Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation
Abstract
:1. Introduction
2. Retinal Neuron Differentiation from iPSCs
2.1. Differentiation of iPSC-Derived Retinal Organoids
2.1.1. Generation of Storable Retinal Organoids under Chemically Defined Conditions
2.1.2. The Role of Retinoic Acid in Retinal Organoid Differentiation
2.1.3. Enhancement of Rod Photoreceptor Differentiation in Retinal Organoids through 9-cis Retinal Supplementation
2.1.4. Effects of BMP4 Treatment on the Yield and Cellular Composition of Organoid Differentiation
2.1.5. Different Approaches for Isolating Optic Vesicle-like Structures during Differentiation
2.2. Retinal Ganglion Cell Differentiation from iPSCs
2.2.1. Generation of Functional RGCs under Chemically Defined Culture Conditions
2.2.2. Enhancing RGC Differentiation and Neurite Outgrowth through Biomaterial Incorporation
2.2.3. Efficient Protocol for RGC Generation through Dual SMAD and Wnt Inhibition
2.2.4. Generation of RGCs through Dissociation of Retinal Organoids and Magnetic-Activated Cell Sorting
2.2.5. A Rapid Protocol for RGC Differentiation Using NGN2 Overexpression
2.3. Photoreceptor Cell Differentiation from iPSCs
2.3.1. Generation of Photoreceptors under Defined Conditions Using Signaling Modulators
2.3.2. Photoreceptor Differentiation without Using Extrinsic Signaling Modulators
2.3.3. Photoreceptor Differentiation Induced by Small-Molecule Inhibitors
2.3.4. Enhancing Yield and Maturation of Photoreceptor Cells by Using a Bioreactor
3. Detection of Molecular Markers to Confirm Retinal Cell Identity
3.1. Molecular Markers for Evaluating Retinal Organoid Differentiation
3.2. Molecular Markers for Evaluating Retinal Ganglion Cell Differentiation
3.3. Molecular Markers for Evaluating Photoreceptor Cell Differentiation
3.4. Other Techniques and Functional Assays for Evaluating Retinal Neuron Differentiation
4. Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Goodwin, P. Hereditary retinal disease. Curr. Opin. Ophthalmol. 2008, 19, 255–262. [Google Scholar] [CrossRef]
- Wert, K.J.; Lin, J.H.; Tsang, S.H. General pathophysiology in retinal degeneration. Dev. Ophthalmol. 2014, 53, 33–43. [Google Scholar]
- Jin, N.; Sha, W.; Gao, L. Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Front. Cell. Dev. Biol. 2021, 9, 741368. [Google Scholar] [CrossRef]
- Parmeggiani, F. Clinics, epidemiology and genetics of retinitis pigmentosa. Curr. Genom. 2011, 12, 236–237. [Google Scholar] [CrossRef]
- Roska, B.; Sahel, J.A. Restoring vision. Nature 2018, 557, 359–367. [Google Scholar] [CrossRef]
- Moshiri, A. Animals Models of Inherited Retinal Disease. Int. Ophthalmol. Clin. 2021, 61, 113–130. [Google Scholar] [CrossRef]
- Artero Castro, A.; Rodriguez Jimenez, F.J.; Jendelova, P.; Erceg, S. Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: Concise Review. Stem Cells 2019, 37, 1496–1504. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Aguzzi, E.A.; Johnson, T.V. Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021, 10, 1426. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef]
- Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012, 10, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.-H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 2014, 5, 4047. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.S.; Shearer, R.L.; Capowski, E.E.; Wright, L.S.; Wallace, K.A.; McMillan, E.L.; Zhang, S.-C.; Gamm, D.M. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2009, 106, 16698–16703. [Google Scholar] [CrossRef] [PubMed]
- Ohlemacher, S.K.; Iglesias, C.L.; Sridhar, A.; Gamm, D.M.; Meyer, J.S. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 2015, 32, 1H.8.1–1H.8.20. [Google Scholar] [CrossRef] [PubMed]
- Ohlemacher, S.K.; Sridhar, A.; Xiao, Y.; Hochstetler, A.E.; Sarfarazi, M.; Cummins, T.R.; Meyer, J.S. Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration. Stem Cells 2016, 34, 1553–1562. [Google Scholar] [CrossRef]
- Reichman, S.; Slembrouck, A.; Gagliardi, G.; Chaffiol, A.; Terray, A.; Nanteau, C.; Potey, A.; Belle, M.; Rabesandratana, O.; Duebel, J.; et al. Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells 2017, 35, 1176–1188. [Google Scholar] [CrossRef]
- Völkner, M.; Zschätzsch, M.; Rostovskaya, M.; Overall, R.W.; Busskamp, V.; Anastassiadis, K.; Karl, M.O. Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Rep. 2016, 6, 525–538. [Google Scholar] [CrossRef]
- Lamba, D.A.; McUsic, A.; Hirata, R.K.; Wang, P.R.; Russell, D.; Reh, T.A. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS ONE 2010, 5, e8763. [Google Scholar] [CrossRef]
- Meyer, J.S.; Howden, S.E.; Wallace, K.A.; Verhoeven, A.D.; Wright, L.S.; Capowski, E.E.; Pinilla, I.; Martin, J.M.; Tian, S.; Stewart, R.; et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011, 29, 1206–1218. [Google Scholar] [CrossRef]
- Zheng, W.; Li, Q.; Zhao, C.; Da, Y.; Zhang, H.L.; Chen, Z. Differentiation of Glial Cells From hiPSCs: Potential Applications in Neurological Diseases and Cell Replacement Therapy. Front. Cell. Neurosci. 2018, 12, 239. [Google Scholar] [CrossRef]
