Closer to the Reality—Proteome Changes Evoked by Endometrial Scratching in Fertile Females
Abstract
:1. Introduction
2. Results
2.1. Proteomic Analysis of ES Samples Follow-Up vs. Initial Biopsy
2.2. ES-Evoked Changes in Protein Abundance of Fertile Females and RIF Patients
3. Discussion
4. Materials and Methods
4.1. Identification of Fertile Females (FF) and RIF Patients
4.2. Extraction, Identification, and Quantification of Proteins Using Mass Spectrometry
4.3. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nastri, C.O.; Polanski, L.T.; Raine-Fenning, N.; Martins, W.P. Endometrial scratching for women with repeated implantation failure. Hum. Reprod. 2014, 29, 2855–2856. [Google Scholar] [CrossRef] [PubMed]
- Nastri, C.O.; Gibreel, A.; Raine-Fenning, N.; Maheshwari, A.; Ferriani, R.A.; Bhattacharya, S.; Martins, W.P. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst. Rev. 2012, 7, CD009517. [Google Scholar] [CrossRef]
- Edgell, T.A.; Rombauts, L.J.; Salamonsen, L.A. Assessing receptivity in the endometrium: The need for a rapid, non-invasive test. Reprod. Biomed. Online 2013, 27, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, P. Understanding implantation window, a crucial phenomenon. J. Hum. Reprod. Sci. 2012, 5, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Finn, C.A.; Martin, L. Endocrine Control of the Timing of Endometrial Sensitivity to a Decidual Stimulus. Biol. Reprod. 1972, 7, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Kanaka, V.; Proikakis, S.; Drakakis, P.; Loutradis, D.; Tsangaris, G.T. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022, 13, 237–260. [Google Scholar] [CrossRef]
- Barash, A.; Dekel, N.; Fieldust, S.; Segal, I.; Schechtman, E.; Granot, I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil. Steril. 2003, 79, 1317–1322. [Google Scholar] [CrossRef]
- Fatemi, H.; Popovic-Todorovic, B. Implantation in assisted reproduction: A look at endometrial receptivity. Reprod. Biomed. Online 2013, 27, 530–538. [Google Scholar] [CrossRef]
- Makrigiannakis, A.; Makrygiannakis, F.; Vrekoussis, T. Approaches to Improve Endometrial Receptivity in Case of Repeated Implantation Failures. Front. Cell Dev. Biol. 2021, 9, 613277. [Google Scholar] [CrossRef]
- Potdar, N.; Gelbaya, T.; Nardo, L.G. Endometrial injury to overcome recurrent embryo implantation failure: A systematic review and meta-analysis. Reprod. Biomed. Online 2012, 25, 561–571. [Google Scholar] [CrossRef]
- Gibreel, A.; El-Adawi, N.; Elgindy, E.; Al-Inany, H.; Allakany, N.; Tournaye, H. Endometrial scratching for women with previous IVF failure undergoing IVF treatment. Gynecol. Endocrinol. 2015, 31, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Vitagliano, A.; Marci, R.; Caserta, D. Endometrial Scratching for Improving Endometrial Receptivity: A Critical Review of Old and New Clinical Evidence. Reprod. Sci. 2022, 30, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wang, Z.; Yang, Y.; Liang, H.; Duan, X.; Gao, Q.; Yin, Z. Impact of endometrial scratching on reproductive outcome in patients: A systematic review and meta-analysis. Medicine 2022, 101, e30150. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gomez, T.; Quinonero, A.; Antunez, O.; Diaz-Gimeno, P.; Bellver, J.; Simon, C.; Dominguez, F. Deciphering the proteomic signature of human endometrial receptivity. Hum. Reprod. 2014, 29, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Gnainsky, Y.; Granot, I.; Aldo, P.; Barash, A.; Or, Y.; Mor, G.; Dekel, N. Biopsy-induced inflammatory conditions improve endometrial receptivity: The mechanism of action. Reproduction 2015, 149, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Aghajanpour, S.; Hosseini, E.; Amirchaghmaghi, E.; Zandieh, Z.; Amjadi, F.; Yahyaei, A.; Zolfaghari, Z.; Aflatoonian, K.; Ashrafi, M.; Aflatoonian, R. Differential expression of innate/adaptive immunity genes induced by endometrial scratching as a hopeful approach for implantation boosting in unexplained, repeated implantation failure: An RCT. J. Reprod. Immunol. 2021, 148, 103426. [Google Scholar] [CrossRef] [PubMed]
