S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy
Abstract
:1. Introduction
2. S100A8 and S100A9 as a Biomarker in HMs
3. Role of S100A8 and S100A9 in the BM Microenvironment of HMs
4. Role of S100A8 and S100A9 in the Treatment of HMs
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, D.B.; Eubanks, J.O.; Ramakrishnan, D.; Criscitiello, M.F. Evolution of the S100 family of calcium sensor proteins. Cell Calcium 2013, 53, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Steinkasserer, A.; Berchtold, S. Interleukin-10 influences the expression of MRP8 and MRP14 in human dendritic cells. Int. Arch. Allergy Immunol. 2003, 132, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Edgeworth, J.; Gorman, M.; Bennett, R.; Freemont, P.; Hogg, N. Identification of p8, 14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J. Biol. Chem. 1991, 266, 7706–7713. [Google Scholar] [CrossRef] [PubMed]
- Odink, K.; Cerletti, N.; Brüggen, J.; Clerc, R.G.; Tarcsay, L.; Zwadlo, G.; Gerhards, G.; Schlegel, R.; Sorg, C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 1987, 330, 80–82. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef]
- Leukert, N.; Vogl, T.; Strupat, K.; Reichelt, R.; Sorg, C.; Roth, J. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 2006, 359, 961–972. [Google Scholar] [CrossRef]
- Vogl, T.; Gharibyan, A.L.; Morozova-Roche, L.A. Pro-inflammatory S100A8 and S100A9 proteins: Self-assembly into multifunctional native and amyloid complexes. Int. J. Mol. Sci. 2012, 13, 2893–2917. [Google Scholar] [CrossRef]
- El Gazzar, M. Immunobiology of S100A8 and S100A9 proteins and their role in acute inflammation and sepsis. Int. J. Immunol. Immunother. 2015, 2. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Roth, J. Mechanisms of disease: A’DAMP’ view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 2007, 3, 382–390. [Google Scholar] [CrossRef]
- Crowe, L.A.; McLean, M.; Kitson, S.M.; Melchor, E.G.; Patommel, K.; Cao, H.M.; Reilly, J.H.; Leach, W.J.; Rooney, B.P.; Spencer, S.J. S100A8 & S100A9: Alarmin mediated inflammation in tendinopathy. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Vogl, T.; Tenbrock, K.; Ludwig, S.; Leukert, N.; Ehrhardt, C.; Van Zoelen, M.A.; Nacken, W.; Foell, D.; Van der Poll, T.; Sorg, C. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 2007, 13, 1042–1049. [Google Scholar] [CrossRef]
- Ghavami, S.; Rashedi, I.; Dattilo, B.M.; Eshraghi, M.; Chazin, W.J.; Hashemi, M.; Wesselborg, S.; Kerkhoff, C.; Los, M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol. 2008, 83, 1484–1492. [Google Scholar] [CrossRef]
- Xia, C.; Braunstein, Z.; Toomey, A.C.; Zhong, J.; Rao, X. S100 proteins as an important regulator of macrophage inflammation. Front. Immunol. 2018, 8, 1908. [Google Scholar] [CrossRef]
- Song, R.; Struhl, K. S100A8/S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. Sci. Adv. 2021, 7, eabe5357. [Google Scholar] [CrossRef]
- Sprenkeler, E.G.; Zandstra, J.; van Kleef, N.D.; Goetschalckx, I.; Verstegen, B.; Aarts, C.E.; Janssen, H.; Tool, A.T.; van Mierlo, G.; van Bruggen, R. S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and Induces Neutrophil Activation. Cells 2022, 11, 236. [Google Scholar] [CrossRef]
- Vogl, T.; Ludwig, S.; Goebeler, M.; Strey, A.; Thorey, I.S.; Reichelt, R.; Foell, D.; Gerke, V.; Manitz, M.P.; Nacken, W. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 2004, 104, 4260–4268. [Google Scholar] [CrossRef]