- Achberger, K.; Haderspeck, J.C.; Kleger, A.; Liebau, S. Stem cell-based retina models. Adv. Drug Deliv. Rev. 2019, 140, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Shen, W.; Davidson, K.C.; Pébay, A.; Wong, R.C.B.; Yau, B.; Gillies, M. Differentiation of Retinal Glial Cells From Human Embryonic Stem Cells by Promoting the Notch Signaling Pathway. Front. Cell. Neurosci. 2019, 13, 527. [Google Scholar] [CrossRef]
- Buchholz, D.E.; Pennington, B.O.; Croze, R.H.; Hinman, C.R.; Coffey, P.J.; Clegg, D.O. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl. Med. 2013, 2, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Leach, L.L.; Buchholz, D.E.; Nadar, V.P.; Lowenstein, S.E.; Clegg, D.O. Canonical/β-Catenin Wnt Pathway Activation Improves Retinal Pigmented Epithelium Derivation From Human Embryonic Stem Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Kruczek, K.; Swaroop, A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 2020, 38, 1206–1215. [Google Scholar] [CrossRef]
- Singh, R.K.; Nasonkin, I.O. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front. Cell. Neurosci. 2020, 14, 179. [Google Scholar] [CrossRef]
- Eintracht, J.; Toms, M.; Moosajee, M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front. Cell. Neurosci. 2020, 14, 265. [Google Scholar] [CrossRef]
- O’Hara-Wright, M.; Gonzalez-Cordero, A. Retinal organoids: A window into human retinal development. Development 2020, 147, dev189746. [Google Scholar] [CrossRef]
- Ovando-Roche, P.; Georgiadis, A.; Smith, A.J.; Pearson, R.A.; Ali, R.R. Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration. Curr. Stem Cell Rep. 2017, 3, 112–123. [Google Scholar] [CrossRef]
- Chen, H.Y.; Welby, E.; Li, T.; Swaroop, A. Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies. Transl. Sci. Rare Dis. 2019, 4, 97–115. [Google Scholar] [CrossRef]
- Aasen, D.M.; Vergara, M.N. New Drug Discovery Paradigms for Retinal Diseases: A Focus on Retinal Organoids. J. Ocul. Pharmacol. Ther. 2020, 36, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xie, B.; He, L.; Zhou, T.; Gao, G.; Liu, S.; Pan, G.; Ge, J.; Peng, F.; Zhong, X. Generation of Retinal Organoids with Mature Rods and Cones from Urine-Derived Human Induced Pluripotent Stem Cells. Stem Cells Int. 2018, 2018, 4968658. [Google Scholar] [CrossRef] [PubMed]
- Kaya, K.D.; Chen, H.Y.; Brooks, M.J.; Kelley, R.A.; Shimada, H.; Nagashima, K.; De Val, N.; Drinnan, C.T.; Gieser, L.; Kruczek, K.; et al. Transcriptome-based molecular staging of human stem cell-derived retinal organoids uncovers accelerated photoreceptor differentiation by 9-cis retinal. Mol. Vis. 2019, 25, 663–678. [Google Scholar] [PubMed]
- Capowski, E.E.; Samimi, K.; Mayerl, S.J.; Phillips, M.J.; Pinilla, I.; Howden, S.E.; Saha, J.; Jansen, A.D.; Edwards, K.L.; Jager, L.D.; et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 2019, 146, dev.171686. [Google Scholar] [CrossRef] [PubMed]
- Regent, F.; Chen, H.Y.; Kelley, R.A.; Qu, Z.; Swaroop, A.; Li, T. A simple and efficient method for generating human retinal organoids. Mol. Vis. 2020, 26, 97–105. [Google Scholar] [PubMed]
- Berber, P.; Milenkovic, A.; Michaelis, L.; Weber, B.H.F. Retinal organoid differentiation methods determine organoid cellular composition. J. Transl Genet. Genom. 2021, 5, 292–303. [Google Scholar] [CrossRef]
- Sanjurjo-Soriano, C.; Erkilic, N.; Damodar, K.; Boukhaddaoui, H.; Diakatou, M.; Garita-Hernandez, M.; Mamaeva, D.; Dubois, G.; Jazouli, Z.; Jimenez-Medina, C.; et al. Retinoic acid delays initial photoreceptor differentiation and results in a highly structured mature retinal organoid. Stem Cell Res. Ther. 2022, 13, 478. [Google Scholar] [CrossRef]
- Reichman, S.; Terray, A.; Slembrouck, A.; Nanteau, C.; Orieux, G.; Habeler, W.; Nandrot, E.F.; Sahel, J.-A.; Monville, C.; Goureau, O. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. USA 2014, 111, 8518–8523. [Google Scholar] [CrossRef]
- Zhu, Y.; Carido, M.; Meinhardt, A.; Kurth, T.; Karl, M.O.; Ader, M.; Tanaka, E.M. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS ONE 2013, 8, e54552. [Google Scholar] [CrossRef]
- Lamba, D.A.; Karl, M.O.; Ware, C.B.; Reh, T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2006, 103, 12769–12774. [Google Scholar] [CrossRef]
- Fuhrmann, S. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 2010, 93, 61–84. [Google Scholar]
- Da Silva, S.; Cepko, C.L. Fgf8 Expression and Degradation of Retinoic Acid Are Required for Patterning a High-Acuity Area in the Retina. Dev. Cell 2017, 42, 68–81.e6. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Stevens, C.B.; Frey, R.A.; Hunter, S.S.; Ashino, R.; Kawamura, S.; Stenkamp, D.L. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet. 2015, 11, e1005483. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.B.; Cameron, D.A.; Stenkamp, D.L. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC Dev. Biol. 2011, 11, 51. [Google Scholar] [CrossRef]
