Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing
Abstract
:1. Introduction
2. The REDOR Measurement
3. Variations on REDOR and REDOR-Based Multidimensional Solid-State NMR Measurements
4. Membrane-Associated Polypeptide Chains
4.1. Determination of Secondary Structure
4.2. Location in the Lipid Bilayer
4.3. Association of Polypeptide Chains in Lipid Bilayers
5. Amyloid Peptides
6. Biomineralization Peptides
7. Protein–Ligand and Protein–Nucleic Acid Interactions
7.1. Protein–Ligand Distance Restraints
7.2. Conformation of Bound Ligands
7.3. Protein–Nucleic Acid Interactions
8. Cell Wall Architecture and Glycopeptide Antibiotics
9. Concluding Remarks and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A5P | Arabinose-5-phosphate |
ATP | Adenosine triphosphate |
CSA | Chemical shift anisotropy |
CORD | Combined R2nv-driven |
DANTE | Delays alternating with nutation for tailored excitation |
DEDOR | Deferred rotational-echo double resonance |
DNA | Deoxyribonucleic acid |
DNP | Dynamic nuclear polarization |
DSQ | Double single-quantum |
EM | Electron microscopy |
EmrE | Efflux-multidrug resistance E |
eNOE | Exact nuclear Overhauser effect |
EPSP | 5-enolpyruvylshikimate-3-phosphate |
ERGIC | Endoplasmic reticulum Golgi intermediate compartment |
ETM | Envelope protein E |
Fem | Factors essential for methicillin resistance |
FS | Frequency selective |
F4-TPP+ | Tetra(4-fluorophenyl) phosphonium |
GB1 | β1 Immunoglobulin binding domain of protein G |
GlnBP | Glutamine-binding protein |
gp41 | Glycopeptide 41 |
HAP | Hydroxyapatite |
HSQC | Heteronuclear single-quantum coherence |
KDO | 3-deoxy-D-manno-2-octulosonate |
KDO8PS | 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase |
LRAP | Leucine-rich amelogenin protein |
MAS | Magic angle spinning |
MD | Molecular dynamics |
MPER-TMD | Membrane-proximal external region and the transmembrane domain |
NOESY | Nuclear Overhauser effect spectroscopy |
PAINCP | Proton assisted insensitive nuclei cross-polarization |
PEP | Phosphoenolpyruvate |
PG | Peptidoglycan |
PG-1 | Protegrin-1 |
PKC | Protein kinase C |
REDOR | Rotational-echo double resonance |
RFDR | Radio-frequency-driven recoupling |
RNA | Ribonucleic acid |
S3P | Shikimate-3-phosphate |
SE | Sphingomyelin |
ss-NMR | Solid-state nuclear magnetic resonance |
TAR | Transactivation response element |
TEDOR | Transferred-echo double resonance |
TM | Transmembrane |
TPPM | Two-pulse phase modulation |
UDG | DNA glycosylase |
References
- Mehring, M. Principles of High Resolution NMR in Solids, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Schmidt-Rohr, K.; Spiess, H.W. Multidimensional Solid-State NMR and Polymers; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Renault, M.; Cukkemane, A.; Baldus, M. Solid-state NMR spectroscopy on complex biomolecules. Angew. Chem. Int. Ed. Engl. 2010, 49, 8346–8357. [Google Scholar] [CrossRef]
- Reif, B.; Ashbrook, S.E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Primers 2021, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Mote, K.R.; Lakomek, N.A.; Agarwal, V. Solid-State NMR: Methods for Biological Solids. Chem. Rev. 2022, 122, 9643–9737. [Google Scholar] [CrossRef] [PubMed]
- Prosser, R.S.; Hunt, S.A.; Vold, R.R. Improving Sensitivity in Mechanically Oriented Phospholipid Bilayers Using Ultrathin Glass Plates—A Deuterium Solid State NMR Study. J. Magn. Res. B 1996, 109, 109–111. [Google Scholar] [CrossRef]
- Torbet, J. Using Magnetic Orientation to Study Structure and Assembly. Trends Biochem. Sci. 1987, 12, 327–330. [Google Scholar] [CrossRef]
- Sanders, C.R.; Hare, B.J.; Howard, K.; Prestegard, J.H. Magnetically-Oriented Phospholipid Micelles as a Tool for the Study of Membrane-Associated Molecules. Progr. NMR Spectr. 1993, 26, 421–444. [Google Scholar] [CrossRef]
- Lee, M.; Goldburg, W.I. Nuclear-Magnetic-Resonance Line Narrowing by a Rotating Magnetic Field. Phys. Rev. 1965, 140, 1261–1271. [Google Scholar] [CrossRef]
- Mansfield, P.; Ware, D. Nuclear Resonance Line Narrowing in Solids by Repeated Short Pulse R.F. Irradiation. Phys. Lett. 1966, 22, 133–135. [Google Scholar] [CrossRef]
- Ostroff, E.D.; Waugh, J.S. Multiple Spin Echoes and Spin Locking in Solids. Phys. Rev. Lett. 1966, 16, 1097–1098. [Google Scholar] [CrossRef]
- Andrew, E.R.; Bradbury, A.; Eades, R.G. Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature 1958, 182, 1659. [Google Scholar] [CrossRef]
- Lowe, I.J. Free Induction Decays of Rotating Solids. Phys. Rev. Lett. 1959, 2, 285–287. [Google Scholar] [CrossRef]
- Raleigh, D.P.; Levitt, M.H.; Griffin, R.G. Rotational Resonance in Solid State NMR. Chem. Phys. Lett. 1988, 146, 71–76. [Google Scholar] [CrossRef]
- Bennett, A.E.; Griffin, R.G.; Ok, J.H.; Vega, S. Chemical-Shift Correlation Spectroscopy in Rotating Solids—Radio Frequency-Driven Dipolar Recoupling and Longitudinal Exchange. J. Chem. Phys. 1992, 96, 8624–8627. [Google Scholar] [CrossRef]