- Nangalia, J.; Green, A.R. Myeloproliferative neoplasms: From origins to outcomes. Hematol. 2014 Am. Soc. Hematol. Educ. Program Book 2017, 2017, 470–479. [Google Scholar]
- Cazzola, M. Myelodysplastic syndromes. N. Engl. J. Med. 2020, 383, 1358–1374. [Google Scholar] [CrossRef]
- Olsen, M. Overview of hematologic malignancies. In Hematologic Malignancies in Adults, 1st ed.; Oncology Nursing Society: Pittsburgh, PA, USA, 2013; pp. 1–17.10. [Google Scholar]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121. [Google Scholar] [CrossRef]
- Stulík, J.; Koupilová, K.; Österreicher, J.; Knížek, J.; Macela, A.; Bureš, J.; Jandík, P.; Langr, F.; Dědič, K.; Jungblut, P.R. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophor. Int. J. 1999, 20, 3638–3646. [Google Scholar] [CrossRef]
- Stulík, J.; Österreicher, J.; Koupilová, K.; Knížek, J.; Macela, A.; Bureš, J.; Jandík, P.; Langr, F.; Dědič, K.; Jungblut, P.R. The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: The S100A9 and S100A8 positive cells underlie and invade tumor mass. Electrophor. Int. J. 1999, 20, 1047–1054. [Google Scholar] [CrossRef]
- Yong, H.-Y.; Moon, A. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells. Arch. Pharmacal Res. 2007, 30, 75–81. [Google Scholar] [CrossRef]
- Hermani, A.; De Servi, B.; Medunjanin, S.; Tessier, P.A.; Mayer, D. S100A8 and S100A9 activate MAP kinase and NF-κB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp. Cell Res. 2006, 312, 184–197. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Hodi, F.S.; Fisher, D.E. From genes to drugs: Targeted strategies for melanoma. Nat. Rev. Cancer 2012, 12, 349–361. [Google Scholar] [CrossRef]
- Hunter, K.D.; Parkinson, E.K.; Harrison, P.R. Profiling early head and neck cancer. Nat. Rev. Cancer 2005, 5, 127–135. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar]
- Salama, I.; Malone, P.; Mihaimeed, F.; Jones, I.J. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. EJSO 2008, 34, 357–364. [Google Scholar] [CrossRef]
- Lagasse, E.; Clerc, R.G. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. Mol. Cell. Biol. 1988, 8, 2402–2410. [Google Scholar]
- Lagasse, E.; Weissman, I.L. Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 1992, 79, 1907–1915. [Google Scholar] [CrossRef]
- Prieto, D.; Sotelo, N.; Seija, N.; Sernbo, S.; Abreu, C.; Durán, R.; Gil, M.; Sicco, E.; Irigoin, V.; Oliver, C. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood J. Am. Soc. Hematol. 2017, 130, 777–788. [Google Scholar]
- Hibino, T.; Sakaguchi, M.; Miyamoto, S.; Yamamoto, M.; Motoyama, A.; Hosoi, J.; Shimokata, T.; Ito, T.; Tsuboi, R.; Huh, N.-h. S100A9 Is a Novel Ligand of EMMPRIN That Promotes Melanoma MetastasisIdentification of a Novel Receptor of S100A9. Cancer Res. 2013, 73, 172–183. [Google Scholar]
- Ueno, N.; Sugiyama, Y.; Kobayashi, Y.; Murakami, Y.; Iwama, T.; Sasaki, T.; Kunogi, T.; Takahashi, K.; Tanaka, K.; Ando, K. Fecal calprotectin is a useful biomarker for predicting the clinical outcome of granulocyte and monocyte adsorptive apheresis in ulcerative colitis patients: A prospective observation study. BMC Gastroenterol. 2021, 21, 316. [Google Scholar] [CrossRef]
- Havelka, A.; Sejersen, K.; Venge, P.; Pauksens, K.; Larsson, A. Calprotectin, a new biomarker for diagnosis of acute respiratory infections. Sci. Rep. 2020, 10, 4208. [Google Scholar] [CrossRef]
- Sands, B.E. Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology 2015, 149, 1275–1285.e1272. [Google Scholar]
- Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. 2017, 242, 859–873. [Google Scholar]
- d’Angelo, D.M.; Attanasi, M.; Di Donato, G.; Lapergola, G.; Flacco, M.; Chiarelli, F.; Altobelli, E.; Breda, L. The Role of Serum Calprotectin in Defining Disease Outcomes in Non-Systemic Juvenile Idiopathic Arthritis: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 1671. [Google Scholar]
- Bourgonje, A.R.; van den Berg, E.H.; Kieneker, L.M.; Nilsen, T.; Hidden, C.; Bakker, S.J.L.; Blokzijl, H.; Dullaart, R.P.F.; van Goor, H.; Abdulle, A.E. Plasma Calprotectin Levels Associate with Suspected Metabolic-Associated Fatty Liver Disease and All-Cause Mortality in the General Population. Int. J. Mol. Sci. 2022, 23, 15708. [Google Scholar] [PubMed]
- Åsberg, A.; Løfblad, L.; Felic, A.; Aune, M.W.; Hov, G.G.; Fagerli, U.M. Using blood calprotectin as a measure of blood neutrophils. Scand. J. Clin. Lab. Investig. 2021, 81, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhang, J.; Zang, Y.; Zeng, L.; Zuo, W.; Bai, Y.; Liu, Y.; Sun, K.; Liu, Y. iTRAQ-based quantitative protein expression profiling of biomarkers in childhood B-cell and T-cell acute lymphoblastic leukemia. Cancer Manag. Res. 2019, 11, 7047. [Google Scholar] [CrossRef] [PubMed]
- Şumnu, Ş.; Mehtap, Ö.; Mersin, S.; Toptaş, T.; Görür, G.; Gedük, A.; Ünal, S.; Polat, M.G.; Aygün, K.; Yenihayat, E.M. Serum calprotectin (S100A8/A9) levels as a new potential biomarker of treatment response in Hodgkin lymphoma. Int. J. Lab. Hematol. 2021, 43, 638–644. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Sun, Z.; Zhang, X.; Lu, L.; Wang, Y.; Zhang, M. S100A9 and ORM1 serve as predictors of therapeutic response and prognostic factors in advanced extranodal NK/T cell lymphoma patients treated with pegaspargase/gemcitabine. Sci. Rep. 2016, 6, 23695. [Google Scholar]
- Giudice, V.; Wu, Z.; Kajigaya, S.; Ibanez, M.d.P.F.; Rios, O.; Cheung, F.; Ito, S.; Young, N.S. Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes. Cytokine 2019, 113, 462–465. [Google Scholar]
- Wang, Y.-H.; Lin, C.-C.; Yao, C.-Y.; Amaral, F.; Yu, S.-C.; Kao, C.-J.; Shih, P.-T.; Hou, H.-A.; Chou, W.-C.; Tien, H.-F. High BM plasma S100A8/A9 is associated with a perturbed microenvironment and poor prognosis in myelodysplastic syndromes. Blood Adv. 2023, 7, 2528–2533. [Google Scholar]
- Nicolas, E.; Ramus, C.; Berthier, S.; Arlotto, M.; Bouamrani, A.; Lefebvre, C.; Morel, F.; Garin, J.; Ifrah, N.; Berger, F. Expression of S100A8 in leukemic cells predicts poor survival in de novo AML patients. Leukemia 2011, 25, 57–65. [Google Scholar]
- Hasselbalch, H.C. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood J. Am. Soc. Hematol. 2012, 119, 3219–3225. [Google Scholar]
- Krečak, I.; Krečak, F.; Gverić-Krečak, V.; Bilandžija, I.; Rončević, P.; Fumić, K.; Batinić, J.; Duraković, N.; Radman, M. Serum calprotectin: A circulating biomarker of the inflammatory state in Philadelphia-negative myeloproliferative neoplasms. Blood Cells Mol. Dis. 2019, 79, 102344. [Google Scholar]
- Galán-Díez, M.; Cuesta-Domínguez, Á.; Kousteni, S. The bone marrow microenvironment in health and myeloid malignancy. Cold Spring Harb. Perspect. Med. 2018, 8, a031328. [Google Scholar]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar]
- Kristinsson, S.Y.; Björkholm, M.; Hultcrantz, M.; Derolf, Å.R.; Landgren, O.; Goldin, L.R. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 2011, 29, 2897. [Google Scholar]