- Yeung, T.W.Y.; Chai, J.; Li, R.H.W.; Lee, V.C.Y.; Ho, P.C.; Ng, E.H.Y. The effect of endometrial injury on ongoing pregnancy rate in unselected subfertile women undergoing in vitro fertilization: A randomized controlled trial. Hum. Reprod. 2014, 29, 2474–2481. [Google Scholar] [CrossRef] [PubMed]
- Lensen, S.; Venetis, C.; Ng, E.H.; Young, S.L.; Vitagliano, A.; Macklon, N.S.; Farquhar, C. Should we stop offering endometrial scratching prior to in vitro fertilization? Fertil. Steril. 2019, 111, 1094–1101. [Google Scholar] [CrossRef]
- Simón, C.; Bellver, J. Scratching beneath ‘The Scratching Case’: Systematic reviews and meta-analyses, the back door for evidence-based medicine. Hum. Reprod. 2014, 29, 1618–1621. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. 1D and 2D annotation enrichment: A statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform. 2012, 13, S12. [Google Scholar] [CrossRef]
- Kalma, Y.; Granot, I.; Gnainsky, Y.; Or, Y.; Czernobilsky, B.; Dekel, N.; Barash, A. Endometrial biopsy-induced gene modulation: First evidence for the expression of bladder-transmembranal uroplakin Ib in human endometrium. Fertil. Steril. 2009, 91, 1042–1049.e9. [Google Scholar] [CrossRef] [PubMed]
- Gnainsky, Y.; Granot, I.; Aldo, P.B.; Barash, A.; Or, Y.; Schechtman, E.; Mor, G.; Dekel, N. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil. Steril. 2010, 94, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Dekel, N.; Gnainsky, Y.; Granot, I.; Mor, G. Inflammation and implantation. Am. J. Reprod. Immunol. 2010, 63, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hao, G. Local injury to the endometrium: Its effect on implantation. Curr. Obstet. Gynecol. 2009, 21, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Naish, E.; Wood, A.J.; Stewart, A.P.; Routledge, M.; Morris, A.C.; Chilvers, E.R.; Lodge, K.M. The formation and function of the neutrophil phagosome. Immunol. Rev. 2023, 314, 158–180. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Ishikawa, T. Genital tract dysbiosis in infertile women with a history of re-peated implantation failure and pilot study for reproductive outcomes following oral enteric coating lactoferrin supplementation. Arch. Gynecol. Obstet. 2022, 306, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Yanaihara, A.; Toma, Y.; Saito, H.; Yanaihara, T. Cell proliferation effect of lactoferrin in human endometrial stroma cells. Mol. Hum. Reprod. 2000, 6, 469–473. [Google Scholar] [CrossRef]
- Mooneyham, A.; Iizuka, Y.; Yang, Q.; Coombes, C.; McClellan, M.; Shridhar, V.; Emmings, E.; Shetty, M.; Chen, L.; Ai, T.; et al. UNC-45A Is a Novel Microtubule-Associated Protein and Regulator of Paclitaxel Sensitivity in Ovarian Cancer Cells. Mol. Cancer Res. 2019, 17, 370–383. [Google Scholar] [CrossRef]
- Jaskiewicz, N.M.; Townson, D.H. Hyper-O-GlcNAcylation promotes epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget 2019, 10, 2899–2910. [Google Scholar] [CrossRef]
- Han, H.; Irimia, M.; Ross, P.J.; Sung, H.-K.; Alipanahi, B.; David, L.; Golipour, A.; Gabut, M.; Michael, I.P.; Nachman, E.N.; et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 2013, 498, 241–245. [Google Scholar] [CrossRef]
- Konieczny, P.; Stepniak-Konieczna, E.; Sobczak, K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 2014, 42, 10873–10887. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Mikhailik, A.; Pauli, I.; Giudice, L.C.; Fazelabas, A.T.; Tulac, S.; Carson, D.D.; Kaufman, D.G.; Barbier, C.; Creemers, J.W.M. Decidual Differentiation of Stromal Cells Promotes Proprotein Convertase 5/6 Expression and Lefty Processing. Endocrinology 2005, 146, 5313–5320. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Tsuzuki, T.; Murata, H. Decidualization of the human endometrium. Reprod. Med. Biol. 2018, 17, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-H.; Onodera, Y.; Giaccia, A.J.; Le, Q.-T.; Shimizu, S.; Shirato, H.; Nam, J.-M. Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Commun. Biol. 2020, 3, 620. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dai, M.; Gong, G.; Chen, M.; Cao, C.; Wang, T.; Hou, Z.; Shi, Y.; Guo, J.; Zhang, Y.; et al. The role of extracellular matrix on unfavorable maternal–fetal interface: Focusing on the function of collagen in human fertility. J. Leather Sci. Eng. 2022, 4, 13. [Google Scholar] [CrossRef]
