Dysregulation of Lipid Metabolism in Aging Meibomian Glands and Its Molecular Markers
Abstract
:1. Introduction
2. Results
2.1. Unbiased, Untargeted Analysis of Mouse Meibomian Lipids
2.2. Targeted Analysis of Mouse Meibomian Lipids
2.3. The Ratios of Lipid Markers
2.4. mRNA Expression Levels of Major Genes of Meibogenesis
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meibom, H. De Vasis Palpebrarum Novis Epistolae; Henningi Mulleri: Helmstadt, Germany, 1666. [Google Scholar]
- Nicolaides, N.; Kaitaranta, J.K.; Rawdah, T.N.; Macy, J.I.; Boswell, F.M., 3rd; Smith, R.E. Meibomian gland studies: Comparison of steer and human lipids. Investig. Ophthalmol. Vis. Sci. 1981, 20, 522–536. [Google Scholar]
- Narang, P.; Donthineni, P.R.; D’Souza, S.; Basu, S. Evaporative dry eye disease due to meibomian gland dysfunction: Preferred practice pattern guidelines for diagnosis and treatment. Indian J. Ophthalmol. 2023, 71, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Sabeti, S.; Kheirkhah, A.; Yin, J.; Dana, R. Management of meibomian gland dysfunction: A review. Surv. Ophthalmol. 2020, 65, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Osae, E.A.; Steven, P.; Redfern, R.; Hanlon, S.; Smith, C.W.; Rumbaut, R.E.; Burns, A.R. Dyslipidemia and Meibomian Gland Dysfunction: Utility of Lipidomics and Experimental Prospects with a Diet-Induced Obesity Mouse Model. Int. J. Mol. Sci. 2019, 20, 3505. [Google Scholar] [CrossRef] [PubMed]
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology 2017, 124, S20–S26. [Google Scholar] [CrossRef]
- Butovich, I.A.; Suzuki, T. Effects of Aging on Human Meibum. Investig. Ophthalmol. Vis. Sci. 2021, 62, 23. [Google Scholar] [CrossRef]
- Butovich, I.A.; Suzuki, T.; Wojtowicz, J.; Bhat, N.; Yuksel, S. Comprehensive profiling of Asian and Caucasian meibomian gland secretions reveals similar lipidomic signatures regardless of ethnicity. Sci. Rep. 2020, 10, 14510. [Google Scholar] [CrossRef]
- Butovich, I.A.; McMahon, A.; Wojtowicz, J.C.; Bhat, N.; Wilkerson, A. Effects of sex (or lack thereof) on meibogenesis in mice (Mus musculus): Comparative evaluation of lipidomes and transcriptomes of male and female tarsal plates. Ocul. Surf. 2019, 17, 793–808. [Google Scholar] [CrossRef]
- Butovich, I.A.; Bhat, N.; Wojtowicz, J.C. Comparative Transcriptomic and Lipidomic Analyses of Human Male and Female Meibomian Glands Reveal Common Signature Genes of Meibogenesis. Int. J. Mol. Sci. 2019, 20, 4539. [Google Scholar] [CrossRef]
- Butovich, I.A.; McMahon, A.; Wojtowicz, J.C.; Lin, F.; Mancini, R.; Itani, K. Dissecting lipid metabolism in meibomian glands of humans and mice: An integrative study reveals a network of metabolic reactions not duplicated in other tissues. Biochim. Biophys. Acta 2016, 1861, 538–553. [Google Scholar] [CrossRef]
- Butovich, I.A.; Wilkerson, A. Dynamic Changes in the Gene Expression Patterns and Lipid Profiles in the Developing and Maturing Meibomian Glands. Int. J. Mol. Sci. 2022, 23, 7884. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A.; Suzuki, T. Delineating a novel metabolic high triglycerides-low waxes syndrome that affects lipid homeostasis in meibomian and sebaceous glands. Exp. Eye Res. 2020, 199, 108189. [Google Scholar] [CrossRef] [PubMed]