- Gullion, T.; Schaefer, J. Rotational Echo Double-Resonance NMR. J. Magn. Res. 1989, 81, 196–200. [Google Scholar] [CrossRef]
- Gullion, T.; Schaefer, J. Detection of Weak Heteronuclear Dipolar Coupling by Rotational Echo Double-Resonance. Adv. Magn. Res. 1989, 13, 57–83. [Google Scholar]
- Tőke, O.; Cegelski, L. REDOR Applications in Biology: An Overview. In Encyclopedia of Nuclear Magnetic Resonance; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Cegelski, L. REDOR NMR for drug discovery. Bioorg. Med. Chem. Lett. 2013, 23, 5767–5775. [Google Scholar] [CrossRef]
- Hartmann, S.R.; Hahn, E.L. Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 1962, 128, 2042–2053. [Google Scholar] [CrossRef]
- Pines, A.; Gibby, M.G.; Waugh, J.S. Proton-Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids. J. Chem. Phys. 1971, 56, 1776–1777. [Google Scholar] [CrossRef]
- Pines, A.; Gibby, M.G.; Waugh, J.S. Proton-Enhanced NMR of Dilute Spins in Solids. J. Chem. Phys. 1973, 59, 569–590. [Google Scholar] [CrossRef]
- Shcherbakov, A.A.; Mandala, V.S.; Hong, M. High-Sensitivity Detection of Nanometer 1H−19F Distances for Protein Structure Determination by 1H-Detected Fast MAS NMR. J. Phys. Chem. B 2019, 123, 4387–4391. [Google Scholar] [CrossRef]
- Zhou, D.H.; Rienstra, C.M. High-performance solvent suppression for proton detected solid-state NMR. J. Magn. Reson. 2008, 192, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Hou, G.; Lu, X.; Polenova, T. Mapping Protein-Protein Interactions by Double-REDOR-Filtered Magic Angle Spinning NMR Spectroscopy. J. Biomol. NMR 2017, 67, 95–108. [Google Scholar] [CrossRef]
- Gullion, T.; Baker, D.B.; Conradi, M.S. New, Compensated Carr-Purcell Sequences. J. Magn. Res. 1990, 89, 479–484. [Google Scholar] [CrossRef]
- Hou, G.; Yan, S.; Trébosc, J.; Amoureux, J.P.; Polenova, T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J. Magn. Reson. 2013, 232, 18–30. [Google Scholar] [CrossRef]
- Vögeli, B.; Segawa, T.F.; Leitz, D.; Sobol, A.; Choutko, A.; Trzesniak, D.; van Gunsteren, W.; Riek, R. Exact Distances and Internal Dynamics of Perdeuterated Ubiquitin from NOE Buildups. J. Am. Chem. Soc. 2009, 131, 17215–17225. [Google Scholar] [CrossRef] [PubMed]
- Nichols, P.J.; Born, A.; Henen, M.A.; Strotz, D.; Ortz, J.; Olsson, S.; Güntert, P.; Chi, C.N.; Vögeli, B. The Exact Nuclear Overhauser Enhancement: Recent Advances. Molecules 2017, 22, 1176. [Google Scholar] [CrossRef] [PubMed]
- Gullion, T. Recollections of REDOR. J. Magn. Reson. 2011, 213, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Jaroniec, C.P.; Tounge, B.A.; Herzfeld, J.; Griffin, R.G. Frequency Selective Heteronuclear Dipolar Recoupling in Rotating Solids: Accurate 13C-15N Distance Measurements in Uniformly 13C,15N-labeled Peptides. J. Am. Chem. Soc. 2001, 123, 3507–3519. [Google Scholar] [CrossRef]
- Shcherbakov, A.A.; Hong, M. Rapid Measurement of Long-Range Distances in Proteins by Multidimensional 13C-19F REDOR NMR under Fast Magic-Angle Spinning. J. Biomol. NMR 2018, 71, 31–43. [Google Scholar] [CrossRef]
- Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995, 103, 6951–6958. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Hong, M. Measurements of Carbon to Amide-Proton Distances by C−H Dipolar Recoupling with 15N NMR Detection. J. Am. Chem. Soc. 2003, 125, 5648–5649. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Hong, M. X-1H rotational-echo double-resonance NMR for torsion angle determination of peptides. Chem. Phys. Lett. 2003, 380, 742–748. [Google Scholar] [CrossRef]
- Wi, S.; Sinha, N.; Hong, M. Long-Range H-F Distance Measurement in Peptides by Solid-State NMR. J. Am. Chem. Soc. 2004, 126, 12754–12755. [Google Scholar] [CrossRef]
- Li, S.; Su, Y.; Hong, M. Intramolecular 1H-13C Distance Measurement in Uniformly 13C, 15N Labeled Peptides by Solid-State NMR. Solid State Nucl. Magn. Reson. 2012, 45–46, 51–58. [Google Scholar] [CrossRef]
- Kovacs, F.A.; Fowler, D.J.; Gallagher, G.J.; Thompson, L.K. A Practical Guide for Solid-State NMR Distance Measurements in Proteins. Conc. Magn. Reson. A 2007, 30, 21–39. [Google Scholar] [CrossRef]
- Toke, O.; O’Connor, R.D.; Weldeghiorghis, T.K.; Maloy, W.L.; Glaser, R.W.; Ulrich, A.S.; Schaefer, J. Structure of (KIAGKIA)3 Aggregates in Phospholipid Bilayers by Solid-State NMR. Biophys. J. 2004, 84, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Hing, A.W.; Vega, S.; Schaefer, J. Transferred-Echo Double-Resonance NMR. J. Magn. Res. 1992, 96, 205–209. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Fritzsching, K.J.; Liao, S.Y.; Hong, M. Spectral editing of two-dimensional magic angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J. Biomol. NMR 2012, 54, 343–353. [Google Scholar] [CrossRef]