- Stenkamp, D.L.; Gregory, J.K.; Adler, R. Retinoid effects in purified cultures of chick embryo retina neurons and photoreceptors. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2425–2436. [Google Scholar]
- Hendrickson, A. Organization of the Adult Primate Fovea. In Macular Degeneration; Penfold, P.L., Provis, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–23. [Google Scholar]
- Heyman, R.A.; Mangelsdorf, D.J.; Dyck, J.A.; Stein, R.B.; Eichele, G.; Evans, R.M.; Thaller, C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992, 68, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Allenby, G.; Bocquel, M.T.; Saunders, M.; Kazmer, S.; Speck, J.; Rosenberger, M.; Lovey, A.; Kastner, P.; Grippo, J.F.; Chambon, P. Retinoic acid receptors and retinoid X receptors: Interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 1993, 90, 30–34. [Google Scholar] [CrossRef]
- Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 2015, 6, 6286. [Google Scholar] [CrossRef]
- Teotia, P.; Chopra, D.A.; Dravid, S.M.; Van Hook, M.J.; Qiu, F.; Morrison, J.; Rizzino, A.; Ahmad, I. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism. Stem Cells 2017, 35, 572–585. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.-H.; Kim, Y.-B.; Jun, I.; Sung, J.J.; Lee, D.R.; Kim, Y.I.; Cho, M.S.; Byeon, S.H.; Kim, D.-S.; et al. Defined Conditions for Differentiation of Functional Retinal Ganglion Cells From Human Pluripotent Stem Cells. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3531–3542. [Google Scholar] [CrossRef]
- Langer, K.B.; Ohlemacher, S.K.; Phillips, M.J.; Fligor, C.M.; Jiang, P.; Gamm, D.M.; Meyer, J.S. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 1282–1293. [Google Scholar] [CrossRef]
- Chen, T.-C.; She, P.-Y.; Chen, D.F.; Lu, J.-H.; Yang, C.-H.; Huang, D.-S.; Chen, P.-Y.; Lu, C.-Y.; Cho, K.-S.; Chen, H.-F.; et al. Polybenzyl Glutamate Biocompatible Scaffold Promotes the Efficiency of Retinal Differentiation toward Retinal Ganglion Cell Lineage from Human-Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2019, 20, 178. [Google Scholar] [CrossRef]
- Chavali, V.R.M.; Haider, N.; Rathi, S.; Vrathasha, V.; Alapati, T.; He, J.; Gill, K.; Nikonov, R.; Duong, T.T.; McDougald, D.S.; et al. Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci. Rep. 2020, 10, 11828. [Google Scholar] [CrossRef] [PubMed]
- Rabesandratana, O.; Chaffiol, A.; Mialot, A.; Slembrouck-Brec, A.; Joffrois, C.; Nanteau, C.; Rodrigues, A.; Gagliardi, G.; Reichman, S.; Sahel, J.-A.; et al. Generation of a Transplantable Population of Human iPSC-Derived Retinal Ganglion Cells. Front. Cell. Dev. Biol. 2020, 8, 585675. [Google Scholar] [CrossRef]
- Gudiseva, H.V.; Vrathasha, V.; He, J.; Bungatavula, D.; O’Brien, J.M.; Chavali, V.R.M. Single Cell Sequencing of Induced Pluripotent Stem Cell Derived Retinal Ganglion Cells (iPSC-RGC) Reveals Distinct Molecular Signatures and RGC Subtypes. Genes 2021, 12, 2015. [Google Scholar] [CrossRef]
- Vrathasha, V.; Nikonov, S.; Bell, B.A.; He, J.; Bungatavula, Y.; Uyhazi, K.E.; Chavali, V.R.M. Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional. iScience 2022, 25, 105308. [Google Scholar] [CrossRef]
- Luo, Z.; Chang, K.-C.; Wu, S.; Sun, C.; Xia, X.; Nahmou, M.; Bian, M.; Wen, R.R.; Zhu, Y.; Shah, S.; et al. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Rep. 2022, 17, 2690–2703. [Google Scholar] [CrossRef]
- McCabe, K.L.; Gunther, E.C.; Reh, T.A. The development of the pattern of retinal ganglion cells in the chick retina: Mechanisms that control differentiation. Development 1999, 126, 5713–5724. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Morales, J.R.; Del Bene, F.; Nica, G.; Hammerschmidt, M.; Bovolenta, P.; Wittbrodt, J. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev. Cell 2005, 8, 565–574. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yang, X.J. Regulation of retinal ganglion cell production by Sonic hedgehog. Development 2001, 128, 943–957. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Das, A.V.; Rahnenfuhrer, J.; Ahmad, I. Cellular and molecular characterization of early and late retinal stem cells/progenitors: Differential regulation of proliferation and context dependent role of Notch signaling. J. Neurobiol. 2004, 61, 359–376. [Google Scholar] [CrossRef]
- Nelson, B.R.; Gumuscu, B.; Hartman, B.H.; Reh, T.A. Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev. Neurosci. 2006, 28, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Franke, A.; Kaplan, M.R.; Pfrieger, F.W.; Barres, B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 1995, 15, 805–819. [Google Scholar] [CrossRef]
- Spalding, K.L.; Rush, R.A.; Harvey, A.R. Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J. Neurobiol. 2004, 60, 319–327. [Google Scholar] [CrossRef]
- Ji, J.-Z.; Elyaman, W.; Yip, H.K.; Lee, V.W.H.; Yick, L.-W.; Hugon, J.; So, K.-F. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: The possible involvement of STAT3 pathway. Eur. J. Neurosci. 2004, 19, 265–272. [Google Scholar] [CrossRef]