- Osae, E.A.; Bullock, T.; Chintapalati, M.; Brodesser, S.; Hanlon, S.; Redfern, R.; Steven, P.; Smith, C.W.; Rumbaut, R.E.; Burns, A.R. Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production. Int. J. Mol. Sci. 2020, 21, 8772. [Google Scholar] [CrossRef] [PubMed]
- Arita, R.; Mori, N.; Shirakawa, R.; Asai, K.; Imanaka, T.; Fukano, Y.; Nakamura, M.; Amano, S. Meibum Color and Free Fatty Acid Composition in Patients with Meibomian Gland Dysfunction. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4403–4412. [Google Scholar] [CrossRef]
- Suzuki, T.; Kitazawa, K.; Cho, Y.; Yoshida, M.; Okumura, T.; Sato, A.; Kinoshita, S. Alteration in meibum lipid composition and subjective symptoms due to aging and meibomian gland dysfunction. Ocul. Surf. 2022, 26, 310–317. [Google Scholar] [CrossRef]
- Akpek, E.K.; Smith, R.A. Overview of age-related ocular conditions. Am. J. Manag. Care 2013, 19, S67–S75. [Google Scholar] [PubMed]
- Gipson, I.K. Age-related changes and diseases of the ocular surface and cornea. Investig. Ophthalmol. Vis. Sci. 2013, 54, ORSF48–ORSF53. [Google Scholar] [CrossRef]
- Kitazawa, K.; Inomata, T.; Shih, K.; Hughes, J.B.; Bozza, N.; Tomioka, Y.; Numa, K.; Yokoi, N.; Campisi, J.; Dana, R.; et al. Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis. Ocul. Surf. 2022, 25, 108–118. [Google Scholar] [CrossRef]
- Ding, J.; Sullivan, D.A. Aging and dry eye disease. Exp. Gerontol. 2012, 47, 483–490. [Google Scholar] [CrossRef]
- Hashemi, H.; Asharlous, A.; Aghamirsalim, M.; Yekta, A.; Pourmatin, R.; Sajjadi, M.; Pakbin, M.; Asadollahi, M.; Khabazkhoob, M. Meibomian gland dysfunction in geriatric population: Tehran geriatric eye study. Int. Ophthalmol. 2021, 41, 2539–2546. [Google Scholar] [CrossRef]
- Yin, Y.; Gong, L. The evaluation of meibomian gland function, morphology and related medical history in Asian adult blepharokeratoconjunctivitis patients. Acta Ophthalmol. 2017, 95, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.A.; Sullivan, B.D.; Evans, J.E.; Schirra, F.; Yamagami, H.; Liu, M.; Richards, S.M.; Suzuki, T.; Schaumberg, D.A.; Sullivan, R.M.; et al. Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann. N. Y. Acad. Sci. 2002, 966, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Nien, C.J.; Paugh, J.R.; Massei, S.; Wahlert, A.J.; Kao, W.W.; Jester, J.V. Age-related changes in the meibomian gland. Exp. Eye Res. 2009, 89, 1021–1027. [Google Scholar] [CrossRef]
- Modulo, C.M.; Machado Filho, E.B.; Malki, L.T.; Dias, A.C.; de Souza, J.C.; Oliveira, H.C.; Jorge, I.C.; Santos Gomes, I.B.; Meyrelles, S.S.; Rocha, E.M. The role of dyslipidemia on ocular surface, lacrimal and meibomian gland structure and function. Curr. Eye Res. 2012, 37, 300–308. [Google Scholar] [CrossRef]
- Jester, J.V.; Parfitt, G.J.; Brown, D.J. Meibomian gland dysfunction: Hyperkeratinization or atrophy? BMC Ophthalmol. 2015, 15 (Suppl. S1), 156. [Google Scholar] [CrossRef]
- Wang, H.; Zou, Z.; Wan, L.; Xue, J.; Chen, C.; Yu, B.; Zhang, Z.; Yang, L.; Xie, L. Periplocin ameliorates mouse age-related meibomian gland dysfunction through up-regulation of Na/K-ATPase via SRC pathway. Biomed. Pharmacother. 2022, 146, 112487. [Google Scholar] [CrossRef]
- Lin, C.Y.; Suhalim, J.L.; Nien, C.L.; Miljkovic, M.D.; Diem, M.; Jester, J.V.; Potma, E.O. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands. J. Biomed. Opt. 2011, 16, 021104. [Google Scholar] [CrossRef] [PubMed]