- Lacabanne, D.; Meier, B.H.; Böckmann, A. Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J. Biomol. NMR 2018, 71, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Toke, O.; Maloy, W.L.; Kim, S.J.; Blazyk, J.; Schaefer, J. Secondary Structure and Lipid Contact of a Peptide Antibiotic in Phospholipid Bilayers by REDOR. Biophys. J. 2004, 86, 662–674. [Google Scholar] [CrossRef]
- Hong, M.; Schmidt-Rohr, K. Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc. Chem. Res. 2013, 46, 2154–2163. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakov, A.A.; Mediros-Silva, J.; Tran, N.; Gelenter, M.G.; Hong, M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem. Rev. 2022, 122, 9848–9879. [Google Scholar] [CrossRef] [PubMed]
- Jaroniec, C.P.; Lansing, J.C.; Tounge, B.A.; Belenky, M.; Herzfeld, J.; Griffin, R.G. Measurement of Dipolar Couplings in a Uniformly 13C,15N-Labeled Membrane Protein: Distances between the Schiff Base and Aspartic Acids in the Active Site of Bacteriorhodopsin. J. Am. Chem. Soc. 2001, 123, 12929–12930. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.A.; Freeman, R. Selective excitation in Fourier transform nuclear magnetic resonance. J. Magn. Reson. 1978, 29, 433–462. [Google Scholar] [CrossRef]
- Klug, C.A.; Tasaki, K.; Tjandra, N.; Ho, C.; Schaefer, J. Closed Form of Liganded Glutamine-Binding Protein by Rotational-Echo Double-Resonance NMR. Biochemistry 1997, 36, 9405–9408. [Google Scholar] [CrossRef] [PubMed]
- Kaustov, L.; Kababya, S.; Belakhov, V.; Baasov, T.; Shoham, Y.; Schmidt, A. Inhibition Mode of a Bisubstrate Inhibitor of KDO8P Synthase: A Frequency-Selective REDOR Solid-State and Solution NMR Characterization. J. Am. Chem. Soc. 2003, 125, 4662–4669. [Google Scholar] [CrossRef]
- Chan, J.C.C.; Oyler, N.A.; Yau, W.-M.; Tycko, R. Parallel β-Sheets and Polar Zippers in Amyloid Fibrils Formed by Residues 10-39 of the Yeast Prion Protein Ure2p. Biochemistry 2005, 44, 10669–10680. [Google Scholar] [CrossRef] [PubMed]
- Takegoshi, K.; Nakamura, S.; Terao, T. 13C-1H dipolar-assisted rotational resonance in magic angle spinning NMR. Chem. Phys. Lett. 2001, 5–6, 631–637. [Google Scholar] [CrossRef]
- Rice, D.M.; Romaniuk, J.A.H.; Cegelski, L. Frequency-selective REDOR and spin-diffusion relays in uniformly labeled whole cells. Solid State Nucl. Magn. Reson. 2015, 72, 132–139. [Google Scholar] [CrossRef]
- Hong, M.; Gross, J.D.; Rienstra, C.M.; Griffin, R.G.; Kumashiro, K.K.; Schmidt-Rohr, K. Coupling Amplification in 2D MAS NMR and Its Application to Torsion Angle Determination in Peptides. J. Magn. Res. 1997, 129, 85–92. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kurur, N.D.; Helmle, M.; Johannessen, O.G.; Nielsen, N.C.; Levitt, M.H. Efficient Dipolar Recoupling in the NMR of Rotating Solids—A Sevenfold Symmetrical Radiofrequency Pulse Sequence. Chem. Phys. Lett. 1995, 242, 304–309. [Google Scholar] [CrossRef]
- Feng, X.; Edén, M.; Brinkmann, A.; Luthman, H.; Eriksson, L.; Gräslund, A.; Antzutkin, O.N.; Levitt, M.H. Direct Determination of a Peptide Torsional Angle ψ by Double-Quantum Solid-State NMR. J. Am. Chem. Soc. 1997, 119, 12006–12007. [Google Scholar] [CrossRef]
- Hong, M. Determination of Multiple φ-Torsion Angles in Proteins by Selective and Extensive C-13 Labeling in Two-Dimensional Solid-State NMR. J. Magn. Res. 1999, 139, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Ladizhansky, V.; Jaroniec, C.P.; Diehl, A.; Oschkinat, H.; Griffin, R.G. Measurement of Multiple ψ Torsion Angles in Uniformly 13C,15N-Labeled α-Spectrin SH3 Domain Using 3D 15N−13C−13C−15N MAS Dipolar-Chemical Shift Correlation Spectroscopy. J. Am. Chem. Soc. 2003, 125, 6827–6833. [Google Scholar] [CrossRef] [PubMed]
- Ladizhansky, V.; Veshtort, M.; Griffin, R.G. NMR Determination of the Torsion Angle Ψ in α-Helical Peptides and Proteins: The HCCN Dipolar Correlation Experiment. J. Magn. Reson. 2002, 154, 317–324. [Google Scholar] [CrossRef]
- Yao, X.L.; Hong, M. Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR. J. Am. Chem. Soc. 2004, 126, 4199–4210. [Google Scholar] [CrossRef]
- Ghosh, M.; Rienstra, C.M. 1H-Detected REDOR with Fast Magic-Angle Spinning of a Deuterated Protein. J. Phys. Chem. B 2017, 121, 8503–8511. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Dregni, A.J.; Hong, M. Solid-State NMR 19F-1H-15N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins. J. Phys. Chem. A 2022, 126, 7021–7032. [Google Scholar] [CrossRef]
- Yang, J.; Tasayco, M.L.; Polenova, T. Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies. J. Am. Chem. Soc. 2008, 130, 5798–5807. [Google Scholar] [CrossRef]
- Goetz, J.M.; Schaefer, J. REDOR dephasing by multiple spins in the presence of molecular motion. J. Magn. Reson. 1997, 127, 147–154. [Google Scholar] [CrossRef]
