Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Continuous Glucose Monitoring
2.3. DNA Damage and Oxidative Stress Markers
2.3.1. DNA Damage
2.3.2. Oxidative Stress Markers
3. Discussion
4. Materials and Methods
4.1. Participation Criteria and Study Design
4.2. Laboratory Analyses
4.2.1. Comet Assay
4.2.2. Ferric Reducing Antioxidant Power (FRAP) Assay
4.2.3. Protein Carbonyls (PCs)
4.2.4. Unconjugated Bilirubin (UCB)
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time Point | n | Minimum | Maximum | Mean | Standard Deviation | Variance |
---|---|---|---|---|---|---|
Continuous 0 min | 10 | 82 | 101 | 93 | 7 | 44 |
Continuous 30 min | 10 | 106 | 156 | 135 | 16 | 240 |
Continuous 60 min | 10 | 92 | 169 | 135 | 28 | 799 |
Continuous 120 min | 10 | 100 | 142 | 121 | 15 | 226 |
Continuous 180 min | 10 | 83 | 125 | 109 | 13 | 155 |
Continuous 360 min | 10 | 83 | 93 | 88 | 4 | 13 |
Continuous 24 h | 10 | 85 | 102 | 94 | 6 | 31 |
Continuous 48 h | 10 | 85 | 101 | 93 | 5 | 23 |
Bolus 0 min | 10 | 85 | 101 | 93 | 5 | 23 |
Bolus 5 min | 9 | 153 | 236 | 196 | 32 | 1047 |
Bolus 10 min | 9 | 212 | 308 | 246 | 31 | 987 |
Bolus 15 min | 9 | 200 | 275 | 226 | 23 | 507 |
Bolus 30 min | 10 | 117 | 193 | 153 | 25 | 638 |
Bolus 60 min | 10 | 67 | 137 | 96 | 19 | 359 |
Bolus 65 min | 8 | 126 | 247 | 172 | 38 | 1425 |
Bolus 70 min | 8 | 161 | 288 | 223 | 39 | 1500 |
Bolus 75 min | 8 | 169 | 296 | 216 | 42 | 1742 |
Bolus 120 min | 10 | 55 | 131 | 83 | 20 | 416 |
Bolus 125 min | 8 | 95 | 248 | 162 | 53 | 2785 |
Bolus 130 min | 7 | 155 | 322 | 212 | 67 | 4517 |
Bolus 135 min | 8 | 147 | 265 | 198 | 41 | 1698 |
Bolus 180 min | 10 | 59 | 104 | 76 | 12 | 149 |
Bolus 360 min | 10 | 78 | 92 | 85 | 5 | 22 |
Bolus 24 h | 9 | 83 | 101 | 91 | 7 | 48 |
Bolus 48 h | 10 | 77 | 107 | 93 | 9 | 86 |
Time Point | DNA Damage Lysis [% Tail Intensity] | DNA Damage H2O2 [% Tail Intensity] | DNA Damage FPG [% Tail Intensity] | Protein Carbonyles [nmol/mg] | Unconjugated Bilirubin [µmol/L] | FRAP [µmol/L] |
---|---|---|---|---|---|---|
Continuous 0 min | 2.94 ± 1.22 | 19.53 ± 0.79 | 8.70 ± 1.18 | 0.60 ± 0.25 | 6.79 ± 1.97 | 1219 ± 247 |
Bolus 0 min | 3.02 ± 0.92 | 20.61 ± 2.08 | 8.76 ± 1.24 | 0.69 ± 0.25 | 5.71 ± 2.12 | 1205 ± 216 |
Continuous 30 min | 2.88 ± 0.63 | 20.19 ± 1.68 | 8.86 ± 1.23 | 0.70 ± 0.14 | 7.04 ± 1.26 | 1110 ± 177 |
Bolus 30 min | 3.09 ± 0.74 | 20.41 ± 1.11 | 9.39 ± 1.31 | 0.64 ± 0.35 | 5.37 ± 1.97 | 1183 ± 214 |
Continuous 60 min | 2.19 ± 0.43 | 19.70 ± 1.38 | 9.11 ± 1.48 | 0.86 ± 0.39 | 6.78 ± 1.18 | 1168 ± 155 |
Bolus 60 min | 2.68 ± 0.61 | 19.81 ± 1.68 | 9.07 ± 1.26 | 0.80 ± 0.28 | 5.28 ± 1.52 | 1195 ± 215 |
Continuous 120 min | 1.81 ± 0.38 | 19.36 ± 1.19 | 8.26 ± 0.68 | 0.68 ± 0.27 | 7.27 ± 1.48 | 1152 ± 195 |
Bolus 120 min | 2.08 ± 0.74 | 19.22 ± 1.32 | 8.55 ± 0.77 | 0.69 ± 0.31 | 5.83 ± 2.41 | 1233 ± 251 |
Continuous 180 min | 3.08 ± 1.12 | 19.18 ± 0.92 | 8.88 ± 0.91 | 0.76 ± 0.33 | 8.27 ± 1.96 | 1160 ± 215 |
Bolus 180 min | 3.34 ± 0.90 | 19.45 ± 1.25 | 9.51 ± 1.75 | 0.76 ± 0.26 | 6.77 ± 2.47 | 1264 ± 169 |
Continuous 240 min | 2.80 ± 0.90 | 18.85 ± 1.12 | 8.67 ± 1.32 | 0.81 ± 0.40 | 8.14 ± 3.22 | 1382 ± 380 |
