The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease
Abstract
:1. Introduction
2. Results
2.1. Defining the TLT-1 Soluble Fragment
2.2. Baseline Characteristics of Patient Population
2.3. Association of Patient sTLT-1 Levels with Primary and Secondary Outcomes
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Biomarker Analyses
4.3. Platelet Preparation
4.4. Mass Spectrometry Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales-Ortíz, J.; Deal, V.; Reyes, F.; Maldonado-Martínez, G.; Ledesma, N.; Staback, F.; Croft, C.; Pacheco, A.; Ortiz-Zuazaga, H.; Yost, C.C.; et al. Platelet-derived TLT-1 is a prognostic indicator in ALI/ARDS and prevents tissue damage in the lungs in a mouse model. Blood 2018, 132, 2495–2505. [Google Scholar] [CrossRef]
- Branfield, S.; Washington, A.V. The enigmatic nature of the triggering receptor expressed in myeloid cells-1 (TLT-1). Platelets 2021, 32, 753–760. [Google Scholar] [CrossRef]
- Washington, A.V.; Gibot, S.; Acevedo, I.; Gattis, J.; Quigley, L.; Feltz, R.; De La Mota, A.; Schubert, R.L.; Gomez-Rodriguez, J.; Cheng, J.; et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J. Clin. Investig. 2009, 119, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.P.; Barry, C.; Tran, A.N.; Traxler, E.A.; Wannemacher, K.M.; Tang, H.-Y.; Speicher, K.D.; Blair, I.A.; Speicher, D.W.; Grosser, T.; et al. Deciphering the human platelet sheddome. Blood 2011, 117, e15–e26. [Google Scholar] [CrossRef]
- Smith, C.W.; Raslan, Z.; Parfitt, L.; Khan, A.O.; Patel, P.; Senis, Y.A.; Mazharian, A. TREM-like transcript 1: A more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Adv. 2018, 2, 2072–2078. [Google Scholar] [CrossRef]
- Allcock, R.J.N.; Barrow, A.D.; Forbes, S.; Beck, S.; Trowsdale, J. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur. J. Immunol. 2003, 33, 567–577. [Google Scholar] [CrossRef]
- Barrow, A.D.; Astoul, E.; Floto, A.; Brooke, G.; Relou, I.A.M.; Jennings, N.S.; Smith, K.G.C.; Ouwehand, W.; Farndale, R.W.; Alexander, D.R.; et al. Cutting Edge: TREM-Like Transcript-1, a Platelet Immunoreceptor Tyrosine-Based Inhibition Motif Encoding Costimulatory Immunoreceptor that Enhances, Rather than Inhibits, Calcium Signaling via SHP-2. J. Immunol. 2004, 172, 5838–5842. [Google Scholar] [CrossRef] [PubMed]
- Menti, E.; Zaffari, D.; Galarraga, T.; Pontin, B.; Pellanda, L.C.; Portal, V.L. Early Markers of Atherosclerotic Disease in Individuals with Excess Weight and Dyslipidemia. Arq. Bras. Cardiol. 2016, 106, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Wu, K.K.; Rosamond, W.D.; Sharrett, A.R.; Chambless, L.E. Prospective Study of Hemostatic Factors and Incidence of Coronary Heart Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997, 96, 1102–1108. [Google Scholar] [CrossRef]
- Das, A.A.; Chakravarty, D.; Bhunia, D.; Ghosh, S.; Mandal, P.C.; Siddiqui, K.N.; Bandyopadhyay, A. Elevated level of circulatory sTLT1 induces inflammation through SYK/MEK/ERK signalling in coronary artery disease. Clin. Sci. 2019, 133, 2283–2299. [Google Scholar] [CrossRef]