- Schanda, P.; Meier, B.H.; Ernst, M. Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR. J. Magn. Res. 2011, 210, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.G.; Mote, K.R.; Hellwagner, J.; Rajalakshmi, G.; Ernst, M.; Madhu, P.K.; Agarwal, V. Measuring strong one-bond dipolar couplings using REDOR in magic-angle spinning solid-state NMR. J. Chem. Phys. 2019, 150, 134201. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.G.; Rajalakshmi, G.; Madhu, P.K.; Agarwal, V.; Mote, K.R. Overcoming Prohibitively Large Radiofrequency Demands for the Measurement of Internuclear Distances with Solid-state NMR under Fast Magic-angle Spinning. J. Phys. Chem. B 2020, 124, 1444–1451. [Google Scholar] [CrossRef]
- Taware, P.P.; Jain, M.G.; Raran-Kurussi, S.; Agarwal, V.; Madhu, P.K.; Mote, K.R. Measuring Dipolar Order Parameters in Nondeuterated Proteins Using Solid-State NMR at the Magic-Angle-Spinning Frequency of 100 kHz. J. Phys. Chem. Lett. 2023, 14, 3627–3635. [Google Scholar] [CrossRef]
- Kashefi, M.; Malik, N.; Struppe, J.O.; Thompson, L.K. Carbon-nitrogen REDOR to identify ms-timescale mobility in proteins. J. Magn. Reson. 2019, 305, 5–15. [Google Scholar] [CrossRef]
- Gelenter, M.D.; Chen, K.J.; Hong, M. Off-resonance 13C–2H REDOR NMR for site-resolved studies of molecular motion. J. Biomol. NMR 2021, 75, 335–345. [Google Scholar] [CrossRef]
- Bayburt, T.H.; Carlson, J.W.; Sligar, S.G. Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 1998, 123, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Denisov, I.G.; Sligar, S.G. Nanodisc in membrane biochemistry and biophysics. Chem. Rev. 2017, 117, 4669–4713. [Google Scholar] [CrossRef]
- Cheng, Y. Membrane proteon structural biology in the era of single-particle cryo-EM. Curr. Opin. Struct. Biol. 2018, 52, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Fan, X.; Yan, N. Cryo-EM analysis of a membrane protein embedded in the liposome. Proc. Natl. Acad. Sci. USA 2020, 117, 18497–18503. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, D.J.; Hammer, J.; Maloy, W.L.; Blazyk, J.; Schaefer, J. Secondary Structure and Location of a Magainin Analogue in Synthetic Phospholipid Bilayers. Biochemistry 1996, 35, 12733–12741. [Google Scholar] [CrossRef] [PubMed]
- Saito, H. Conformation-dependent 13C chemical shifts: A new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn. Res. Chem. 1986, 24, 835–852. [Google Scholar] [CrossRef]
- Porcelli, F.; Buck, B.; Lee, D.-K.; Hallock, K.J.; Ramamoorthy, A.; Veglia, G. Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes. J. Biol. Chem. 2004, 279, 45815–45823. [Google Scholar] [CrossRef]
- Todokoro, Y.; Yumen, I.; Fukushima, K.; Kang, S.-W.; Park, J.-S.; Kohno, T.; Wakamatsu, K.; Akutsu, H.; Fujiwara, T. Structure of Tightly Membrane-Bound Mastoparan-X, a G-Protein-Activating Peptide, Determined by Solid-State NMR. Biophys. J. 2006, 91, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Toke, O.; Bánóczi, Z.; Király, P.; Heinzmann, R.; Bürck, J.; Ulrich, A.S.; Hudecz, F. A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments. Eur. Biophys. J. 2011, 40, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Parkanzky, P.D.; Bodner, M.L.; Duskin, C.A.; Weliky, D.P. Application of REDOR subtraction for filtered MAS observation of labeled backbone carbons of membrane-bound fusion peptides. J. Magn. Reson. 2002, 159, 101–110. [Google Scholar] [CrossRef]
- Mason, A.J.; Turner, G.J.; Glaubitz, C. Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin 15N CPMAS NMR of D85N/T170C membranes. FEBS J. 2005, 272, 2152–2164. [Google Scholar] [CrossRef] [PubMed]
- Hughes, E.; Middleton, D.A. Solid-state NMR Reveals Structural Changes in Phospholamban Accompanying the Functional Regulation of Ca2+-ATPase. J. Biol. Chem. 2003, 278, 20835–20842. [Google Scholar] [CrossRef]
- Lam, Y.H.; Hung, A.; Norton, R.S.; Separovic, F.; Watts, A. Solid-state NMR and simulation studies of equinatoxin II N-terminus interaction with lipid bilayers. Proteins 2010, 78, 858–872. [Google Scholar] [CrossRef]
- Balbach, J.J.; Ishii, Y.; Antzutkin, O.N.; Leapman, R.D.; Rizzo, N.W.; Dyda, F.; Reed, J.; Tycko, R. Amyloid Fibril Formation by Aβ16-22, a Seven-Residue Fragment of the Alzheimer’s β-Amyloid Peptide, and Structural Characterization by Solid State NMR. Biochemistry 2000, 39, 13748–13759. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Javkhlantugs, N.; Kira, A.; Umeyama, M.; Kawamura, I.; Nishimura, K.; Ueda, K.; Naito, A. Structure and Orientation of Bovine Lactoferrampin in the Mimetic Bacterial Membrane as Revealed by Solid-State NMR and Molecular Dynamics Simulation. Biophys. J. 2012, 103, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Gabrys, C.M.; Qiang, W.; Sun, Y.; Xie, L.; Schmick, S.D.; Weliky, D.P. Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide 13CO to Lipid 31P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures. J. Phys. Chem. A 2013, 117, 9848–9859. [Google Scholar] [CrossRef]