- Lingor, P.; Tönges, L.; Pieper, N.; Bermel, C.; Barski, E.; Planchamp, V.; Bähr, M. ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 2008, 131, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Sluch, V.M.; Chamling, X.; Liu, M.M.; Berlinicke, C.A.; Cheng, J.; Mitchell, K.L.; Welsbie, D.S.; Zack, D.J. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells. Stem Cells Transl. Med. 2017, 6, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Lee, J.S.; Leem, J.W.; Huh, Y.J.; Kim, J.Y.; Kim, H.-S.; Park, I.-H.; Daley, G.Q.; Hwang, D.-Y.; Kim, D.-W. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. Rep. 2010, 6, 270–281. [Google Scholar] [CrossRef]
- Huang, S.-M.A.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009, 461, 614–620. [Google Scholar] [CrossRef]
- Pera, E.M.; Wessely, O.; Li, S.Y.; De Robertis, E.M. Neural and head induction by insulin-like growth factor signals. Dev. Cell 2001, 1, 655–665. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.; Wu, X.; Zhang, N.; Zhang, Y.; Ouyang, S.; Song, X.; Fang, X.; Seeram, R.; Xue, W.; et al. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. ACS Appl. Mater. Interfaces 2016, 8, 2348–2359. [Google Scholar] [CrossRef]
- Silva, G.A.; Czeisler, C.; Niece, K.L.; Beniash, E.; Harrington, D.A.; Kessler, J.A.; Stupp, S.I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004, 303, 1352–1355. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Takamiya, A.; Jiao, J.W.; Cho, K.S.; Trevino, S.G.; Matsuda, T.; Chen, D.F. alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1142–1150. [Google Scholar] [CrossRef]
- Wiley, L.A.; Burnight, E.R.; DeLuca, A.P.; Anfinson, K.R.; Cranston, C.M.; Kaalberg, E.E.; Penticoff, J.A.; Affatigato, L.M.; Mullins, R.F.; Stone, E.M.; et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci. Rep. 2016, 6, 30742. [Google Scholar] [CrossRef] [PubMed]
- Massimino, L.; Flores-Garcia, L.; Di Stefano, B.; Colasante, G.; Icoresi-Mazzeo, C.; Zaghi, M.; Hamilton, B.A.; Sessa, A. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis. Dev. Biol. 2018, 434, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Duprey-Diaz, M.V.; Blagburn, J.M.; Blanco, R.E. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury. PLoS ONE 2016, 11, e0162626. [Google Scholar] [CrossRef]
- Bartrup, J.T.; Moorman, J.M.; Newberry, N.R. BDNF enhances neuronal growth and synaptic activity in hippocampal cell cultures. Neuroreport 1997, 8, 3791–3794. [Google Scholar] [CrossRef]
- Meng, Y.; Ren, Z.; Xu, F.; Zhou, X.; Song, C.; Wang, V.Y.-F.; Liu, W.; Lu, L.; Thomson, J.A.; Chen, G. Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 11, 1347–1356. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Espuny-Camacho, I.; Michelsen, K.A.; Gall, D.; Linaro, D.; Hasche, A.; Bonnefont, J.; Bali, C.; Orduz, D.; Bilheu, A.; Herpoel, A.; et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 2013, 77, 440–456. [Google Scholar] [CrossRef]
- Proenca, C.C.; Song, M.; Lee, F.S. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J. Neurochem. 2016, 138, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Sawai, H.; Clarke, D.B.; Kittlerova, P.; Bray, G.M.; Aguayo, A.J. Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. J. Neurosci. 1996, 16, 3887–3894. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.L.; Li, Y.; Sun, C.J.; Wong, K.A.; Leung, K.S.; de Lima, S.; Hanovice, N.J.; Yuki, K.; Stevens, B.; Benowitz, L.I. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J. Neurosci. 2021, 41, 8508–8531. [Google Scholar] [CrossRef] [PubMed]
- Leibinger, M.; Andreadaki, A.; Diekmann, H.; Fischer, D. Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death Dis. 2013, 4, e805. [Google Scholar] [CrossRef]
- Ishida, M.; Sugita, S.; Makabe, K.; Fujii, S.; Futatsugi, Y.; Kamao, H.; Yamasaki, S.; Sakai, N.; Maeda, A.; Mandai, M.; et al. A ROCK Inhibitor Promotes Graft Survival during Transplantation of iPS-Cell-Derived Retinal Cells. Int. J. Mol. Sci. 2021, 22, 3237. [Google Scholar] [CrossRef]
- Barnstable, C.J.; Drager, U.C. Thy-1 antigen: A ganglion cell specific marker in rodent retina. Neuroscience 1984, 11, 847–855. [Google Scholar] [CrossRef]
- Gill, K.P.; Hung, S.S.C.; Sharov, A.; Lo, C.Y.; Needham, K.; Lidgerwood, G.E.; Jackson, S.; Crombie, D.E.; Nayagam, B.A.; Cook, A.L.; et al. Enriched retinal ganglion cells derived from human embryonic stem cells. Sci. Rep. 2016, 6, 30552. [Google Scholar] [CrossRef]
- Britz, O.; Mattar, P.; Nguyen, L.; Langevin, L.-M.; Zimmer, C.; Alam, S.; Guillemot, F.; Schuurmans, C. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex 2006, 16 (Suppl. 1), i138–i151. [Google Scholar] [CrossRef]
- Cai, L.; Morrow, E.M.; Cepko, C.L. Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 2000, 127, 3021–3030. [Google Scholar] [CrossRef]