- Böttcher, M.; Panagiotidis, K.; Bruns, H.; Stumpf, M.; Völkl, S.; Geyh, S.; Dietel, B.; Schroeder, T.; Mackensen, A.; Mougiakakos, D. Bone marrow stroma cells promote induction of a chemoresistant and prognostic unfavorable S100A8/A9high AML cell subset. Blood Adv. 2022, 6, 5685–5697. [Google Scholar]
- Zambetti, N.A.; Ping, Z.; Chen, S.; Kenswil, K.J.; Mylona, M.A.; Sanders, M.A.; Hoogenboezem, R.M.; Bindels, E.M.; Adisty, M.N.; Van Strien, P.M. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 2016, 19, 613–627. [Google Scholar]
- Leimkühler, N.B.; Gleitz, H.F.; Ronghui, L.; Snoeren, I.A.; Fuchs, S.N.; Nagai, J.S.; Banjanin, B.; Lam, K.H.; Vogl, T.; Kuppe, C. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell 2021, 28, 637–652.e638. [Google Scholar]
- Gleitz, H.F.; Dugourd, A.J.; Leimkühler, N.B.; Snoeren, I.A.; Fuchs, S.N.; Menzel, S.; Ziegler, S.; Kröger, N.; Triviai, I.; Büsche, G. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood 2020, 136, 2051–2064. [Google Scholar]
- Gabrilovich, D.I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017, 5, 3–8. [Google Scholar]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar]
- Chen, X.; Eksioglu, E.A.; Zhou, J.; Zhang, L.; Djeu, J.; Fortenbery, N.; Epling-Burnette, P.; Van Bijnen, S.; Dolstra, H.; Cannon, J. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Investig. 2013, 123, 4595–4611. [Google Scholar]
- Cheng, P.; Eksioglu, E.A.; Chen, X.; Kandell, W.; Le Trinh, T.; Cen, L.; Qi, J.; Sallman, D.A.; Zhang, Y.; Tu, N. S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia 2019, 33, 2034–2046. [Google Scholar]
- Jauch-Speer, S.-L.; Herrera-Rivero, M.; Ludwig, N.; De Carvalho, B.C.V.; Martens, L.; Wolf, J.; Chasan, A.I.; Witten, A.; Markus, B.; Schieffer, B. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100A8 and S100A9. Elife 2022, 11, e75594. [Google Scholar]
- Laouedj, M.; Tardif, M.R.; Gil, L.; Raquil, M.-A.; Lachhab, A.; Pelletier, M.; Tessier, P.A.; Barabé, F. S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood J. Am. Soc. Hematol. 2017, 129, 1980–1990. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, N.R.; Kashif, A.; Yang, S.-J.; Nam, A.R.; Song, I.-C.; Gong, S.-J.; Hong, M.H.; Kim, G.; Seok, P.R. S100A8 and S100A9 promote apoptosis of chronic eosinophilic leukemia cells. Front. Immunol. 2020, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- Charkhizadeh, S.; Imani, M.; Gheibi, N.; Shabaani, F.; Nikpajouh, A.; Rezvany, M.R. In vitro inhibitory effect of recombinant human calprotectin on nalm6 leukemia cell line. Anti-Cancer Agents Med. Chem. Former. Curr. Med. Chem.-Anti-Cancer Agents 2020, 20, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-S.; Lee, J.-S. The pro-apoptotic effects of S100A8 and S100A9 in human monocytic leukemia cells, THP-1. Biomed. Sci. Lett. 2018, 24, 134–137. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, F.; Zhang, S.; Deng, W.; Fan, H.; Wang, H.; Zhang, J. Regulatory mechanism and functional analysis of S100A9 in acute promyelocytic leukemia cells. Front. Med. 2017, 11, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-y.; Zhang, M.-y.; Zhou, Q.; Wu, S.-y.; Zhao, Y.; Gu, W.-y.; Pan, J.; Cen, J.-n.; Chen, Z.-x.; Guo, W.-g. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway. OncoTargets Ther. 2016, 9, 4887. [Google Scholar]