- Kenyaga, J.M.; Cheng, Q.; Qiang, W. Early stage β-amyloid-membrane interactions modulate lipid dynamics and influence structural interfaces and fibrillation. J. Biol. Chem. 2022, 298, 102491. [Google Scholar] [CrossRef]
- Tang, M.; Waring, A.J.; Hong, M. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J. Am. Chem. Soc. 2007, 129, 11438–11446. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Hong, T.; Waring, A.; Lehrer, R.I.; Hong, M. Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Biochemistry 2002, 41, 9852–9862. [Google Scholar] [CrossRef] [PubMed]
- Cegelski, L.; Rice, C.V.; O’Connor, R.D.; Caruano, A.L.; Tochtrop, G.P.; Cai, Z.Y.; Covey, D.F.; Schaefer, J. Mapping the locations of estradiol and potent neuroprotective analogues in phospholipid bilayers by REDOR. Drug Dev. Res. 2005, 66, 93–102. [Google Scholar] [CrossRef]
- Qiang, W.; Sun, Y.; Weliky, D.P. A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc. Natl. Acad. Sci. USA 2009, 106, 15314–15319. [Google Scholar] [CrossRef]
- Hirsh, D.J.; Lazaro, N.; Wright, L.R.; Boggs, J.M.; McIntosh, T.J.; Schaefer, J.; Blazyk, J. A new monofluorinated phosphatidylcholine forms interdigitated bilayers. Biophys. J. 1998, 75, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Ghosh, U.; Schmick, S.D.; Weliky, D.P. Residue-Specific Membrane Location of Peptides and Proteins Using Specifically and Extensively Deuterated Lipids and 13C-2H Rotational-Echo Double-Resonance Solid-State NMR. J. Biomol. NMR 2013, 55, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liang, S.; Sackett, K.; Xie, L.; Ghosh, U.; Weliky, D.P. REDOR Solid-State NMR as a Probe of the Membrane Locations of Membrane-Associated Peptides and Proteins. J. Magn. Reson. 2015, 253, 154–165. [Google Scholar] [CrossRef]
- Yang, S.T.; Kreutzberger, A.J.B.; Lee, J.; Kiessling, V.; Tamm, L.K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids. 2016, 199, 136–143. [Google Scholar] [CrossRef]
- Kwon, B.; Mandal, T.; Elkins, M.R.; Oh, Y.; Cui, Q.; Hong, M. Cholesterol Interaction with theTrimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J. Mol. Biol. 2020, 432, 4705–4721. [Google Scholar] [CrossRef] [PubMed]
- Elkins, M.R.; Williams, J.K.; Gelenter, M.D.; Dai, P.; Kwon, B.; Sergeyev, I.V.; Pentelute, B.L.; Hong, M. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl. Acad. Sci. USA 2017, 114, 12946–12951. [Google Scholar] [CrossRef]
- Nishimura, K.; Kin, S.; Zhang, L.; Cross, T.A. The Closed State of a H+ Channel Helical Bundle Combining Precise Orientational and Distance Restraints from Solid State NMR. Biochemistry 2002, 41, 13170–13177. [Google Scholar] [CrossRef]
- Wang, J.F.; Kim, S.; Kovacs, F.; Cross, T.A. Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci. 2001, 10, 2241–2250. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Fei, J.Z.; Kawakami, T.; Smith, S.O. Structural constraints on the transmembrane and juxtamembrane regions of the phospholamban pentamer in membrane bilayers: Gln29 and Leu52. Biochim. Biophys. Acta 2007, 1768, 2971–2978. [Google Scholar] [CrossRef]
- Yang, J.; Weliky, D.P. Solid-State Nuclear Magnetic Resonance Evidence for Parallel and Antiparallel Strand Arrangements in the Membrane-Associated HIV-1 Fusion Peptide. Biochemistry 2003, 42, 11879–11890. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Mijiddorj, B.; Usami, M.; Mizoguchi, I.; Yoshida, S.; Akayama, S.; Hamada, Y.; Ohyama, A.; Usui, K.; Kawamura, I.; et al. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nat. Nanotechnol. 2022, 17, 67–75. [Google Scholar] [CrossRef]
- O’Connor, R.D.; Schaefer, J. Relative CSA-dipolar orientation from REDOR sidebands. J. Magn. Reson. 2002, 154, 46–52. [Google Scholar] [CrossRef]
- Mani, R.; Tang, M.; Wu, X.; Buffy, J.J.; Waring, A.J.; Sherman, M.A.; Hong, M. Membrane-Bound Dimer Structure of a β-Hairpin Antimicrobial Peptide from Rotational-Echo Double-Resonance Solid-State NMR. Biochemistry 2006, 45, 8341–8349. [Google Scholar] [CrossRef] [PubMed]
- Murphy III, O.J.; Kovacs, F.A.; Sicard, E.L.; Thompson, L.K. Site-Directed Solid-State NMR Measurement of a Ligand-Induced Conformational Change in the Serine Bacterial Chemoreceptor. Biochemistry 2001, 40, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.O.; Smith, C.; Shekar, S.; Peersen, O.; Ziliox, M.; Aimoto, S. Transmembrane Interactions in the Activation of the Neu Receptor Tyrosine Kinase. Biochemistry 2002, 41, 9321–9332. [Google Scholar] [CrossRef] [PubMed]
- Petkova, A.T.; Hatanaka, M.; Jaroniec, C.P.; Hu, J.G.; Belenky, M.; Verhoeven, M.; Lugtenburg, J.; Griffin, R.G.; Herzfeld, J. Tryptophan Interactions in Bacteriorhodopsin: A Heteronuclear Solid-State NMR Study. Biochemistry 2002, 41, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.; Lee, M.; Waring, A.J.; Hong, M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J. Am. Chem. Soc. 2018, 140, 8246–8259. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.K.; Zhang, Y.; Schmidt-Rohr, K.; Hong, M. pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR. Biophys. J. 2013, 104, 1698–1708. [Google Scholar] [CrossRef] [PubMed]