- Shen, L.; Yang, T.; Xia, K.; Yan, Z.; Tan, J.; Li, L.; Qin, Y.; Shi, W. P-selectin (CD62P) and soluble TREM-like transcript-1 (sTLT-1) are associated with coronary artery disease: A case control study. BMC Cardiovasc. Disord. 2020, 20, 387. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Braunwald, E.; Moyé, L.A.; Basta, L.; Brown, E.J.; Cuddy, T.E.; Davis, B.R.; Geltman, E.M.; Goldman, S.; Flaker, G.C.; et al. Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl. J. Med. 1992, 327, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. ACE Inhibitors—A Cornerstone of the Treatment of Heart Failure. N. Engl. J. Med. 1991, 325, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Pepine, C.; Garces, C.; Pouleur, H.; Rousseau, M.; Salem, D.; Kostis, J.; Benedict, C.; Bourassa, M.; Pitt, B. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992, 340, 1173–1178. [Google Scholar] [CrossRef]
- Braunwald, E.; Domanski, M.J.; E Fowler, S.; Geller, N.L.; Gersh, B.J.; Hsia, J.; A Pfeffer, M.; Rice, M.M.; Rosenberg, Y.D.; Rouleau, J.L.; et al. Angiotensin-Converting–Enzyme Inhibition in Stable Coronary Artery Disease. N. Engl. J. Med. 2004, 351, 2058–2068. [Google Scholar] [CrossRef]
- Shammas, R.L.; Khan, N.U.A.; Nekkanti, R.; Movahed, A. Diastolic heart failure and left ventricular diastolic dysfunction: What we know, and what we don’t know! Int. J. Cardiol. 2007, 115, 284–292. [Google Scholar] [CrossRef]
- Klaeboe, L.G.; Edvardsen, T. Echocardiographic assessment of left ventricular systolic function. J. Echocardiogr. 2018, 17, 10–16. [Google Scholar] [CrossRef]
- A Henriksen, P. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart 2017, 104, 971–977. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Li, S.; Liu, Y.; Cui, Y.; Deng, X. Advances in Biomarkers for Detecting Early Cancer Treatment-Related Cardiac Dysfunction. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, V.; Pirozzi, F.; Lazzarini, E.; Marone, G.; Rizzo, P.; Agnetti, G.; Tocchetti, C.G.; Ghigo, A.; Ameri, P. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs. J. Card. Fail. 2016, 22, 449–458. [Google Scholar] [CrossRef]
- Modi, K.; Joppa, S.; Chen, K.-H.A.; Athwal, P.S.S.; Okasha, O.; Velangi, P.S.; Hooks, M.; Nijjar, P.S.; Blaes, A.H.; Shenoy, C. Myocardial damage assessed by late gadolinium enhancement on cardiovascular magnetic resonance imaging in cancer patients treated with anthracyclines and/or trastuzumab. Eur. Hear. J. Cardiovasc. Imaging 2020, 22, 427–434. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristic | sTLT-1 Average (pg/mL) | p-Value | |
---|---|---|---|
Cigarette Use | YES NO | (N = 1156) 1140 ± 1472 (N = 353) 1290 ± 1454 | 0.019 |
History of myocardial infarction | YES NO | (N = 903) 1130 ± 1395 (N = 607) 1244 ± 1570 | 0.08 |
History of Diabetes | YES NO | (N = 231) 1298 ± 1613 (N = 1279) 1153 ± 1441 | 0.098 |
History of CABG | YES NO | (N = 556) 1180 ± 1515 (N = 954) 1173 ± 1442 | 0.46 |
History Of PCI | YES NO | (N = 693) 1093 ± 1316 (N = 817) 1245 ± 1584 | 0.09 |