- Jester, B.E.; Nien, C.J.; Winkler, M.; Brown, D.J.; Jester, J.V. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. Anat. Rec. 2011, 294, 185–192. [Google Scholar] [CrossRef]
- Parfitt, G.J.; Xie, Y.; Geyfman, M.; Brown, D.J.; Jester, J.V. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging 2013, 5, 825–834. [Google Scholar] [CrossRef]
- Yoon, C.H.; Ryu, J.S.; Hwang, H.S.; Kim, M.K. Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. Int. J. Mol. Sci. 2020, 21, 4169. [Google Scholar] [CrossRef]
- Sullivan, B.D.; Evans, J.E.; Dana, M.R.; Sullivan, D.A. Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions. Arch. Ophthalmol. 2006, 124, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Foulks, G.N.; Yappert, M.C. Confirmation of changes in human meibum lipid infrared spectra with age using principal component analysis. Curr. Eye Res. 2010, 35, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Kakar, S.; Podoll, N.; Rychwalski, P.; Schwietz, E. Physical changes in human meibum with age as measured by infrared spectroscopy. Ophthalmic Res. 2010, 44, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Milliner, S.E. Changes in human meibum lipid composition with age using nuclear magnetic resonance spectroscopy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 475–482. [Google Scholar] [CrossRef]
- Benlloch-Navarro, S.; Franco, I.; Sanchez-Vallejo, V.; Silvestre, D.; Romero, F.J.; Miranda, M. Lipid peroxidation is increased in tears from the elderly. Exp. Eye Res. 2013, 115, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Benitez Del Castillo, J.M.; Pinazo-Duran, M.D.; Sanz-Gonzalez, S.M.; Munoz-Hernandez, A.M.; Garcia-Medina, J.J.; Zanon-Moreno, V. Tear 1H Nuclear Magnetic Resonance-Based Metabolomics Application to the Molecular Diagnosis of Aqueous Tear Deficiency and Meibomian Gland Dysfunction. Ophthalmic Res. 2021, 64, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, M.; Barbera, T.A.; Andrews, R.H.; Sithithaworn, P.; Khuntikeo, N.; Loilome, W.; Yongvanit, P.; Cox, I.J.; Syms, R.R.A.; Holmes, E.; et al. Mass Spectrometry: A Guide for the Clinician. J. Clin. Exp. Hepatol. 2019, 9, 597–606. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.K.; Iles, R.K. The Application of SIMCA P+ in Shotgun Metabolomics Analysis of ZIC®HILIC-MS Spectra of Human Urine—Experience with the Shimadzu IT-T of and Profiling Solutions Data Extraction Software. J. Chromatogr. Sep. Tech. 2012, 3, 145. [Google Scholar] [CrossRef]
- Andreu, V.; Pico, Y. Determination of linear alkylbenzenesulfonates and their degradation products in soils by liquid chromatography-electrospray-ion trap multiple-stage mass spectrometry. Anal. Chem. 2004, 76, 2878–2885. [Google Scholar] [CrossRef]
- Cserhati, T.; Forgacs, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A.; Arciniega, J.C.; Lu, H.; Molai, M. Evaluation and quantitation of intact wax esters of human meibum by gas-liquid chromatography-ion trap mass spectrometry. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3766–3781. [Google Scholar] [CrossRef] [PubMed]