- Mandala, V.S.; Loftis, A.R.; Shcherbakov, A.A.; Pentelute, B.L.; Hong, M. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat. Struct. Mol. Biol. 2020, 27, 160–167. [Google Scholar] [CrossRef]
- Mandala, V.S.; McKay, M.J.; Shcherbakov, A.A.; Dregni, A.J.; Kolocouris, A.; Hong, M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 2020, 27, 1202–1208. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef]
- Gordon, D.J.; Balbach, J.J.; Tycko, R.; Meredith, S.C. Increasing the Amphiphilicity of an Amyloidogenic Peptide Changes the β-Sheet Structure in the Fibrils from Antiparallel to Parallel. Biophys. J. 2004, 86, 428–434. [Google Scholar] [CrossRef]
- Dregni, A.J.; Duan, P.; Xu, H.; Changolkar, L.; El Mammeri, N.; Lee, V.M.; Hong, M. Fluent molecular mixing of Tau isoforms in Alzheimer’s disease neurofibrillary tangles. Nat. Commun. 2022, 13, 2967. [Google Scholar] [CrossRef]
- Xu, H.; Yu, H.; Chen, Y.; Deng, J.; Chen, Z.; Zhou, P.; Lu, J.R.; Yang, J.; Zhao, Y. Self-assembly of wide peptide nanoribbons via the formation of nonpolar zippers between β-sheets. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130739. [Google Scholar] [CrossRef]
- Perutz, M.F.; Johnson, T.; Suzuki, M.; Finch, J.T. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 1994, 91, 5355–5358. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Chen, K.J.; Wijegunawardena, G.; Dregni, A.J.; Wang, H.K.; Wu, H.; Hong, M. Binding Sites of a Position Emission Tomography Imaging Agent in Alzheimer’s β-Amyloid Fibrils Studied Using 19F Solid-State NMR. J. Am. Chem. Soc. 2022, 144, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Shaw, W.J.; Long, J.R.; Dindot, J.L.; Campbell, A.A.; Stayton, P.S.; Drobny, G.P. Determination of Statherin N-Terminal Peptide Conformation on Hydroxyapatite Crystals. J. Am. Chem. Soc. 2000, 122, 1709–1716. [Google Scholar] [CrossRef]
- Long, J.R.; Shaw, W.J.; Stayton, P.S.; Drobny, G.P. Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 2001, 40, 15451–15455. [Google Scholar] [CrossRef]
- Gibson, J.M.; Raghunathan, V.; Popham, J.M.; Stayton, P.S.; Drobny, G.P. A REDOR NMR Study of a Phosphorylated Statherin Fragment Bound to Hydroxyapatite Crystals. J. Am. Chem. Soc. 2005, 127, 9350–9351. [Google Scholar] [CrossRef]
- Ndao, M.; Ash, J.T.; Stayton, P.S.; Drobny, G.P. The Role of Basic Amino Acids in the Molecular Recognition of Hydroxyapatite by Statherin using Solid State NMR. Surf. Sci. 2010, 604, L39–L42. [Google Scholar] [CrossRef]
- Ndao, M.; Ash, J.T.; Breen, N.F.; Goobes, G.; Stayton, P.S.; Drobny, G.P. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition. Langmuir 2009, 25, 12136–12143. [Google Scholar] [CrossRef]
- Gibson, J.M.; Popham, J.M.; Raghunathan, V.; Stayton, P.S.; Drobny, G.P. A Solid-State NMR Study of the Dynamics and Interactions of Phenylalanine Rings in a Statherin Fragment Bound to Hydroxyapatite Crystals. J. Am. Chem. Soc. 2006, 128, 5364–5370. [Google Scholar] [CrossRef]
- Raghunathan, V.; Gibson, J.M.; Goobes, G.; Popham, J.M.; Louie, E.A.; Stayton, P.S.; Drobny, G.P. Homonuclear and Heteronuclear NMR Studies of a Statherin Fragment Bound to Hydroxyapatite Crystals. J. Phys. Chem. B 2006, 110, 9324–9332. [Google Scholar] [CrossRef]
- Shaw, W.J.; Ferris, K.; Tarasevich, B.; Larson, J.L. The Structure and Orientation of the C-Terminus of LRAP. Biophys. J. 2008, 94, 3247–3257. [Google Scholar] [CrossRef]
- Lu, J.-X.; Xu, Y.S.; Shaw, W.J. Phosphorylation and Ionic Strength Alter the LRAP−HAP Interface in the N-Terminus. Biochemistry 2013, 52, 2196–2205. [Google Scholar] [CrossRef] [PubMed]
- Hing, A.W.; Tjandra, N.; Cottam, P.F.; Schaefer, J.; Ho, C. An Investigation of the Ligand-Binding Site of the Glutamine-Binding Protein of Escherichia coli Using Rotational-Echo Double-Resonance NMR. Biochemistry 1994, 33, 8651–8661. [Google Scholar] [CrossRef] [PubMed]
- Kaustov, L.; Kababya, S.; Du, S.; Baasov, T.; Gropper, S.; Shoham, Y.; Schmidt, A. Structural and Mechanistic Investigation of 3-Deoxy-D-manno-octulosonate-8-phosphate Synthase by Solid-State REDOR NMR. Biochemistry 2000, 39, 14865–14876. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.M.; Schmidt, A.; Cohen, E.R.; Studelska, D.R.; Schaefer, J. Structural constraints on the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR. J. Mol. Biol. 1996, 256, 160–171. [Google Scholar] [CrossRef]
- McDowell, L.M.; Poliks, B.; Studelska, D.R.; O’Connor, R.D.; Beusen, D.D.; Schaefer, J. Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase. J. Biomol. NMR 2004, 28, 11–29. [Google Scholar] [CrossRef]
