Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Subcloning, Expression and Purification of β-CoV nsp10 Proteins
3.2. MALDI-TOF/TOF Mass Spectrometry
3.3. High-Resolution Mass Spectrometry
3.4. Multi-Detection SEC Experiments
3.5. SEC-MALS Experiments
3.6. Small Angle X-ray Scattering (SAXS)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Ammonium Bicarbonate |
ACN | Acetonitrile |
CoV | Coronavirus |
COVID-19 | Coronavirus Disease 2019 |
DTT | DL-Dithiothreitol |
ExoN | 3′-to-5′ exoribonuclease |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
HRMS | High-resolution Mass Spectrometry |
IPTG | Isopropyl-β-D-thiogalactopyranoside |
LALS | Low Angle Light Scattering |
MALS | Multi Angle Light Scattering |
MERS | Middle East Respiratory Syndrome |
NaPO4 | Sodium phosphate buffer |
Nsp | non-structural protein |
MTase | Methyltransferase |
PDB | Protein Data Bank |
PMSF | Phenylmethylsulfonylfluorid |
RdRp | RNA-dependent RNA polymerase |
RTC | Replication-transcription complex |
RALS | Right Angle Light Scattering |
SARS | Severe Acute Respiratory Syndrome |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SAXS | Small Angle X-ray Scattering |
SEC | Size-Exclusion Chromatography |
Tris | Tris(hydroxymethyl)aminomethane |
ULP1 | Ubiquitin-like-specific protease 1 |
References
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar] [PubMed]
- World Health Organization. Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS). 2003. Available online: https://www.who.int/publications/i/item/consensus-document-on-the-epidemiology-of-severe-acute-respiratory-syndrome-(-sars) (accessed on 1 May 2023).
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020, 20, E238–E244. [Google Scholar] [CrossRef]
- World Health Organization. Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Saudi Arabia. 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON363 (accessed on 8 May 2023).
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. 2023. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 8 May 2023).
- Torjesen, I. COVID-19 will become endemic but with decreased potency over time, scientists believe. BMJ 2021, 372, n494. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yin, W.; Jiang, Y.; Xu, H.E. Structure genomics of SARS-CoV-2 and its Omicron variant: Drug design templates for COVID-19. Acta Pharmacol. Sin. 2022, 43, 3021–3033. [Google Scholar] [CrossRef] [PubMed]
- Silvas, J.A.; Vasquez, D.M.; Park, J.-G.; Chiem, K.; Allué-Guardia, A.; Garcia-Vilanova, A.; Platt, R.N.; Miorin, L.; Kehrer, T.; Cupic, A.; et al. Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J. Virol. 2021, 95, e00402–e00421. [Google Scholar] [CrossRef]
- Fang, P.; Fang, L.; Zhang, H.; Xia, S.; Xiao, S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021, 13, 1139. [Google Scholar] [CrossRef]
- Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells 2021, 10, 821. [Google Scholar] [CrossRef]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes First Oral Antiviral for Treatment of COVID-19; U.S. Food & Drug Administration: Silver Spring, MD, USA, 2021. [Google Scholar]
- Cotrim, B.A.; Barros, J.C. Development and patent synthesis of nirmatrelvir—The main component of the first oral drug against SARS-CoV-2 Paxlovid®. Aust. J. Chem. 2022, 75, 487–491. [Google Scholar] [CrossRef]
- Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021, 12, 279. [Google Scholar] [CrossRef]
- Moghadasi, S.A.; Heilmann, A.M.; Khalil, C.; Nnabuife, F.L.; Kearns, C.; Ye, S.N.; Moraes, F.; Costacurta, M.A.; Esler, H.; Aihara, D.; et al. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Sci. Adv. 2023, 9, eade8778. [Google Scholar] [CrossRef]
- Gandhi, S.J.; Klein, A.J.; Robertson, M.A.; Peña-Hernández, M.J.; Lin, P.; Roychoudhury, P.; Lu, J.; Fournier, D.; Ferguson, S.A.K.; Bakhash, M.; et al. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. Nat. Commun. 2022, 13, 1547. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. 2022. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron (accessed on 8 May 2023).