- Stewart, H.J.; Chaudry, S.; Crichlow, A.; Feilding, F.L.; Chevassut, T.J. BET inhibition suppresses S100A8 and S100A9 expression in acute myeloid leukemia cells and synergises with daunorubicin in causing cell death. Bone Marrow Res. 2018, 2018, 5742954. [Google Scholar] [CrossRef]
- Yang, L.; Li, D.; Tang, P.; Zuo, Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol. Lett. 2020, 19, 83–92. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Miettinen, J.J.; Kumari, R.; Majumder, M.M.; Tierney, C.; Bazou, D.; Parsons, A.; Suvela, M.; Lievonen, J. S100 calcium binding protein family members associate with poor patient outcome and response to proteasome inhibition in multiple myeloma. Front. Cell Dev. Biol. 2021, 9, 2261. [Google Scholar] [CrossRef] [PubMed]
- De Veirman, K.; De Beule, N.; Maes, K.; Menu, E.; De Bruyne, E.; De Raeve, H.; Fostier, K.; Moreaux, J.; Kassambara, A.; Hose, D. Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine SecretionS100A9 Induces Multiple Myeloma Cell Survival. Cancer Immunol. Res. 2017, 5, 839–846. [Google Scholar] [CrossRef]
- Meng, L.; Tang, Q.; Zhao, J.; Wang, Z.; Wei, L.; Wei, Q.; Yin, L.; Luo, S.; Song, J. S100A9 Derived from Myeloma Associated Myeloid Cells Promotes TNFSF13B/TNFRSF13B-Dependent Proliferation and Survival of Myeloma Cells. Front. Oncol. 2021, 11, 691705. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Okoro, C.; Foell, D.; Freeze, H.H.; Ostrand-Rosenberg, S.; Srikrishna, G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 2008, 181, 4666–4675. [Google Scholar] [CrossRef] [PubMed]
Name | Source | Up/Down | Disease | Biomarker Role | Reference Number |
---|---|---|---|---|---|
S100A8 | Serum | ↑ | Childhood ALL | Diagnosis | [41] |
S100A8/A9 | Serum | ↓ | Hodgkin Lymphoma | Response to therapy ↑ | [42] |
S100A9 | Serum | ↑ | ENKL | Response to therapy and prognosis ↓ | [43] |
S100A8 | Plasma | ↑ | MDS | Diagnosis | [44] |
S100A8/A9 | BM plasma | ↑ | MDS | Poor prognosis | [45] |
S100A8 | MNCs (BM) | ↑ | AML | Poor prognosis | [46] |
S100A8/A9 | Serum | ↑ | PV, ET, PMF | Diagnosis (Inflammatory state) | [48] |
Disease Name | Therapeutic Effect | Caused by | Reference Number |
---|---|---|---|
AML | Cell differentiation | S100A9 (when dominants over S100A8) | [62] |
CEL | Apoptosis | S100A8 ↑ S100A9 ↑ | [63] |
ALL | Apoptosis | S100A8/A9 ↑ | [64] |
AML(M5) | Apoptosis | S100A8 ↑ S100A9 ↑ S100A9/A9 ↑ | [65] |
AML(M3) | Apoptosis | S100A9 ↑ | [66] |
MM | Decrease in inflammatory and pro-myeloma cytokines, inducing apoptosis | S100A9 ↓ | [71,72] |
MPN | Prevention of fibrosis and MPN phenotype | S100A8/A9 ↓ | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razmkhah, F.; Kim, S.; Lim, S.; Dania, A.-J.; Choi, J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. Int. J. Mol. Sci. 2023, 24, 13382. https://doi.org/10.3390/ijms241713382
Razmkhah F, Kim S, Lim S, Dania A-J, Choi J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. International Journal of Molecular Sciences. 2023; 24(17):13382. https://doi.org/10.3390/ijms241713382
Chicago/Turabian StyleRazmkhah, Farnaz, Sena Kim, Sora Lim, Abdul-Jalil Dania, and Jaebok Choi. 2023. "S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy" International Journal of Molecular Sciences 24, no. 17: 13382. https://doi.org/10.3390/ijms241713382
APA StyleRazmkhah, F., Kim, S., Lim, S., Dania, A. -J., & Choi, J. (2023). S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. International Journal of Molecular Sciences, 24(17), 13382. https://doi.org/10.3390/ijms241713382