- McDowell, L.M.; Studelska, D.R.; Poliks, B.; O’Connor, R.D.; Schaefer, J. Characterization of the Complex of a Trifluoromethyl-Substituted Shikimate-Based Bisubstrate Inhibitor and 5-Enolpyruvylshikimate-3-phosphate Synthase by REDOR NMR. Biochemistry 2004, 43, 6606–6611. [Google Scholar] [CrossRef]
- Yu, T.Y.; O’Connor, R.D.; Sivertsen, A.C.; Chiauzzi, C.; Poliks, B.; Fischer, M.; Bacher, A.; Haase, I.; Cushman, M.; Schaefer, J. (15)N{(31)P} REDOR NMR studies of the binding of phosphonate reaction intermediate analogues to Saccharomyces cerevisiae lumazine synthase. Biochemistry 2008, 47, 13942–13951. [Google Scholar] [CrossRef]
- Shcherbakov, A.A.; Hisao, G.; Mandala, V.S.; Thomas, N.E.; Soltani, M.; Salter, E.A.; Davis, J.H., Jr.; Henzler-Wildman, K.A.; Hong, M. Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers. Nat. Commun. 2021, 12, 172. [Google Scholar] [CrossRef]
- Shcherbakov, A.A.; Spreacker, P.J.; Dregni, A.J.; Henzler-Wildman, K.A.; Hong, M. High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport. Nat. Commun. 2022, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.E.; Thomas, N.E.; Morrison, E.A.; Balthazor, B.M.; Henzler-Wildman, K.A. New free-exchange model of EmrE transport. Proc. Natl. Acad. Sci. USA 2017, 114, E10083–E10091. [Google Scholar] [CrossRef]
- Li, Y.; Poliks, B.; Cegelski, L.; Poliks, M.; Gryczynski, Z.; Piszczek, G.; Jagtap, P.G.; Studelska, D.R.; Kingston, D.G.; Schaefer, J.; et al. Conformation of microtubule-bound paclitaxel determined by fluorescence spectroscopy and REDOR NMR. Biochemistry 2000, 39, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Paik, Y.; Yang, C.; Metaferia, B.; Tang, S.; Bane, S.; Ravindrs, R.; Shanker, N.; Alcaraz, A.A.; Johnson, S.A.; Schaefer, J.; et al. Rotational-Echo Double-Resonance NMR Distance Measurements for the Tubulin-Bound Paclitaxel Conformation. J. Am. Chem. Soc. 2007, 129, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Geney, R.; Sun, L.; Pera, P.; Bernacki, R.J.; Xia, S.; Horwitz, S.B.; Simmerling, C.L.; Ojima, I. Use of the tubulin bound paclitaxel conformation for structure-based rational drug design. Chem. Biol. 2005, 12, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Veith, J.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel. Bioorg. Med. Chem. 2010, 18, 7101–7112. [Google Scholar] [CrossRef]
- Beusen, D.D.; McDowell, L.M.; Slomczynska, U.; Schaefer, J. Solid-state Nuclear Magnetic Resonance Analysis of the Conformation of an Inhibitor Bound to Thermolysin. J. Med. Chem. 1995, 38, 2742–2747. [Google Scholar] [CrossRef]
- McDowell, L.M.; McCarrick, M.A.; Studelska, D.R.; O’Connor, R.D.; Light, D.R.; Guilford, W.J.; Arnaiz, D.; Adler, M.; Dallas, J.L.; Poliks, B.; et al. Human Factor Xa Bound Amidine Inhibitor Conformation by Double Rotational-Echo Double Resonance Nuclear Magnetic Resonance and Molecular Dynamics Simulations. J. Med. Chem. 2003, 46, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Studelska, D.R.; McDowell, L.M.; Adler, M.; O’Connor, R.D.; Mehta, A.K.; Guilford, W.J.; Dallas, J.L.; Arnaiz, D.; Light, D.R.; Schaefer, J. Conformation of a Bound Inhibitor of Blood Coagulant Factor Xa. Biochemistry 2003, 42, 7942–7949. [Google Scholar] [CrossRef]
- Watts, J.A.; Watts, A.; Middleton, D.A. A Model of Reversible Inhibitors in the Gastric H_/K_-ATPase Binding Site Determined by Rotational Echo Double Resonance NMR. J. Biol. Chem. 2001, 276, 43197–43204. [Google Scholar] [CrossRef]
- Middleton, D.A.; Hughes, E.; Esmann, M. The Conformation of ATP within the Na,K-ATPase Nucleotide Site: A Statistically Constrained Analysis of REDOR Solid-State NMR Data. Angew. Chem. Int. Ed. 2011, 50, 7041–7044. [Google Scholar] [CrossRef]
- Yang, H.; Staveness, D.; Ryckbosch, S.M.; Axtman, A.D.; Loy, B.A.; Barnes, A.B.; Pande, V.S.; Schaefer, J.; Wender, P.A.; Cegelski, L. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS Cent. Sci. 2018, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Olsen, G.L.; Edwards, T.E.; Deka, P.; Varani, G.; Sigurdsson, S.T.; Drobny, G.P. Monitoring tat peptide binding to TAR RNA by solid-state 31P–19F REDOR NMR. Nucl. Acids Res. 2005, 33, 3447–3454. [Google Scholar] [CrossRef]
- Huang, W.; Varani, G.; Drobny, G.P. 13C/15N-19F Intermolecular REDOR NMR Study of the Interaction of TAR RNA with Tat Peptides. J. Am. Chem. Soc. 2010, 132, 17643–17645. [Google Scholar] [CrossRef]
- Huang, W.; Varani, G.; Drobny, G.P. Interactions of protein side chains with RNA defined with REDOR solid state NMR. J. Biomol. NMR 2011, 51, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; McDowell, L.M.; Poliks, B.; Studelska, D.R.; Cao, C.; Potter, G.S.; Schaefer, J.; Song, F.; Stivers, J.T. Recognition of an Unnatural Difluorophenyl Nucleotide by Uracil DNA Glycosylase. Biochemistry 2004, 43, 15429–15438. [Google Scholar] [CrossRef]