- Seibt, J.; Schuurmans, C.; Gradwhol, G.; Dehay, C.; Vanderhaeghen, P.; Guillemot, F.; Polleux, F. Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues. Neuron 2003, 39, 439–452. [Google Scholar] [CrossRef]
- Hufnagel, R.B.; Le, T.T.; Riesenberg, A.L.; Brown, N.L. Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev. Biol. 2010, 340, 490–503. [Google Scholar] [CrossRef]
- Maurer, K.A.; Riesenberg, A.N.; Brown, N.L. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014, 141, 3243–3254. [Google Scholar] [CrossRef] [PubMed]
- Miesfeld, J.B.; Moon, M.S.; Riesenberg, A.N.; Contreras, A.N.; Kovall, R.A.; Brown, N.L. Rbpj direct regulation of Atoh7 transcription in the embryonic mouse retina. Sci. Rep. 2018, 8, 10195. [Google Scholar] [CrossRef] [PubMed]
- Barnea-Cramer, A.O.; Wang, W.; Lu, S.-J.; Singh, M.S.; Luo, C.; Huo, H.; McClements, M.E.; Barnard, A.R.; MacLaren, R.E.; Lanza, R. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci. Rep. 2016, 6, 29784. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Reynolds, J.; Garcia, T.; Cifuentes, H.; Chew, S.; Zeng, X.; Lamba, D.A. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl. Med. 2018, 7, 210–219. [Google Scholar] [CrossRef]
- Ovando-Roche, P.; West, E.L.; Branch, M.J.; Sampson, R.D.; Fernando, M.; Munro, P.; Georgiadis, A.; Rizzi, M.; Kloc, M.; Naeem, A.; et al. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res. Ther. 2018, 9, 156. [Google Scholar] [CrossRef]
- Gagliardi, G.; Ben M’Barek, K.; Chaffiol, A.; Slembrouck-Brec, A.; Conart, J.B.; Nanteau, C.; Rabesandratana, O.; Sahel, J.-A.; Duebel, J.; Orieux, G.; et al. Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids. Stem Cell Rep. 2018, 11, 665–680. [Google Scholar] [CrossRef]
- Ribeiro, J.; Procyk, C.A.; West, E.L.; O’hara-Wright, M.; Martins, M.F.; Khorasani, M.M.; Hare, A.; Basche, M.; Fernando, M.; Goh, D.; et al. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep. 2021, 35, 109022. [Google Scholar] [CrossRef]
- Osakada, F.; Ikeda, H.; Mandai, M.; Wataya, T.; Watanabe, K.; Yoshimura, N.; Akaike, A.; Sasai, Y.; Takahashi, M. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 2008, 26, 215–224. [Google Scholar] [CrossRef]
- Johnson, J.E.; Barde, Y.A.; Schwab, M.; Thoenen, H. Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J. Neurosci. 1986, 6, 3031–3038. [Google Scholar] [CrossRef]
- Turner, B.A.; Sparrow, J.; Cai, B.; Monroe, J.; Mikawa, T.; Hempstead, B.L. TrkB/BDNF signaling regulates photoreceptor progenitor cell fate decisions. Dev. Biol. 2006, 299, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Caffe, A.R.; Soderpalm, A.K.; Holmqvist, I.; Van Veen, T. A combination of CNTF and BDNF rescues rd photoreceptors but changes rod differentiation in the presence of RPE in retinal explants. Investig. Ophthalmol. Vis. Sci. 2001, 42, 275–282. [Google Scholar]
- Nelson, B.R.; Hartman, B.H.; Georgi, S.A.; Lan, M.S.; Reh, T.A. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 2007, 304, 479–498. [Google Scholar] [CrossRef]
- Kaufman, M.L.; Park, K.U.; Goodson, N.B.; Chew, S.; Bersie, S.; Jones, K.L.; Lamba, D.A.; Brzezinski, J.A. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Dev. Biol. 2019, 453, 155–167. [Google Scholar] [CrossRef]
- Prabhudesai, S.N.; Cameron, D.A.; Stenkamp, D.L. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish. Dev. Biol. 2005, 287, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cordero, A.; Kruczek, K.; Naeem, A.; Fernando, M.; Kloc, M.; Ribeiro, J.; Goh, D.; Duran, Y.; Blackford, S.J.; Abelleira-Hervas, L.; et al. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. Stem Cell Rep. 2017, 9, 820–837. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Zhang, Y.; Ni, N.; Tang, Z.; Bai, Z.; Shen, B.; Sun, H.; Gu, P. Insulin-like growth factor-1 regulation of retinal progenitor cell proliferation and differentiation. Cell Cycle 2018, 17, 515–526. [Google Scholar] [CrossRef]
- Matsushita, T.; Steinfeld, J.; Fujihara, A.; Urayama, S.; Taketani, S.; Araki, M. Regulation of neuronal and photoreceptor cell differentiation by Wnt signaling from iris-derived stem/progenitor cells of the chick in flat vs. Matrigel-embedding cultures. Brain Res. 2019, 1704, 207–218. [Google Scholar] [CrossRef]
- DiStefano, T.; Chen, H.Y.; Panebianco, C.; Kaya, K.D.; Brooks, M.J.; Gieser, L.; Morgan, N.Y.; Pohida, T.; Swaroop, A. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors. Stem Cell Rep. 2018, 10, 300–313. [Google Scholar] [CrossRef]
- Wang, Q.; Marcucci, F.; Cerullo, I.; Mason, C. Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016, 3, ENEURO.0169-16.2016. [Google Scholar] [CrossRef]
- Pevny, L.H.; Nicolis, S.K. Sox2 roles in neural stem cells. Int. J. Biochem. Cell. Biol. 2010, 42, 421–424. [Google Scholar] [CrossRef]
- Taranova, O.V.; Magness, S.T.; Fagan, B.M.; Wu, Y.; Surzenko, N.; Hutton, S.R.; Pevny, L.H. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006, 20, 1187–1202. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, S.; Basu, B.; Surya, S.; Meera, V.; Riya, P.A.; Parvathy, S.; Das, A.V.; Sivakumar, K.C.; Nelson-Sathi, S.; James, J. Pax6 modulates intra-retinal axon guidance and fasciculation of retinal ganglion cells during retinogenesis. Sci. Rep. 2020, 10, 16075. [Google Scholar] [CrossRef]