Bolus 240 min | 3.07 ± 0.55 | 19.82 ± 0.95 | 9.10 ± 1.59 | 0.88 ± 0.22 | 7.68 ± 2.42 | 1253 ± 192 |
Continuous 360 min | 2.46 ± 0.66 | 19.15 ± 0.64 | 8.13 ± 0.47 | 0.80 ± 0.36 | 9.42 ± 2.64 | 1235 ± 142 |
Bolus 360 min | 2.83 ± 0.55 | 20.29 ± 0.49 | 8.82 ± 1.34 | 0.79 ± 0.30 | 8.74 ± 2.82 | 1290 ± 241 |
Continuous 24 h | 2.30 ± 0.68 | 19.36 ± 1.19 | 8.12 ± 0.68 | 0.77 ± 0.35 | 6.99 ± 3.07 | 1255 ± 207 |
Bolus 24 h | 2.68 ± 0.54 | 19.22 ± 1.32 | 8.56 ± 0.98 | 0.89 ± 0.48 | 7.14 ± 3.40 | 1282 ± 184 |
Continuous 48 h | 2.21 ± 0.78 | 19.18 ± 0.92 | 8.07 ± 0.76 | 0.99 ± 0.31 | 7.00 ± 2.15 | 1238 ± 181 |
Bolus 48 h | 2.38 ± 0.68 | 19.45 ± 1.25 | 8.46 ± 1.26 | 1.14 ± 0.55 | 6.05 ± 2.93 | 1255 ± 172 |
References
- Sarwar, N.; Gao, P.; Kondapally Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; et al. Diabetes Mellitus, Fasting Blood Glucose Concentration, and Risk of Vascular Disease: A Collaborative Meta-Analysis of 102 Prospective Studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016; Volume 978, pp. 6–86. [Google Scholar]
- Suh, S.; Kim, J.H. Glycemic Variability: How Do We Measure It and Why Is It Important? Diabetes Metab. J. 2015, 39, 273–282. [Google Scholar] [CrossRef]
- Wang, C.; Lv, L.; Yang, Y.; Chen, D.; Liu, G.; Chen, L.; Song, Y.; He, L.; Li, X.; Tian, H.; et al. Glucose Fluctuations in Subjects with Normal Glucose Tolerance, Impaired Glucose Regulation and Newly Diagnosed Type 2 Diabetes Mellitus. Clin. Endocrinol. 2012, 76, 810–815. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Fiorentino, T.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-Induced Oxidative Stress and Its Role in Diabetes Mellitus Related Cardiovascular Diseases. Curr. Pharm. Des. 2013, 19, 5695–5703. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Du, X.L.; Edelstein, D.; Dimmeler, S.; Ju, Q.; Sui, C.; Brownlee, M. Hyperglycemia Inhibits Endothelial Nitric Oxide Synthase Activity by Posttranslational Modification at the Akt Site. J. Clin. Investig. 2001, 108, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.I.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; et al. Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Du, X.L.; Edelstein, D.; Rossetti, L.; Fantus, I.G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-Induced Mitochondrial Superoxide Overproduction Activates the Hexosamine Pathway and Induces Plasminogen Activator Inhibitor-1 Expression by Increasing Sp1 Glycosylation. Proc. Natl. Acad. Sci. USA 2000, 97, 12222–12226. [Google Scholar] [CrossRef]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The Investigation of the Oxidative Stress-Related Parameters in Type2 Diabetes Mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef]
- Gupta, S.; Gambhir, J.K.; Kalra, O.; Gautam, A.; Shukla, K.; Mehndiratta, M.; Agarwal, S.; Shukla, R. Association of Biomarkers of Inflammation and Oxidative Stress with the Risk of Chronic Kidney Disease in Type 2 Diabetes Mellitus in North Indian Population. J. Diabetes Complicat. 2013, 27, 548–552. [Google Scholar] [CrossRef]
- Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; et al. Oxidative Stress, Glutathione Status, Sirtuin and Cellular Stress Response in Type 2 Diabetes. Biochim. Biophys. Acta—Mol. Basis Dis. 2012, 1822, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Grindel, A.; Guggenberger, B.; Eichberger, L. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS ONE 2016, 11, e0162082. [Google Scholar] [CrossRef]
- Nakhjavani, M.; Khalilzadeh, O.; Khajeali, L.; Esteghamati, A.; Morteza, A.; Jamali, A.; Dadkhahipour, S. Serum Oxidized-LDL Is Associated with Diabetes Duration Independent of Maintaining Optimized Levels of LDL-Cholesterol. Lipids 2010, 45, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View Beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M.; Montisano, D.F.; Toledo, S.; Barrieux, A. High Glucose Induces DNA Damage in Cultured Human Endothelial Cells. J. Clin. Investig. 1986, 77, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Shimoi, K.; Okitsu, A.; Green, M.H.L.; Lowe, J.E.; Ohta, T.; Kaji, K.; Terato, H.; Ide, H.; Kinae, N. Oxidative DNA Damage Induced by High Glucose and Its Suppression in Human Umbilical Vein Endothelial Cells. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2001, 480–481, 371–378. [Google Scholar] [CrossRef]
- Oyama, T.; Miyasita, Y.; Watanabe, H.; Shirai, K. The Role of Polyol Pathway in High Glucose-Induced Endothelial Cell Damages. Diabetes Res. Clin. Pract. 2006, 73, 227–234. [Google Scholar] [CrossRef]
- Ciminera, A.K.; Shuck, S.C.; Termini, J. Elevated Glucose Increases Genomic Instability by Inhibiting Nucleotide Excision Repair. Life Sci. Alliance 2021, 4, 1–15. [Google Scholar] [CrossRef]
- Feldbauer, R.; Heinzl, M.W.; Klammer, C.; Resl, M.; Pohlhammer, J.; Rosenberger, K.; Almesberger, V.; Obendorf, F.; Schinagl, L.; Wagner, T.; et al. Effect of Repeated Bolus and Continuous Glucose Infusion on a Panel of Circulating Biomarkers in Healthy Volunteers. PLoS ONE 2022, 17, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Oscoz, A.A.; Brunborg, G.; Gaivão, I.; Giovannelli, L.; Kruszewski, M.; Smith, C.C.; Štětina, R. The Comet Assay: Topical Issues. Mutagenesis 2008, 23, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Shaposhnikov, S.; Collins, A.R. DNA Oxidation: Investigating Its Key Role in Environmental Mutagenesis with the Comet Assay. Mutat. Res.—Genet. Toxicol. Environ. Mutagen. 2009, 674, 101–108. [Google Scholar] [CrossRef]
- Azqueta, A.; Ladeira, C.; Giovannelli, L.; Boutet-Robinet, E.; Bonassi, S.; Neri, M.; Gajski, G.; Duthie, S.; Del Bo’, C.; Riso, P.; et al. Application of the Comet Assay in Human Biomonitoring: An HCOMET Perspective. Mutat. Res.—Rev. Mutat. Res. 2020, 783, 108288. [Google Scholar] [CrossRef]
- Blasiak, J.; Arabski, M.; Krupa, R.; Wozniak, K.; Zadrozny, M.; Kasznicki, J.; Zurawska, M.; Drzewoski, J. DNA Damage and Repair in Type 2 Diabetes Mellitus. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2004, 554, 297–304. [Google Scholar] [CrossRef]