History of Stroke | YES NO | (N = 60) 821 ± 730 (N = 1450) 1190 ± 1490 | 0.12 |
Tandolapril | YES NO | (N = 733) 1214 ± 1469 (N = 777) 1139 ± 1400 | 0.77 |
History of Angina | YES NO | (N = 1091) 1183 ± 1532 (N = 419) 1157 ± 1290 | 0.57 |
History of Hbp | YES NO | (N= 618) 1051 ± 1220 (N = 892) 1262 ± 1614 | 0.13 |
Antiplatelet use | YES NO | (N = 701) 1338 ± 1617 (N = 44) 1390 ± 1320 | 0.75 |
Anticoagulant use | YES NO | (N = 28) 1311 ± 1601 (N = 432) 1353 ± 1801 | 0.94 |
Anticoagulant and antiplatelet use | YES NO | (N = 21) 1578 ± 1773 (N = 439) 1340 ± 1789 | 0.25 |
Beta blockers use | YES NO | (N = 222) 1507 ± 2060 (N = 156) 1130 ± 1462 | 0.019 |
Serum cholesterol | <200 mg/dL >200 mg/dL | (N = 376) 1379 ± 1570 (N = 230) 1209 ± 1467 | 0.07 |
Outcomes | sTLT-1 Average (pg/mL) | p-Value | |
---|---|---|---|
Primary outcomes | |||
Death | YES NO | (N = 66) 1014 ± 1105 (N = 1444) 1183 ± 1484 | 0.16 |
Cardiovascular death | YES NO | (N = 35) 982 ± 1189 (N = 1475) 1180 ± 1475 | 0.26 |
Other death | YES NO | (N = 31) 1050 ± 1020 (N = 1479) 1179 ± 1477 | 0.39 |
Secondary outcomes | |||
Myocardial infarction | YES NO | (N = 79) 961 ± 1002 (N = 1431) 1188 ± 1490 | 0.07 |
New diabetes | YES NO | (N = 117) 1143 ± 1336 (N = 1393) 1179 ± 1480 | 0.47 |
Congestve heart failure | YES NO | (N = 32) 1191 ± 1719 (N = 1478) 1176 ± 1464 | 0.58 |
Coronary artery bypass grafting | YES NO | (N = 107) 1273 ± 1399 (N = 1403) 1169 ± 1475 | 0.98 |
Unstable angina | YES NO | (N = 188) 1120 ± 1281 (N = 1322) 1184 ± 1494 | 0.26 |
Arrythmia | YES NO | (N = 61) 1293 ± 1533 (N = 1449) 1171 ± 1467 | 0.96 |
Percutaneous coronary intervention | YES NO | (N = 182) 1138 ± 1464 (N = 1328) 1181 ± 1470 | 0.76 |
Left ventricle qualitative abnormal function | YES NO | (N = 244) 982 ± 1141 (N = 1022) 1247 ± 1589 | 0.021 |
Baseline Characteristic | sTLT-1 < 544 pg/mL | sTLT-1 ≥ 544 pg/mL | p-Value |
---|---|---|---|
N (1510) | 578 (38%) | 932 (61%) | |
AGE (1510) | 63 ± 7 (578) | 63.99 ± 8 (932) | 0.97 |
Female sex (260) | 96 | 164 | 0.62 |
Body mass index (1510) | 28 ± 4 (575) | 28.89 ± 4 (926) | 0.72 |
History of angina (1091) | 418 | 673 | 0.96 |
History of myocardial infarction (903) | 360 | 543 | 0.12 |
Total cholesterol (1470) | 192 ± 38 (563) | 190 ± 37 (907) | 0.35 |
Cigarette use (1156) | 454 | 702 | 0.16 |
History of diabetes (231) | 77 | 154 | 0.09 |
History of blood pressure (618) | 240 | 378 | 0.71 |
History of coronary artery bypass grafting (556) | 223 | 333 | 0.26 |
History of percutaneous coronary intervention (693) | 278 | 415 | 0.18 |
History of stroke (60) | 25 | 35 | 0.58 |
Tandolapril (733) | 275 | 458 | 0.56 |
Outcomes | sTLT-1 < 544 pg/mL | sTLT-1 ≥ 544 pg/mL | p-Value |
---|---|---|---|
Primary outcomes | |||
Death | 22 | 44 | 0.40 |
Cvdeath | 13 | 22 | 0.89 |
Secondary outcomes | |||
Unstable angina | 67 | 121 | 0.43 |
Arrythmia | 17 | 44 | 0.09 |
Myocardial infarction | 31 | 48 | 0.86 |
Left ventricle qualitatively abnormal function | 113 | 131 | 0.01 |
New diabetes mielitus | 47 | 70 | 0.66 |