- McFadden, W.H.; Bradford, D.C.; Eglinton, G.; Hajlbrahim, S.K.; Nicolaides, N. Application of combined liquid chromatography/mass spectrometry (LC/MS): Analysis of petroporphyrins and meibomian gland waxes. J. Chromatogr. Sci. 1979, 17, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Tang, D.; Ho, D.V. Spectroscopic evaluation of human tear lipids. Chem. Phys. Lipids 2007, 147, 87–102. [Google Scholar] [CrossRef]
- Oshima, Y.; Sato, H.; Zaghloul, A.; Foulks, G.N.; Yappert, M.C.; Borchman, D. Characterization of human meibum lipid using raman spectroscopy. Curr. Eye Res. 2009, 34, 824–835. [Google Scholar] [CrossRef]
- Borchman, D.; Ramakrishnan, V.; Henry, C.; Ramasubramanian, A. Differences in Meibum and Tear Lipid Composition and Conformation. Cornea 2020, 39, 122. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Borchman, D.; Foulks, G.N.; Yappert, M.C.; Milliner, S.E. Analysis of the composition of lipid in human meibum from normal infants, children, adolescents, adults, and adults with meibomian gland dysfunction using (1)H-NMR spectroscopy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7350–7358. [Google Scholar] [CrossRef]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Milliner, S.E. Differences in human meibum lipid composition with meibomian gland dysfunction using NMR and principal component analysis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 337–347. [Google Scholar] [CrossRef]
- Paugh, J.R.; Alfonso-Garcia, A.; Nguyen, A.L.; Suhalim, J.L.; Farid, M.; Garg, S.; Tao, J.; Brown, D.J.; Potma, E.O.; Jester, J.V. Characterization of expressed human meibum using hyperspectral stimulated Raman scattering microscopy. Ocul. Surf. 2019, 17, 151–159. [Google Scholar] [CrossRef]
- Nicolaides, N.; Santos, E.C. The di- and triesters of the lipids of steer and human meibomian glands. Lipids 1985, 20, 454–467. [Google Scholar] [CrossRef]
- Baron, C.; Blough, H.A. Composition of the neutral lipids of bovine meilbomian secretions. J. Lipid Res. 1976, 17, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Tiffany, J.M. Identification of meibomian gland lipids by gas chromatography-mass spectrometry: Application to the meibomian lipids of the mouse. J. Chromatogr. 1984, 301, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Tiffany, J.M.; Duerden, J.M.; Pandher, K.S.; Mengher, L.S. Identification by combined gas chromatography-mass spectrometry of constituent long-chain fatty acids and alcohols from the meibomian glands of the rat and a comparison with human meibomian lipids. J. Chromatogr. 1987, 414, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A.; Uchiyama, E.; McCulley, J.P. Lipids of human meibum: Mass-spectrometric analysis and structural elucidation. J. Lipid Res. 2007, 48, 2220–2235. [Google Scholar] [CrossRef]
- Butovich, I.A. On the lipid composition of human meibum and tears: Comparative analysis of nonpolar lipids. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3779–3789. [Google Scholar] [CrossRef]
Mouse Age Group (Days) | Number of Animals, (Males + Females) | Mouse AgeGroup (Days) | Number of Animals, (Males + Females) |
---|---|---|---|
P17 | 2F + 1 sex unknown | P180 | 4M |
P21 | 3M + 1F | P365 2 | 1M + 5F |
P30 | 3M + 3F | P730 | 6M + 13F |
Protocol | m/z (exp.) | Lipid Class 1 | Molecular Formula, Adduct 2 |
---|---|---|---|
C18-LC—MS APCI PIM | 633.6548 647.6685 661.6827 701.7160 729.7466 855.7421 857.7573 | WE C43:1 WE C44:1 WE C45:1 WE C48:2 WE C50:2 TAG 52:4 TAG 52:3 | C43H85O2, (M+H)+ C44H87O2, (M+H)+ C45H89O2, (M+H)+ C48H93O2, (M+H)+ C50H97O2, (M+H)+ C55H99O6, (M+H)+ C55H101O6, (M+H)+ |