- Rowan, S.; Cepko, C.L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 2004, 271, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Green, E.S.; Stubbs, J.L.; Levine, E.M. Genetic rescue of cell number in a mouse model of microphthalmia: Interactions between Chx10 and G1-phase cell cycle regulators. Development 2003, 130, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gordon, P.J.; Gaynes, J.A.; Fuller, A.W.; Ringuette, R.; Santiago, C.P.; Wallace, V.; Blackshaw, S.; Li, P.; Levine, E.M. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022, 11, e78342. [Google Scholar] [CrossRef]
- Fligor, C.M.; Langer, K.B.; Sridhar, A.; Ren, Y.; Shields, P.K.; Edler, M.C.; Ohlemacher, S.K.; Sluch, V.M.; Zack, D.J.; Zhang, C.; et al. Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells. Sci. Rep. 2018, 8, 14520. [Google Scholar] [CrossRef]
- Ludwig, A.L.; Mayerl, S.J.; Gao, Y.; Banghart, M.; Bacig, C.; Zepeda, M.A.F.; Zhao, X.; Gamm, D.M. Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proc. Natl. Acad. Sci. USA 2023, 120, e2213418120. [Google Scholar] [CrossRef]
- Bradley, J.E.; Ramirez, G.; Hagood, J.S. Roles and regulation of Thy-1, a context-dependent modulator of cell phenotype. Biofactors 2009, 35, 258–265. [Google Scholar] [CrossRef]
- Schultheiss, M.; Schnichels, S.; Hermann, T.; Hurst, J.; Feldkaemper, M.; Arango-Gonzalez, B.; Ueffing, M.; Bartz-Schmidt, K.U.; Zeck, G.; Spitzer, M.S. Hypothermia Protects and Prolongs the Tolerance Time of Retinal Ganglion Cells against Ischemia. PLoS ONE 2016, 11, e0148616. [Google Scholar] [CrossRef]
- Brodie-Kommit, J.; Clark, B.S.; Shi, Q.; Shiau, F.; Kim, D.W.; Langel, J.; Sheely, C.; A Ruzycki, P.; Fries, M.; Javed, A.; et al. Atoh7-independent specification of retinal ganglion cell identity. Sci. Adv. 2021, 7, eabe4983. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.B.; Zhang, X.M.; Hashimoto, T.; Tien, A.H.; Chen, A.; Ge, J.; Yang, X.J. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter. PLoS ONE 2014, 9, e112175. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Bard, J.E.; Kann, J.; Yergeau, D.; Sapkota, D.; Ge, Y.; Hu, Z.; Wang, J.; Liu, T.; Mu, X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat. Commun. 2021, 12, 1465. [Google Scholar] [CrossRef]
- Riazifar, H.; Jia, Y.; Chen, J.; Lynch, G.; Huang, T. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl. Med. 2014, 3, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Zhou, L.; Macke, J.; Yoshioka, T.; Hendry, S.; Eddy, R.; Shows, T.; Nathans, J. The Brn-3 family of POU-domain factors: Primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci. 1995, 15, 4762–4785. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Ravindran, E.; Dhingra, N.K. Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. J. Comp. Neurol. 2012, 520, 742–755. [Google Scholar] [CrossRef]
- Nadal-Nicolás, F.M.; Jiménez-López, M.; Sobrado-Calvo, P.; Nieto-López, L.; Cánovas-Martínez, I.; Salinas-Navarro, M.; Vidal-Sanz, M.; Agudo, M. Brn3a as a marker of retinal ganglion cells: Qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3860–3868. [Google Scholar] [CrossRef]
- Badea, T.C.; Cahill, H.; Ecker, J.; Hattar, S.; Nathans, J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 2009, 61, 852–864. [Google Scholar] [CrossRef]
- Mu, X.; Beremand, P.D.; Zhao, S.; Pershad, R.; Sun, H.; Scarpa, A.; Liang, S.; Thomas, T.L.; Klein, W.H. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development 2004, 131, 1197–1210. [Google Scholar] [CrossRef]
- Wang, S.W.; Gan, L.; Martin, S.E.; Klein, W.H. Abnormal polarization and axon outgrowth in retinal ganglion cells lacking the POU-domain transcription factor Brn-3b. Mol. Cell. Neurosci. 2000, 16, 141–156. [Google Scholar] [CrossRef]
- Surgucheva, I.; Weisman, A.D.; Goldberg, J.L.; Shnyra, A.; Surguchov, A. Gamma-synuclein as a marker of retinal ganglion cells. Mol. Vis. 2008, 14, 1540–1548. [Google Scholar] [PubMed]
- Martin-Partido, G.; Francisco-Morcillo, J. The role of Islet-1 in cell specification, differentiation, and maintenance of phenotypes in the vertebrate neural retina. Neural Regen. Res. 2015, 10, 1951–1952. [Google Scholar] [PubMed]
- Luo, Z.; Xu, C.; Li, K.; Xian, B.; Liu, Y.; Li, K.; Liu, Y.; Rong, H.; Tang, M.; Hu, D.; et al. Islet1 and Brn3 Expression Pattern Study in Human Retina and hiPSC-Derived Retinal Organoid. Stem Cells Int. 2019, 2019, 8786396. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Fu, X.; Beremand, P.D.; Thomas, T.L.; Klein, W.H. Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proc. Natl. Acad. Sci. USA 2008, 105, 6942–6947. [Google Scholar] [CrossRef] [PubMed]
