Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci
Abstract
:1. Introduction
2. Results
2.1. Death Rate of B. tabaci after Exposure to Different Cadmium Concentrations
2.2. Effects of Exposure to Low and High Concentrations of Cadmium on Bacterial Communities in Whiteflies
2.3. Effective Number of Sequences in Selected Bacterial Genera and OTU Distributions
2.4. Functional Predictions of Bacterial Communities
2.5. Fungal Community Compositions
2.6. Fungi Functional Prediction Analysis
3. Discussion
4. Materials and Methods
4.1. Insect Strain
4.2. Toxicity of Cadmium Exposure to B. tabaci
4.3. Sample Preparation
4.4. Amplicon Sequencing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.G.; He, X.L.S.; Huang, J.H.; Luo, R.; Chen, S.H. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar]
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection; Ministry of Land and Resources. National soil pollution survey bulletin. China Environ. Prot. Ind. 2014, 36, 1689–1692. [Google Scholar]
- Dar, M.I.; Green, I.D.; Naikoo, M.I.; Khan, F.A.; Ansari, A.A.; Lone, M.I. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Sci. Total Environ. 2017, 584, 1221–1229. [Google Scholar] [CrossRef]
- Sang, W.; Xu, J.; Bashir, M.H.; Ali, S. Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multi-trophic food chain. Chemosphere 2018, 205, 690–697. [Google Scholar]
- Chen, J.; Wang, J.W.; Shu, Y.H. Review on the effects of heavy metal pollution on herbivorous insects. Chin. J. Appl. Ecol. 2020, 31, 1773–1782. [Google Scholar]
- Li, L.J.; Guo, Y.P.; Xi, Y.Y.; Ma, E.B. Cadmium and copper accumulation in Locusta migratoria manilensis (Meyen) (Orthoptera: Acrididae). Chin. J. Eco-Agric. 2008, 16, 176–182. [Google Scholar] [CrossRef]
- Kou, L.H.; Wu, H.H.; Liu, Y.M.; Zhang, Y.P.; Zhang, J.Z.; Guo, Y.P.; Ma, E.B. Expression analysis of OcsHSP genes in testis and ovary of Oxya chinensis exposed to acute cadmium. J. Agro-Environ. Sci. 2015, 34, 7–14. [Google Scholar]
- Plachetka-Bozek, A.; Chwiałkowska, K.; Augustyniak, M. Molecular changes in vitellogenin gene of Spodoptera exigua after long-time exposure to cadmium-toxic side effect or microevolution? Ecotoxicol. Environ. Saf. 2018, 147, 461–470. [Google Scholar] [CrossRef]
- Yang, F.X.; Shao, R.; Zhao, J.; Li, L.; Wang, M.Q.; Zhou, A.M. Cadmium exposure disrupts the olfactory sensitivity of fire ants to semiochemicals. Environ. Pollut. 2021, 287, 117359. [Google Scholar] [CrossRef]
- Yang, F.X.; Zhang, G.Q.; Liu, J.L.; Duan, S.G.; Li, L.; Lu, Y.Y.; Wang, M.Q.; Zhou, A.M. Sublethal exposure to cadmium induces chemosensory dysfunction in Fire Ants. Environ. Sci. Technol. 2022, 56, 12440–12451. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.F.; Sun, B.T.; Gurr, G.M.; Vasseur, L.; Xue, M.Q.; You, M.S. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front. Microbiol. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Tang, C.; Gao, C.; Li, Z.; Cheng, Y.; Chen, J.; Wang, T.; Xu, J. Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuate from China. Front. Microbiol. 2022, 13, 964735. [Google Scholar] [CrossRef] [PubMed]
- Ezemwa, V.O.; Gerardo, N.M.; Inouye, D.W.; Mónica, M.; Xavier, J.B. Animal behavior and the microbiome. Science 2012, 338, 198–199. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Mu, X.H.; Cao, Q.N.; Shi, Y.; Hu, X.S.; Zheng, H. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 2022, 13, 2037. [Google Scholar] [CrossRef]
- Brown, J.K.; Frohlich, D.R.; Rosell, R.C. The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Ann. Rev. Entomol. 1995, 40, 511–534. [Google Scholar] [CrossRef]
- Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop. Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A. Bemisia tabaci: A statement of species status. Ann. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Ann. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef]
- Stansly, P.A.; Naranjo, S.E. Bemisia: Bionomics and Management of a Global Pest, 1st ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Zchori-Fein, E.; Lahav, T.; Freilich, S. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front. Microbiol. 2014, 5, 310. [Google Scholar] [CrossRef]
- Santos-Garcia, D.; Vargas-Chavez, C.; Moya, A.; Latorre, A.; Silva, F.J. Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol. Evol. 2015, 7, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, Y.; Ghanim, M.; Gueguen, G.; Kontsedalov, S.; Vavre, F.; Fleury, F.; Zchori-Fein, E. Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008, 22, 2109–2599. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Lee, J.H.; Kim, H.B.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Chao, A.; Lee, S. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Santos-Garcia, D.; Mestre-Rincon, N.; Zchori-Fein, E.; Morin, S. Inside out: Microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 2020, 14, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Erable, B.; Goubet, I.; Lamare, S.; Legoy, M.D.; Maugard, T. Haloalkane hydrolysis by Rhodococcus erythropolis cells: Comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation. Biotechnol. Bioeng. 2004, 86, 47–54. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Xu, K.; Tang, X.; Xu, X.; Shen, C. Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp. Biodegradation 2018, 29, 1–10. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Venkateswarlu, K.; Krishnan, K.; Naidu, R.; Lockington, R.; Megharaj, M. Rhodococcus wratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation. J. Hazard. Mater. 2018, 347, 176–183. [Google Scholar] [CrossRef]