- Wilhelm, A.; Widera, M.; Grikscheit, K.; Toptan, T.; Schenk, B.; Pallas, C.; Metzler, M.; Kohmer, N.; Hoehl, S.; Marschalek, R.; et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. eBioMedicine 2022, 82, 104158. [Google Scholar] [CrossRef] [PubMed]
- Spratt, A.N.; Gallazzi, F.; Quinn, T.P.; Lorson, C.L.; Sönnerborg, A.; Singh, K. Coronavirus helicases: Attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opin. Ther. Pat. 2021, 31, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Laurent-Rolle, M.; Pawlak, J.B.; Wilen, C.B.; Cresswell, P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc. Natl. Acad. Sci. USA 2021, 118, e2101161118. [Google Scholar] [CrossRef] [PubMed]
- Decroly, E.; Debarnot, C.; Ferron, F.; Bouvet, M.; Coutard, B.; Imbert, I.; Gluais, L.; Papageorgiou, N.; Sharff, A.; Bricogne, G.; et al. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex. PLoS Pathog. 2011, 7, e1002059. [Google Scholar] [CrossRef]
- Viswanathan, T.; Arya, S.; Chan, S.-H.; Qi, S.; Dai, N.; Misra, A.; Park, J.-G.; Oladunni, F.; Kovalskyy, D.; Hromas, R.A.; et al. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 2021, 12, 3287. [Google Scholar] [CrossRef] [PubMed]
- Krafcikova, P.; Silhan, J.; Nencka, R.; Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020, 24, 3717. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, L.; Shaw, N.; Gao, Y.; Wang, J.; Sun, Y.; Lou, Z.; Yan, L.; Zhang, R.; Rao, Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. USA 2015, 112, 9436–9441. [Google Scholar] [CrossRef]
- Lin, S.; Chen, H.; Chen, Z.; Yang, F.; Ye, F.; Zheng, Y.; Yang, J.; Lin, X.; Sun, H.; Wang, L.; et al. Crystal structure of SARS-CoV-2 nsp10 bound to nsp10-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res. 2021, 49, 5382–5392. [Google Scholar] [CrossRef]
- Viswanathan, T.; Misra, A.; Chan, S.H.; Qi, S.; Dai, N.; Arya, S.; Martinez-Sobrido, L.; Gupta, Y.K. A metal ion orients SARS-CoV-2 mRNA to ensure accurate 2′-O methylation of its first nucleotide. Nat. Commun. 2021, 12, 3287. [Google Scholar] [CrossRef] [PubMed]
- Minasov, G.; Rosas-Lemus, M.; Shuvalova, L.; Inniss, N.L.; Brunzelle, J.S.; Daczkowski, C.M.; Hoover, P.; Mesecar, A.D.; Satchell, K.J.F. Mn2+ coordinates Cap-0-RNA to align substrates for efficient 2′-O-methyl transfer by SARS-CoV-2 nsp16. Sci. Signal. 2021, 14, eabh2071. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol. Sin. 2016, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Shannon, A.; Canard, B. Kill and corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2. Antivir. Res. 2023, 210, 105501. [Google Scholar] [CrossRef]
- Matsuda, A.; Plewka, J.; Chykunova, Y.; Jones, A.N.; Pachota, M.; Rawski, M.; Mouraão, A.; Karim, A.; Kresik, L.; Lis, K.; et al. Despite the odds: Formation of the SARS-CoV-2 methylation complex. bioRxiv 2022. [Google Scholar] [CrossRef]
- Czarna, A.; Plewka, J.; Kresik, L.; Matsuda, A.; Karim, A.; Robinson, C.; O’Byrne, S.; Cunningham, F.; Georgiou, I.; Wilk, P.; et al. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 releases exonuclease activity. Structure 2022, 30, 1050–1054. [Google Scholar] [CrossRef]
- Yan, L.; Yang, M.; Li, Y.; Zhang, L.; Zheng, J.; Ge, Y.C.; Huang, Z.; Liu, T.; Wang, S.; Gao, R.; et al. Coupling of N7-methyltransferase and 3′-5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 2021, 184, 3474–3485. [Google Scholar] [CrossRef]
- Cowieson, N.P.; Edwards-Gayle, C.J.C.; Inoue, K.; Khunti, N.S.; Doutch, J.; Williams, E.; Rambo, R.P. Beamline B21: High-throughput small-angle X-ray scattering at Diamond Light Source. J. Synchrotron Radiat. 2020, 27, 1438–1446. [Google Scholar] [CrossRef]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Schrodinger, L. The PyMOL Molecular Graphics System, Version 1.8. 2015. Available online: https://pymol.org/2/ (accessed on 17 August 2023).