C18-LC—MS ESI PIM | 633.6548 647.6699 746.7750 874.7848 876.8021 1173.1260 | WE C43:1 WE C44:1 WE C50:1 TAG 52:3 3 TAG 52:2 3 Chl-OAHFA | C43H85O2, (M+H)+ C44H87O2, (M+H)+ C50H100NO2, (M+NH4)+ C55H104NO6, (M+NH4)+ C55H106NO6, (M+NH4)+ C79H146NO4, (M+NH4)+ |
C18-LC—MS ESI NIM | 742.5396 747.5613 835.5319 863.5624 | PE 36:2 TAG C45:8 3 PI 34:1 PI 36:1 | C41H78NO10P, (M−H)− C48H77O6, (M−H)− C43H80O13P, (M−H)− C45H84O13P, (M−H)− |
311.1685 325.1839 | Suspected contaminants: alkylbenzenesulfonates |
Protocol | Molecular Formula | m/z | Type | P730/P30 Ratios 1 | p-Value |
---|---|---|---|---|---|
C18-LC—MS APCI PIM | C43H84O2 C44H86O2 C45H88O2 C48H92O2 C50H96O2 C55H98O6 C55H100O6 | 633.6548 647.6685 661.6827 701.7160 729.7466 855.7421 857.7573 | WE WE WE WE WE TAG TAG | 0.759 ↓ 0.674 ↓ 0.583 ↓ 0.757 ↓ 0.548 ↓ 3.004 ↑ 2.249 ↑ | 1.04 × 10−3 3.33 × 10−4 1.22 × 10−5 1.79 × 10−4 1.06 × 10−6 3.62 × 10−3 3.46 × 10−3 |
C18-LC—MS ESI PIM | C43H84O2 C44H86O2 C50H96O2 C55H100O6 C55H102O6 C79H142O4 | 633.6548 647.6685 729.7466 855.7421 857.7573 1173.1260 | WE WE WE TAG TAG Chl-OAHFA | 0.659 ↓ 0.653 ↓ 0.509 ↓ 1.657 ↑ 1.48 ↑ 0.574 ↓ | 2.40 × 10−3 9.41 × 10−3 1.39 × 10−4 2.37 × 10−2 6.29 × 10−2 1.76 × 10−5 |
C18LC—MS ESI NIM | C41H79NO10P C48H78O6 C43H81O13P C45H85O13P | 742.5396 747.5613 835.5319 863.5624 | PE TAG PI PI | 0.594 ↓ 1.251 ↑ 0.566 ↓ 0.509 ↓ | 7.36 × 10−4 1.24 × 10−2 6.86 × 10−6 6.12 × 10−7 |
Gene 1 | Age, 2 ± 1 mo | Age, 32 ± 2 mo | p-Value | Gene 1 | Age, 2 ± 1 mo | Age, 32 ± 2 mo | p-Value | |
---|---|---|---|---|---|---|---|---|
Awat1 | 16.8 | 16.1 | 0.123 | Far1 | 15.7 | 16.1 | 0.216 | |
Awat2 | 17.9 | 17.3 | 0.146 | Far2 | 19.2 | 19 | 0.72 | |
Dgat2 | 17.1 | 17.1 | no diff. | Fasn | 14 | 14.7 | 0.042 | |
Dhcr24 | 19 | 19.2 | 0.8 | Scd1 | 19.9 | 19.9 | no diff. | |
Dhcr7 | 10.3 | 10 | 0.803 | Scd2 | 17.74 | 17.93 | 0.297 | |
Elovl1 | 17.5 | 15.9 | 0.03 | Scd3 | 18.4 | 18.9 | 0.33 | |
Elovl2 | 4.3 | 4.2 | 0.72 | Scd4 | 18.7 | 18.8 | 0.999 | |
Elovl3 | 17.8 | 16.8 | 0.009 | Sdr16c5 | 14.5 | 13.6 | 0.159 | |
Elovl4 | 19.6 | 19.5 | 0.499 | Sdr16c6 | 17.9 | 17.3 | 0.186 | |
Elovl5 | 12 | 12.5 | 0.436 | Soat1 | 17.7 | 18 | 0.424 | |
Elovl6 | 12.6 | 13.7 | 0.02 | Soat2 | 4.6 | 5 | 0.122 | |
Elovl7 | 15.9 | 15.2 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butovich, I.A.; Wilkerson, A.; Yuksel, S. Dysregulation of Lipid Metabolism in Aging Meibomian Glands and Its Molecular Markers. Int. J. Mol. Sci. 2023, 24, 13512. https://doi.org/10.3390/ijms241713512
Butovich IA, Wilkerson A, Yuksel S. Dysregulation of Lipid Metabolism in Aging Meibomian Glands and Its Molecular Markers. International Journal of Molecular Sciences. 2023; 24(17):13512. https://doi.org/10.3390/ijms241713512
Chicago/Turabian StyleButovich, Igor A., Amber Wilkerson, and Seher Yuksel. 2023. "Dysregulation of Lipid Metabolism in Aging Meibomian Glands and Its Molecular Markers" International Journal of Molecular Sciences 24, no. 17: 13512. https://doi.org/10.3390/ijms241713512
APA StyleButovich, I. A., Wilkerson, A., & Yuksel, S. (2023). Dysregulation of Lipid Metabolism in Aging Meibomian Glands and Its Molecular Markers. International Journal of Molecular Sciences, 24(17), 13512. https://doi.org/10.3390/ijms241713512