- Naloka, K.; Polrit, D.; Muangchinda, C.; Thoetkiattikul, H.; Pinyakong, O. Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater. Chemosphere 2021, 282, 130973. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yao, J.; Zhang, Q.; Yu, C.; Chen, P.; Liu, W.; Peng, D.; Choi, M.M. An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1. Chemosphere 2015, 128, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, S.; Du, W.; Dou, T.; Liang, C. High regioselectivity production of 5-Cyanovaleramide from Adiponitrile by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595. ACS Omega 2020, 5, 18397–18402. [Google Scholar] [CrossRef] [PubMed]
- Nassar, H.N.; Ali, H.R.; El-Gendy, N.S. Waste prosperity: Mandarin (Citrus reticulata) peels inspired SPION for enhancing diesel oil biodesulfurization efficiency by Rhodococcus erythropolis HN2. Fuel 2021, 294, 120534. [Google Scholar] [CrossRef]
- Ma, S.; Huang, S.; Tian, Y.; Lu, X. Heterotrophic ammonium assimilation: An important driving force for aerobic denitrification of Rhodococcus erythropolis strain Y10. Chemosphere 2022, 291, 132910. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.T.; Simon, V.; Machado, B.S.; Crestani, L.; Marchezi, G.; Concolato, G.; Ferrari, V.; Colla, L.M.; Piccin, J.S. Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants. J. Environ. Manag. 2022, 323, 116220. [Google Scholar] [CrossRef] [PubMed]
- González Henao, S.; Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front. Environ. Sci. 2021, 9, 604216. [Google Scholar] [CrossRef]
- Siripan, O.; Thamchaipenet, A.; Surat, W. Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Int. J. Phytoremediat. 2018, 20, 1096–1105. [Google Scholar] [CrossRef]
- Ren, F.R.; Sun, X.; Wang, T.Y.; Yao, Y.L.; Luan, J.B. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J. 2020, 14, 2542–2553. [Google Scholar] [CrossRef]
- Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 2011, 332, 254–256. [Google Scholar] [CrossRef]
- Brumin, M.; Kontsedalov, S.; Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Zajc, J.; Gunde-Cimerman, N. The genus Wallemia from contamination of food to health threat. Microorganisms 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Assessing global fungal threats to humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]
- Chu, D.; Wan, F.H.; Zhang, Y.J.; Brown, J.K. Change in the biotype composition of Bemisia tabaci in Shandong province of China from 2005 to 2008. Environ. Entomol. 2010, 39, 1028–1036. [Google Scholar] [CrossRef]
- Sovacool, K.L.; Westcott, S.L.; Mumphrey, M.B.; Dotson, G.A.; Schloss, P.D. OptiFit: An Improved Method for Fitting Amplicon Sequences to Existing OTUs. mSphere 2022, 7, e00916-21. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
Concentration of Cadmium (μmol/L) | Number of Tested Insects | Death Rate |
---|---|---|
120 | 252 | 74.6% |
60 | 260 | 65.00% |
30 | 208 | 41.35% |
15 | 261 | 26.05% |
5 | 264 | 14.02% |
0 | 263 | 12.93% |
Diversity Indices * | Treatment | |||
---|---|---|---|---|
CK | LD | HD | ||
Bacterial community | Sobs | 90.75 ± 39.45 a | 55.75 ± 24.58 a | 79.75 ± 30.31 a |
Shannon | 0.78 ± 0.05 b | 0.84 ± 0.02 ab | 0.99 ± 0.07 a | |
Simpson | 0.35 ± 0.01 a | 0.43 ± 0.02 b | 0.48 ± 0.03 b | |
ACE | 186.09 ± 41.05 a | 112.47 ± 24.03 a | 102.16 ± 37.04 a | |
Chao1 | 128.09 ± 46.26 a | 74.32 ± 28.68 a | 97.04 ± 35.09 a | |
Fungal community | Sobs | 97.25 ± 7.03 a | 57.25 ± 7.35 b | 37.50 ± 6.61 b |
Shannon | 1.72 ± 0.17 a | 1.31 ± 0.20 a | 1.07 ± 0.26 a | |
Simpson | 0.60 ± 0.08 a | 0.48 ± 0.07 a | 0.42 ± 0.12 a | |
ACE | 98.88 ± 5.99 a | 60.36 ± 5.94 b | 37.73 ± 6.68 c | |
Chao1 | 98.20 ± 6.42 a | 58.75 ± 6.88 b | 37.5 ± 6.61 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Li, Z.; Xu, J. Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci. Int. J. Mol. Sci. 2023, 24, 13588. https://doi.org/10.3390/ijms241713588
Guo L, Li Z, Xu J. Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci. International Journal of Molecular Sciences. 2023; 24(17):13588. https://doi.org/10.3390/ijms241713588
Chicago/Turabian StyleGuo, Litao, Zhimin Li, and Jianping Xu. 2023. "Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci" International Journal of Molecular Sciences 24, no. 17: 13588. https://doi.org/10.3390/ijms241713588
APA StyleGuo, L., Li, Z., & Xu, J. (2023). Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci. International Journal of Molecular Sciences, 24(17), 13588. https://doi.org/10.3390/ijms241713588