- Nadal-Nicolas, F.M.; Galindo-Romero, C.; Lucas-Ruiz, F.; Marsh-Amstrong, N.; Li, W.; Vidal-Sanz, M.; Agudo-Barriuso, M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool. Res. 2023, 44, 226–248. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.A.; Grannonico, M.; Liu, M.; Kuranov, R.V.; Netland, P.A.; Liu, X.; Zhang, H.F. Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles. Transl. Vis. Sci. Technol. 2020, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Takei, Y.; Harada, A.; Nakata, T.; Chen, J.; Hirokawa, N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 2001, 155, 65–76. [Google Scholar] [CrossRef]
- Ngolab, J.; Canchi, S.; Rasool, S.; Elmaarouf, A.; Thomas, K.; Sarsoza, F.; Grundman, J.; Mante, M.; Florio, J.; Nandankar, N.; et al. Mutant three-repeat tau expression initiates retinal ganglion cell death through Caspase-2. Neurobiol. Dis. 2021, 152, 105277. [Google Scholar] [CrossRef]
- Stifter, J.; Ulbrich, F.; Goebel, U.; Bohringer, D.; Lagreze, W.A.; Biermann, J. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release. PLoS ONE 2017, 12, e0188444. [Google Scholar] [CrossRef]
- Xu, S.Y.; Wu, Y.M.; Ji, Z.; Gao, X.Y.; Pan, S.Y. A modified technique for culturing primary fetal rat cortical neurons. J. Biomed. Biotechnol. 2012, 2012, 803930. [Google Scholar] [CrossRef]
- Sharma, R.K.; Netland, P.A. Early born lineage of retinal neurons express class III beta-tubulin isotype. Brain Res. 2007, 1176, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wei, X.; Cho, K.-S.; Chen, G.; Sappington, R.; Calkins, D.J.; Chen, D.F. Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Investig. Ophthalmol. Vis. Sci. 2011, 52, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Oono, S.; Kurimoto, T.; Nakazawa, T.; Miyoshi, T.; Okamoto, N.; Kashimoto, R.; Tagami, Y.; Ito, Y.; Mimura, O. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury. Curr. Eye Res. 2009, 34, 598–605. [Google Scholar] [CrossRef]
- Lahne, M.; Brecker, M.; Jones, S.E.; Hyde, D.R. The Regenerating Adult Zebrafish Retina Recapitulates Developmental Fate Specification Programs. Front. Cell. Dev. Biol. 2020, 8, 617923. [Google Scholar] [CrossRef] [PubMed]
- Dorgau, B.; Felemban, M.; Sharpe, A.; Bauer, R.; Hallam, D.; Steel, D.H.; Lindsay, S.; Mellough, C.; Lako, M. Laminin gamma3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation. Cell Death Dis. 2018, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.J.; Wu, S.M. Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4886–4896. [Google Scholar] [CrossRef]
- Rodriguez, A.R.; de Sevilla Muller, L.P.; Brecha, N.C. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 2014, 522, 1411–1443. [Google Scholar] [CrossRef]
- Erskine, L.; Herrera, E. The retinal ganglion cell axon’s journey: Insights into molecular mechanisms of axon guidance. Dev. Biol. 2007, 308, 1–14. [Google Scholar] [CrossRef]
- Xue, Y.; Shen, S.Q.; Jui, J.; Rupp, A.C.; Byrne, L.C.; Hattar, S.; Flannery, J.G.; Corbo, J.C.; Kefalov, V.J. CRALBP supports the mammalian retinal visual cycle and cone vision. J. Clin. Investig. 2015, 125, 727–738. [Google Scholar] [CrossRef]
- Maw, M.A.; Kennedy, B.; Knight, A.; Bridges, R.; Roth, K.E.; Mani, E.; Mukkadan, J.; Nancarrow, D.; Crabb, J.W.; Denton, M.J. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat. Genet. 1997, 17, 198–200. [Google Scholar] [CrossRef]
- Harrison, K.R.; Reifler, A.N.; Chervenak, A.P.; Wong, K.Y. Prolonged Melanopsin-based Photoresponses Depend in Part on RPE65 and Cellular Retinaldehyde-binding Protein (CRALBP). Curr. Eye Res. 2021, 46, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Mure, L.S. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front. Neurol. 2021, 12, 636330. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.A.; Li, H.; Zhang, Z.; Kiyama, T.; Panda, S.; Hattar, S.; Ribelayga, C.P.; Mills, S.L.; Wang, S.W. T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J. Neurosci. 2014, 34, 13083–13095. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M.; Chen, S.K.; Hattar, S. Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci. 2011, 34, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Qiao, M.; Bei, F.; Kim, I.J.; He, Z.; Sanes, J.R. Subtype-specific regeneration of retinal ganglion cells following axotomy: Effects of osteopontin and mTOR signaling. Neuron 2015, 85, 1244–1256. [Google Scholar] [CrossRef]
- Krieger, B.; Qiao, M.; Rousso, D.L.; Sanes, J.R.; Meister, M. Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS ONE 2017, 12, e0180091. [Google Scholar] [CrossRef]
- Hoshi, H.; Tian, L.M.; Massey, S.C.; Mills, S.L. Two distinct types of ON directionally selective ganglion cells in the rabbit retina. J. Comp. Neurol. 2011, 519, 2509–2521. [Google Scholar] [CrossRef]
- Xiong, Y.; Ji, H.; You, Z.; Yao, F.; Zhou, R.; Song, W.; Xia, X. Otx2 enhances transdifferentiation of Muller cells-derived retinal stem cells into photoreceptor-like cells. J. Cell Mol. Med. 2019, 23, 943–953. [Google Scholar] [CrossRef]