- Pan, Y.; Shenouda, N.S.; Wilson, G.E.; Schaefer, J. Cross-links in cell walls of Bacillus subtilis by rotational-echo double-resonance 15N NMR. J. Biol. Chem. 1993, 268, 18692–18695. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cegelski, L.; Studelska, D.R.; O’Connor, R.D.; Mehta, A.K.; Schaefer, J. Rotational-Echo Double Resonance Characterization of Vancomycin Binding Sites in Staphylococcus aureus. Biochemistry 2002, 41, 6967–6977. [Google Scholar] [CrossRef]
- Cegelski, L.; Kim, S.J.; Hing, A.W.; Studelska, D.R.; Schaefer, J. Rotational-Echo Double Resonance Characterization of the Effects of Vancomycin on Cell Wall Synthesis in Staphylococcus aureus. Biochemistry 2002, 41, 13053–13058. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Chang, J.; Singh, M. Peptidoglycan Architecture of Gram-positive Bacteria by Solid-State NMR. Biochim. Biophys. Acta 2015, 1848, 350–362. [Google Scholar] [CrossRef]
- Kim, S.J.; Cegelski, L.; Preobrazhenskaya, M.; Schaefer, J. Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. Biochemistry 2006, 45, 5235–5250. [Google Scholar] [CrossRef]
- Cegelski, L.; Steuber, D.; Mehta, A.K.; Kulp, D.W.; Axelsen, P.H.; Schaefer, J. Conformational and Quantitative Characterization of Oritavancin–Peptidoglycan Complexes in Whole Cells of Staphylococcus aureus by in Vivo 13C and 15N Labeling. J. Mol. Biol. 2006, 357, 1253–1262. [Google Scholar] [CrossRef]
- Kim, S.J.; Cegelski, L.; Stueber, D.; Singh, M.; Dietrich, E.; Tanaka, K.S.E.; Parr, T.R., Jr.; Far, A.R.; Schaefer, J. Oritavancin Exhibits Dual Mode of Action to Inhibit Cell-Wall Biosynthesis in Staphylococcus aureus. J. Mol. Biol. 2008, 377, 281–293. [Google Scholar] [CrossRef]
- Patti, G.J.; Kim, S.J.; Schaefer, J. Characterization of the Peptidoglycan of Vancomycin-Susceptible Enterococcus faecium. Biochemistry 2008, 47, 8378–8385. [Google Scholar] [CrossRef]
- Patti, G.J.; Kim, S.J.; Yu, T.-Y.; Dietrich, E.; Tanaka, K.S.E.; Parr, T.R., Jr.; Far, A.R.; Schaefer, J. Vancomycin and Oritavancin Have Different Modes of Action in Enterococcus faecium. J. Mol. Biol. 2009, 392, 1178–1191. [Google Scholar] [CrossRef]
- Sharif, S.; Kim, S.J.; Labischinski, H.; Schaefer, J. Characterization of peptidoglycan in fem-deletion mutants of methicillin-resistant Staphylococcus aureus by solid-state NMR. Biochemistry 2009, 48, 3100–3108. [Google Scholar] [CrossRef]
- Sharif, S.; Kim, S.J.; Labischinski, H.; Chen, J.; Schaefer, J. Uniformity of glycyl bridge lengths in the mature cell walls of fem mutants of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 2013, 195, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Singh, M.; Sharif, S.; Schaefer, J. Cross-Link Formation and Peptidoglycan Lattice Assembly in the FemA Mutant of Staphylococcus aureus. Biochemistry 2014, 53, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Chang, J.; Rimal, B.; Yang, H.; Schaefer, J. Surface Proteins and the Formation of Biofilms by Staphylococcus aureus. Biochim. Biophys. Acta 2018, 1860, 749–756. [Google Scholar] [CrossRef] [PubMed]
- McCrate, O.A.; Zhou, X.; Reichhardt, C.; Cegelski, L. Sum of the Parts: Composition and Architecture of the Bacterial Extracellular Matrix. J. Mol. Biol. 2013, 425, 4286–4294. [Google Scholar] [CrossRef]
- Reichhardt, C.; Fong, J.C.N.; Yildiz, F.; Cegelski, L. Characterization of the Vibrio cholerae extracellular matrix: A top-down solid-state NMR approach. Biochim. Biophys. Acta 2015, 1848, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Maly, T.; Debelouchina, G.T.; Bajaj, V.S.; Hu, K.N.; Joo, C.G.; Mak-Jurkauskas, M.L.; Sirigiri, J.R.; van der Wel, P.C.; Herzfeld, J.; Temkin, R.J.; et al. Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 2008, 128, 052211. [Google Scholar] [CrossRef] [PubMed]
- Elkins, M.R.; Hong, M. Elucidating ligand-bound structures of membrane proteins using solid-state NMR spectroscopy. Curr. Opin. Struct. Biol. 2019, 57, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Separovic, F.; Hofferek, V.; Duff, A.P.; McConville, M.J.; Sani, M.A. In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide. J. Struct. Biol. X 2022, 6, 100074. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toke, O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. Int. J. Mol. Sci. 2023, 24, 13637. https://doi.org/10.3390/ijms241713637
Toke O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. International Journal of Molecular Sciences. 2023; 24(17):13637. https://doi.org/10.3390/ijms241713637
Chicago/Turabian StyleToke, Orsolya. 2023. "Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing" International Journal of Molecular Sciences 24, no. 17: 13637. https://doi.org/10.3390/ijms241713637
APA StyleToke, O. (2023). Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. International Journal of Molecular Sciences, 24(17), 13637. https://doi.org/10.3390/ijms241713637