- Jiang, X.; Kim, H.-E.; Shu, H.; Zhao, Y.; Zhang, H.; Kofron, J.; Donnelly, J.; Burns, D.; Ng, S.-C.; Rosenberg, S.; et al. Distinctive Roles of PHAP Proteins and Prothymosin-α in a Death Regulatory Pathway. Science 2003, 299, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Liu, Y.-C.; Chao, C.C.-K. Inhibition of JNK and prothymosin-alpha sensitizes hepatocellular carcinoma cells to cisplatin. Biochem. Pharmacol. 2016, 122, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, T.C.; Chen, X. The endometrial proteomic profile around the time of embryo implantation. Biol. Reprod. 2021, 104, 11–26. [Google Scholar] [CrossRef]
- Martini, P.G.V.; Delage-Mourroux, R.; Kraichely, D.M.; Katzenellenbogen, B.S. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity. Mol. Cell. Biol. 2000, 20, 6224–6232. [Google Scholar] [CrossRef]
- Wang, J.; You, J.; Wang, L.; Wang, H.; Tian, T.; Wang, W.; Jia, L.; Jiang, C. PTMA, a new identified autoantigen for oral submucous fibrosis, regulates oral submucous fibroblast proliferation and extracellular matrix. Oncotarget 2017, 8, 74806–74819. [Google Scholar] [CrossRef]
- Bielfeld, A.P.; Pour, S.J.; Poschmann, G.; Stühler, K.; Krüssel, J.-S.; Baston-Büst, D.M. A Proteome Approach Reveals Differences between Fertile Women and Patients with Repeated Implantation Failure on Endometrial Level—Does hCG Render the Endometrium of RIF Patients? Int. J. Mol. Sci. 2019, 20, 425. [Google Scholar] [CrossRef] [PubMed]
- Boeddeker, S.J.; Hess, A.P. The role of apoptosis in human embryo implantation. J. Reprod. Immunol. 2015, 108, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, L.; Gutiérrez, J.; Morselli, E.; Leiva, A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences with Cancer Cells. Front. Oncol. 2021, 11, 637594. [Google Scholar] [CrossRef] [PubMed]
- Venditti, M.; Arcaniolo, D.; De Sio, M.; Minucci, S. First Evidence of the Expression and Localization of Prothymosin α in Human Testis and Its Involvement in Testicular Cancers. Biomolecules 2022, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Q.; Lang, Y.; Liu, Y.; Dong, X.; Chen, Z.; Tian, W.; Tang, J.; Wu, W.; Tong, Y.; et al. Human apo-SRP72 and SRP68/72 complex structures reveal the molecular basis of protein translocation. J. Mol. Cell Biol. 2017, 9, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Fairuz, M.; Jamaluddin, B.; Ko, Y.-A.; Nahar, P.; Jaaback, K.; Correspondence, P.S.T. Proteomic and functional characterization of intra-tumor heterogeneity in human endometrial cancer. Cell Rep. Med. 2022, 3, 100738. [Google Scholar] [CrossRef]
- Kulesa, P.M.; Kasemeier-Kulesa, J.C.; Morrison, J.A.; McLennan, R.; McKinney, M.C.; Bailey, C. Modelling Cell Invasion: A Review of What JD Murray and the Embryo Can Teach Us. Bull. Math. Biol. 2021, 83, 26. [Google Scholar] [CrossRef]
- Chaumet, A.; Wright, G.D.; Seet, S.H.; Tham, K.M.; Gounko, N.V.; Bard, F. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nat. Commun. 2015, 6, 8218. [Google Scholar] [CrossRef]
- Salsano, S.; González-Martín, R.; Quiñonero, A.; López-Martín, S.; Gómez-Escribano, A.P.; Pérez-Debén, S.; Yañez-Mo, M.; Domínguez, F. Novel nonclassic progesterone receptor PGRMC1 pulldown-precipitated proteins reveal a key role during human decidualization. Fertil. Steril. 2020, 113, 1050–1066.e7. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L.; Jin, B.; Zhang, F.; Zhang, D.; Cui, L. Knockdown of protein phosphatase 5 inhibits ovarian cancer growth in vitro. Oncol. Lett. 2015, 11, 168–172. [Google Scholar] [CrossRef]
- Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular Signaling Regulating Endometrium–Blastocyst Crosstalk. Int. J. Mol. Sci. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Brosens, J.J.; Hodgetts, A.; Feroze-Zaidi, F.; Sherwin, J.R.A.; Fusi, L.; Salker, M.S.; Higham, J.; Rose, G.L.; Kajihara, T.; Young, S.L.; et al. Proteomic analysis of endometrium from fertile and infertile patients suggests a role for apolipoprotein A-I in embryo implantation failure and endometriosis. Mol. Hum. Reprod. 2009, 16, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.E.; Amr, K.S.; Abdel-Hamid, M. Evaluating the association of APOA2 polymorphism with insulin resistance in adolescents. Meta Gene 2014, 2, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Willnow, T.E.; Hammes, A.; Eaton, S. Lipoproteins and their receptors in embryonic development: More than cholesterol clearance. Development 2007, 134, 3239–3249. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.B.; Jiang, Y.B.; Jiang, W. Association between blood lipid level and embryo quality during in vitro fertilization. Medicine 2020, 99, e19665. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, J.; Min, S.; Zhang, Y.; Zhang, Y.; Zhou, Q.; Shen, X.; Jia, D.; Han, J.; Sun, Q. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 2019, 8, e41331. [Google Scholar] [CrossRef] [PubMed]
- Audia, S.; Brescia, C.; Dattilo, V.; D’antona, L.; Calvano, P.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Amato, R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers 2023, 15, 486. [Google Scholar] [CrossRef]
- Rensen, W.M.; Roscioli, E.; Tedeschi, A.; Mangiacasale, R.; Ciciarello, M.; Di Gioia, S.A.; Lavia, P. RanBP1 downregulation sensitizes cancer cells to taxol in a caspase-3-dependent manner. Oncogene 2009, 28, 1748–1758. [Google Scholar] [CrossRef]
- Park, S.-R.; Kim, S.-R.; Im, J.-B.; Lim, S.; Hong, I.-S. Tryptophanyl-tRNA Synthetase, a Novel Damage-Induced Cytokine, Significantly Increases the Therapeutic Effects of Endometrial Stem Cells. Mol. Ther. 2020, 28, 2458–2472. [Google Scholar] [CrossRef]
- Prakash, V.; Carson, B.B.; Feenstra, J.M.; Dass, R.A.; Sekyrova, P.; Hoshino, A.; Petersen, J.; Guo, Y.; Parks, M.M.; Kurylo, C.M.; et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat. Commun. 2019, 10, 2110. [Google Scholar] [CrossRef]
- Poschmann, G.; Seyfarth, K.; Besong Agbo, D.; Klafki, H.W.; Rozman, J.; Wurst, W.; Wiltfang, J.; Meyer, H.E.; Klingenspor, M.; Stühler, K. High-fat diet induced isoform changes of the Parkinson’s disease protein DJ-1. Proteome Res. 2014, 13, 2339–2351. [Google Scholar] [CrossRef] [PubMed]
- Tusher, V.G.; Tibshirani, R.; Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheliga, I.; Baston-Buest, D.M.; Poschmann, G.; Stuehler, K.; Kruessel, J.-S.; Bielfeld, A.P. Closer to the Reality—Proteome Changes Evoked by Endometrial Scratching in Fertile Females. Int. J. Mol. Sci. 2023, 24, 13577. https://doi.org/10.3390/ijms241713577
Scheliga I, Baston-Buest DM, Poschmann G, Stuehler K, Kruessel J-S, Bielfeld AP. Closer to the Reality—Proteome Changes Evoked by Endometrial Scratching in Fertile Females. International Journal of Molecular Sciences. 2023; 24(17):13577. https://doi.org/10.3390/ijms241713577
Chicago/Turabian StyleScheliga, Iwona, Dunja M. Baston-Buest, Gereon Poschmann, Kai Stuehler, Jan-Steffen Kruessel, and Alexandra P. Bielfeld. 2023. "Closer to the Reality—Proteome Changes Evoked by Endometrial Scratching in Fertile Females" International Journal of Molecular Sciences 24, no. 17: 13577. https://doi.org/10.3390/ijms241713577
APA StyleScheliga, I., Baston-Buest, D. M., Poschmann, G., Stuehler, K., Kruessel, J.-S., & Bielfeld, A. P. (2023). Closer to the Reality—Proteome Changes Evoked by Endometrial Scratching in Fertile Females. International Journal of Molecular Sciences, 24(17), 13577. https://doi.org/10.3390/ijms241713577