Coronary artery bypass grafting | 32 | 75 | 0.07 |
Percutaneous coronary intervention | 68 | 114 | 0.79 |
Congestive heart failure | 14 | 18 | 0.52 |
Acs (mi, ptca, cabg, stroke, cvdeath, ua) | 136 | 249 | 0.17 |
Risk Factors for Cardiovascular Diseases (1510) | Myocardial Infarction | Unstable Angina | Left Ventricle Qualitative Abnormal Function | Percutaneous Coronary Intervention | Coronary Artery Bypass Grafting | Congestive Heart Failure | Death | Cardiovascular Death | Acute Coronary Syndrome | |
---|---|---|---|---|---|---|---|---|---|---|
sTLT ≥ 544 pg/mL | Or (95% CI) p-value | 1.04 (0.66–1.66) 0.857 | 0.88 (0.64–1.21) 0.426 | 1.53 (1.15–2.02) 0.003 | 0.96 (0.70–1.32) 0.786 | 0.67 (0.44–1.03) 0.066 | 1.26 (0.62–2.55) 0.521 | 0.80 (0.47–1.35) 0.399 | 0.95 (0.48–1.90) 0.889 | 0.84 (0.66–1.07) 0.167 |
Outcomes | Stlt-1 < 544 pg/mL | sTLT-1 ≥ 544 pg/mL | p-Values |
---|---|---|---|
Myocardial infarction | 1 (reference) | 0.695 (0.413–1.170) | 0.171 |
Unstable angina | 1 (reference) | 0.842 (0.603–1.175) | 0.312 |
Stroke | 1 (reference) | 4.214 (0.543–32.691) | 0.169 |
New diabetes mellitus | 1 (reference) | 1.235 (0.803–1.900) | 0.336 |
Cv death | 1 (reference) | 1.737 (0.800–3.773) | 0.163 |
Percutaneous coronary intervention | 1 (reference) | 1.045 (0.750–1.455) | 0.796 |
Coronary artery bypass grafting | 1 (reference) | 0.652 (0.416–1.021) | 0.062 |
Congestive heart failure | 1 (reference) | 2.935 (1.040–8.282) | 0.042 |
Arrhythmia | 1 (reference) | 0.784 (0.388–1.585) | 0.498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayrón-Marrero, Z.; Branfield, S.; Menéndez-Pérez, J.; Nieves-López, B.; Ospina, L.; Cantres-Rosario, Y.; Melendez, L.M.; Hunter, R.; Gibson, A.; Maldonado-Martínez, G.; et al. The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease. Int. J. Mol. Sci. 2023, 24, 13632. https://doi.org/10.3390/ijms241713632
Bayrón-Marrero Z, Branfield S, Menéndez-Pérez J, Nieves-López B, Ospina L, Cantres-Rosario Y, Melendez LM, Hunter R, Gibson A, Maldonado-Martínez G, et al. The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease. International Journal of Molecular Sciences. 2023; 24(17):13632. https://doi.org/10.3390/ijms241713632
Chicago/Turabian StyleBayrón-Marrero, Zaida, Siobhan Branfield, Javier Menéndez-Pérez, Benjamín Nieves-López, Laura Ospina, Yadira Cantres-Rosario, Loyda M. Melendez, Robert Hunter, Angelia Gibson, Gerónimo Maldonado-Martínez, and et al. 2023. "The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease" International Journal of Molecular Sciences 24, no. 17: 13632. https://doi.org/10.3390/ijms241713632
APA StyleBayrón-Marrero, Z., Branfield, S., Menéndez-Pérez, J., Nieves-López, B., Ospina, L., Cantres-Rosario, Y., Melendez, L. M., Hunter, R., Gibson, A., Maldonado-Martínez, G., & Washington, A. V. (2023). The Characterization and Evaluation of the Soluble Triggering Receptor Expressed on Myeloid Cells-like Transcript-1 in Stable Coronary Artery Disease. International Journal of Molecular Sciences, 24(17), 13632. https://doi.org/10.3390/ijms241713632