- Some, D.; Amartely, H.; Tsadok, A.; Lebendiker, M. Characterization of Proteins by Size-Exclusion Chromatography Coupled to Multi-Angle Light Scattering (SEC-MALS). J. Vis. Exp. 2019, 148, e59615. [Google Scholar]
- Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.; Neuman, B.W.; Brooun, A.; Griffith, M. Crystal structure of non-structural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J. Virol. 2006, 80, 7894–7901. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Lou, Z.; Joachimiak, A.; Zhang, X.C.; Bartlam, M.; Zhang, R.; Joachimiak, A.; Zhang, X.C.; Bartlam, M.; Rao, Z.; et al. Dodecamer Structure of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein nsp10. J. Virol. 2006, 80, 7902–7908. [Google Scholar] [CrossRef]
- Franke, D.; Svergun, D. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2009, 42, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 1999, 76, 2879–2886. [Google Scholar] [CrossRef]
- Petoukhov, M.V.; Svergun, D.I. Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data. Biophys. J. 2005, 89, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Rogstam, A.; Nyblom, M.; Christensen, S.; Sele, C.; Talibov, V.O.; Lindvall, T.; Rasmussen, A.A.; André, I.; Fisher, Z.; Knecht, W.; et al. Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. Int. J. Mol. Sci. 2020, 21, 7375. [Google Scholar] [CrossRef]
- Kozielski, F.; Sele, C.; Talibov, V.O.; Lou, J.; Dong, D.; Wang, Q.; Shi, X.; Nyblom, M.; Rogstam, A.; Krojer, T.; et al. Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/16. RSC Chem. Biol. 2022, 3, 44–55. [Google Scholar] [CrossRef]
- Panjkovich, A.; Svergun, D.I. CHROMIXS: Automatic and interactive analysis of chromatography-coupled small angle X-ray scattering data. Bioinformatics 2017, 34, 1944–1946. [Google Scholar] [CrossRef]
- Manalastas-Cantos, K.; Konarev, P.K.; Hajizadeh, N.R.; Kikhney, A.G.; Petoukhov, M.V.; Molodenskiy, D.S.; Panjkovich, A.; Mertens, H.D.T.; Gruzinov, A.; Borges, C.; et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Cryst. 2021, 54, 343–355. [Google Scholar] [CrossRef]
- Svergun, D.I.; Barberato, C.; Koch, M.H.J. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 1995, 28, 768–773. [Google Scholar] [CrossRef]
Protein | Monomer | Dimer | Trimer | ||||
---|---|---|---|---|---|---|---|
Calculated MW (Da) | MW (Da) | Relative Amount (%) | MW (Da) | Relative Amount (%) | MW (Da) | Relative Amount (%) | |
Short SARS-CoV-2 nsp10 | 13,272 | 13,954 ± 76 | 97.0 ± 1.9 | 27,741 ± 257 | 3.0 ± 1.9 | n/a | n/a |
Long SARS-CoV-2 nsp10 | 14,026 | 14,688 ± 70 | 85.0 ± 1.2 | 29,993 ± 253 | 11.0 ± 0.5 | 46,389 ± 1546 | 3.0 ± 0.9 |
Full-length SARS-CoV-2 nsp10 | 15,022 | 15,595 ± 131 | 93.6 ± 2.3 | 32,090 ± 837 | 3.0 ± 0.2 | n/a | n/a |
Full-length SARS nsp10 | 15,075 | 15,678 ± 4 | 97.6 ± 0.4 | 29,730 ± 376 | 2.2 ± 0.1 | n/a | n/a |
Full-length MERS nsp10 | 15,122 | 15,615 ± 52 | 98.7 ± 0.4 | n/a | n/a | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knecht, W.; Fisher, S.Z.; Lou, J.; Sele, C.; Ma, S.; Rasmussen, A.A.; Pinotsis, N.; Kozielski, F. Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. Int. J. Mol. Sci. 2023, 24, 13649. https://doi.org/10.3390/ijms241713649
Knecht W, Fisher SZ, Lou J, Sele C, Ma S, Rasmussen AA, Pinotsis N, Kozielski F. Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. International Journal of Molecular Sciences. 2023; 24(17):13649. https://doi.org/10.3390/ijms241713649
Chicago/Turabian StyleKnecht, Wolfgang, S. Zoë Fisher, Jiaqi Lou, Céleste Sele, Shumeng Ma, Anna Andersson Rasmussen, Nikos Pinotsis, and Frank Kozielski. 2023. "Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering" International Journal of Molecular Sciences 24, no. 17: 13649. https://doi.org/10.3390/ijms241713649
APA StyleKnecht, W., Fisher, S. Z., Lou, J., Sele, C., Ma, S., Rasmussen, A. A., Pinotsis, N., & Kozielski, F. (2023). Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. International Journal of Molecular Sciences, 24(17), 13649. https://doi.org/10.3390/ijms241713649