- Xavier, D.J.; Takahashi, P.; Manoel-Caetano, F.S.; Foss-Freitas, M.C.; Foss, M.C.; Donadi, E.A.; Passos, G.A.; Sakamoto-Hojo, E.T. One-Week Intervention Period Led to Improvements in Glycemic Control and Reduction in DNA Damage Levels in Patients with Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2014, 105, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Dalle-donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein Carbonyl Groups as Biomarkers of Oxidative Stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Wallner, M.; Mölzer, C.; Gazzin, S.; Bulmer, A.C.; Tiribelli, C.; Vitek, L. Looking to the Horizon: The Role of Bilirubin in the Development and Prevention of Age-Related Chronic Diseases. Clin. Sci. 2015, 129, 1–25. [Google Scholar] [CrossRef]
- Franzke, B.; Schober-Halper, B.; Hofmann, M.; Oesen, S.; Tosevska, A.; Henriksen, T.; Poulsen, H.E.; Strasser, E.M.; Wessner, B.; Wagner, K.H. Age and the Effect of Exercise, Nutrition and Cognitive Training on Oxidative Stress—The Vienna Active Aging Study (VAAS), a Randomized Controlled Trial. Free Radic. Biol. Med. 2018, 121, 69–77. [Google Scholar] [CrossRef]
- Draxler, A.; Franzke, B.; Cortolezis, J.T.; Gillies, N.A.; Unterberger, S.; Aschauer, R.; Zöhrer, P.A.; Bragagna, L.; Kodnar, J.; Strasser, E.M.; et al. The Effect of Elevated Protein Intake on Dna Damage in Older People: Comparative Secondary Analysis of Two Randomized Controlled Trials. Nutrients 2021, 13, 3479. [Google Scholar] [CrossRef]
- Wilking, M.; Ndiaye, M.; Mukhtar, H.; Ahmad, N. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health. Antioxid. Redox Signal. 2013, 19, 192–208. [Google Scholar] [CrossRef]
- Kohsaka, A.; Bass, J. A Sense of Time: How Molecular Clocks Organize Metabolism. Trends Endocrinol. Metab. 2007, 18, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R.; Coto-Montes, A.; Poeggeler, B. Circadian Rhythms, Oxidative Stress, and Antioxidative Defense Mechanisms. Chronobiol. Int. 2003, 20, 921–962. [Google Scholar] [CrossRef] [PubMed]
- Kanabrocki, E.L.; Third, J.L.H.C.; Ryan, M.D.; Nemchausky, B.A.; Shirazi, P.; Scheving, L.E.; McCormick, J.B.; Hermida, R.C.; Bremmer, W.F.; Hoppensteadt, D.A.; et al. Circadian Relationship of Serum, Uric Acid and Nitric Oxide. J. Am. Med. Assoc. 2000, 283, 2240–2241. [Google Scholar] [CrossRef] [PubMed]
- Manzella, N.; Bracci, M.; Strafella, E.; Staffolani, S.; Ciarapica, V.; Copertaro, A.; Rapisarda, V.; Ledda, C.; Amati, M.; Valentino, M.; et al. Circadian Modulation of 8-Oxoguanine DNA Damage Repair. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kanabrocki, E.L.; Murray, D.; Hermida, R.C.; Scott, G.S.; Bremner, W.F.; Ryan, M.D.; Ayala, D.E.; Third, J.L.H.C.; Shirazi, P.; Nemchausky, B.A.; et al. Circadian Variation in Oxidative Stress Markers in Healthy and Type II Diabetic Men. Chronobiol. Int. 2002, 19, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Rodney, L.; Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.-W.; Shaltiel, S.; Stadtman, E.R. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Wallner, M.; Blassnigg, S.M.; Marisch, K.; Pappenheim, M.T.; Müllner, E.; Mölzer, C.; Nersesyan, A.; Marculescu, R.; Doberer, D.; Knasmüller, S.; et al. Effects of Unconjugated Bilirubin on Chromosomal Damage in Individuals with Gilbert’s Syndrome Measured with the Micronucleus Cytome Assay. Mutagenesis 2012, 27, 731–735. [Google Scholar] [CrossRef]
n | Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|---|
Age at participation | 10 | 21 | 30 | 25 | 3 |
Pulse ECG (bpm) | 10 | 53 | 88 | 62 | 11 |
Systolic blood pressure (mmHg) | 10 | 107 | 138 | 120 | 10 |
Diastolic blood pressure (mmHg) | 10 | 59 | 87 | 74 | 7 |
Size (cm) | 10 | 174 | 190 | 180 | 5 |
Weight (kg) | 10 | 73 | 100 | 83 | 9 |
BMI (kg/m2) | 10 | 22.5 | 30.9 | 25.6 | 2.5 |
Waist circumference (cm) | 10 | 81 | 110 | 90 | 8 |
Patient Code | CV Continuous (in %) | CV Bolus (in %) |
---|---|---|
A | 9.65% | 44.66% |
B | 11.85% | 21.35% |
C | 16.22% | 44.26% |
D | 26.48% | 37.60% |
E | 18.42% | 40.29% |
G | 27.12% | 45.09% |
H | 10.81% | 41.21% |
I | 27.64% | 41.76% |
K | 12.25% | 40.91% |
M | 25.49% | 42.63% |
Marker | Time Effect (p-Value) | Group Effect (p-Value) | Time × Group (p-Value) |
---|---|---|---|
Lysis [% tail intensity] | <0.001 * | 0.301 | 0.829 |
H2O2 [% tail intensity] | 0.001 * | 0.377 | 0.059 |
FPG [% tail intensity] | 0.015 * | 0.341 | 0.728 |
PC [nmol/mg] | 0.004 * | 0.679 | 0.904 |
UCB [µmol/L] | <0.001 * | 0.222 | 0.598 |
FRAP [µmol/L] | 0.082 | 0.700 | 0.448 |
Patient Code | Year of Birth | Age at Participation | Pulse ECG (bpm) | RR (mmHg) | Weight (kg) | BMI (kg/m2) | Waist Circumference (cm) | Body Size (cm) | HbA1c (mmol/mol) |
---|---|---|---|---|---|---|---|---|---|
B | 1988 | 30 | 67 | 115/73 | 73 | 23.8 | 87.5 | 175 | 5.2 |
A | 1997 | 22 | 54 | 133/75 | 100 | 30.9 | 110 | 180 | 5.5 |
K | 1994 | 24 | 70 | 138/87 | 75 | 23.4 | 82.5 | 179 | 5.1 |
G | 1992 | 26 | 55 | 115/71 | 79 | 24.9 | 88 | 178 | 5.2 |
C | 1998 | 21 | 63 | 125/79 | 78.4 | 23.9 | 81 | 181 | 5.2 |
i | 1996 | 23 | 53 | 107/76 | 78.5 | 25.9 | 92 | 174 | 5.3 |
E | 1993 | 26 | 88 | 121/73 | 94 | 27.8 | 87 | 184 | 5.5 |
M | 1993 | 26 | 54 | 124/74 | 86 | 27.1 | 90 | 178 | 4.9 |
D | 1991 | 28 | 57 | 107/59 | 92.2 | 25.5 | 90 | 190 | 5.1 |
H | 1993 | 27 | 57 | 116/68 | 77 | 22.5 | 90 | 185 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragagna, L.; Polak, C.; Schütz, L.; Maqboul, L.; Klammer, C.; Feldbauer, R.; Draxler, A.; Clodi, M.; Wagner, K.-H. Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers. Int. J. Mol. Sci. 2023, 24, 13608. https://doi.org/10.3390/ijms241713608
Bragagna L, Polak C, Schütz L, Maqboul L, Klammer C, Feldbauer R, Draxler A, Clodi M, Wagner K-H. Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers. International Journal of Molecular Sciences. 2023; 24(17):13608. https://doi.org/10.3390/ijms241713608
Chicago/Turabian StyleBragagna, Laura, Christina Polak, Lisa Schütz, Lina Maqboul, Carmen Klammer, Roland Feldbauer, Agnes Draxler, Martin Clodi, and Karl-Heinz Wagner. 2023. "Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers" International Journal of Molecular Sciences 24, no. 17: 13608. https://doi.org/10.3390/ijms241713608
APA StyleBragagna, L., Polak, C., Schütz, L., Maqboul, L., Klammer, C., Feldbauer, R., Draxler, A., Clodi, M., & Wagner, K. -H. (2023). Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers. International Journal of Molecular Sciences, 24(17), 13608. https://doi.org/10.3390/ijms241713608