral Markers of Drug Abuse. International Journal of Molecular Sciences, 24(17), 13238. https://doi.org/10.3390/ijms241713238