- Zhou, S.; Flamier, A.; Abdouh, M.; Tétreault, N.; Barabino, A.; Wadhwa, S.; Bernier, G. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFbeta and Wnt signaling. Development 2015, 142, 3294–3306. [Google Scholar] [CrossRef]
- Yan, X.X.; Wiechmann, A.F. Early expression of recoverin in a unique population of neurons in the human retina. Anat. Embryol. 1997, 195, 51–63. [Google Scholar] [CrossRef]
- Irie, S.; Sanuki, R.; Muranishi, Y.; Kato, K.; Chaya, T.; Furukawa, T. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina. Mol. Cell. Biol. 2015, 35, 2583–2596. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski JAt Lamba, D.A.; Reh, T.A. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 2010, 137, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Mears, A.J.; Kondo, M.; Swain, P.K.; Takada, Y.; Bush, R.A.; Saunders, T.L.; Sieving, P.A.; Swaroop, A. Nrl is required for rod photoreceptor development. Nat. Genet. 2001, 29, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Khorana, H.G. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J. Biol. Chem. 1992, 267, 1–4. [Google Scholar] [CrossRef]
- Hagen, L.A.; Arnegard, S.; Kuchenbecker, J.A.; Gilson, S.J.; Neitz, M.; Neitz, J.; Baraas, R.C. The association between L:M cone ratio, cone opsin genes and myopia susceptibility. Vis. Res. 2019, 162, 20–28. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xiao, Y.; Li, X.; Ruan, S.; Luo, X.; Wan, X.; Wang, F.; Sun, X. Retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGA1. FASEB J. 2021, 35, e21859. [Google Scholar] [CrossRef]
- Kramer, R.H.; Molokanova, E. Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J. Exp. Biol. 2001, 204, 2921–2931. [Google Scholar] [CrossRef]
- Vinberg, F.; Peshenko, I.V.; Chen, J.; Dizhoor, A.M.; Kefalov, V.J. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J. Biol. Chem. 2018, 293, 7457–7465. [Google Scholar] [CrossRef]
- Miranda, C.J.; Fernandez, N.; Kamel, N.; Turner, D.; Benzenhafer, D.; Bolch, S.N.; Andring, J.T.; McKenna, R.; Smith, W.C. An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1. J. Biol. Chem. 2020, 295, 6498–6508. [Google Scholar] [CrossRef]
- Tonade, D.; Kern, T.S. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog. Retin. Eye Res. 2021, 83, 100919. [Google Scholar] [CrossRef]
- Haider, N.B.; Mollema, N.; Gaule, M.; Yuan, Y.; Sachs, A.J.; Nystuen, A.M.; Naggert, J.K.; Nishina, P.M. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction. Exp. Eye Res. 2009, 89, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Chung, S.; Yun, K.; Kim, B.; So, S.; Kang, S.; Kang, E.; Lee, J.Y. Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Exp. Mol. Med. 2021, 53, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Cote, R.H.; Gupta, R.; Irwin, M.J.; Wang, X. Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. Adv. Exp. Med. Biol. 2022, 1371, 33–59. [Google Scholar] [PubMed]
- Cote, R.H. Characteristics of photoreceptor PDE (PDE6): Similarities and differences to PDE5. Int. J. Impot. Res. 2004, 16 (Suppl. 1), S28–S33. [Google Scholar] [CrossRef]
- Wang, H.; Morrison, C.A.; Ghosh, N.; Tea, J.S.; Call, G.B.; Treisman, J.E. The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the Drosophila eye. Development 2022, 149, dev200217. [Google Scholar] [CrossRef]
- Sohocki, M.M.; Bowne, S.J.; Sullivan, L.S.; Blackshaw, S.; Cepko, C.L.; Payne, A.M.; Bhattacharya, S.S.; Khaliq, S.; Mehdi, S.Q.; Birch, D.G.; et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat. Genet. 2000, 24, 79–83. [Google Scholar] [CrossRef]
- Kirschman, L.T.; Kolandaivelu, S.; Frederick, J.M.; Dang, L.; Goldberg, A.F.; Baehr, W.; Ramamurthy, V. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum. Mol. Genet. 2010, 19, 1076–1087. [Google Scholar] [CrossRef]
- Testa, F.; Surace, E.M.; Rossi, S.; Marrocco, E.; Gargiulo, A.; Di Iorio, V.; Ziviello, C.; Nesti, A.; Fecarotta, S.; Bacci, M.L.; et al. Evaluation of Italian patients with leber congenital amaurosis due to AIPL1 mutations highlights the potential applicability of gene therapy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5618–5624. [Google Scholar] [CrossRef]
- Ameixa, C.; Brickell, P.M. Characterization of a chicken retinoid X receptor-gamma gene promoter and identification of sequences that direct expression in retinal cells. Biochem. J. 2000, 347, 485–490. [Google Scholar] [CrossRef]
- Lin, Y.; Jones, B.W.; Liu, A.; Tucker, J.F.; Rapp, K.; Luo, L.; Baehr, W.; Bernstein, P.S.; Watt, C.B.; Shaw, M.V.; et al. Retinoid receptors trigger neuritogenesis in retinal degenerations. FASEB J. 2012, 26, 81–92. [Google Scholar] [CrossRef]
- Hennig, A.K.; Peng, G.H.; Chen, S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res. 2008, 1192, 114–133. [Google Scholar] [CrossRef]
- Eberle, D.; Schubert, S.; Postel, K.; Corbeil, D.; Ader, M. Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6462–6471. [Google Scholar] [CrossRef] [PubMed]
- Lakowski, J.; Gonzalez-Cordero, A.; West, E.L.; Han, Y.-T.; Welby, E.; Naeem, A.; Blackford, S.J.I.; Bainbridge, J.W.B.; Pearson, R.A.; Ali, R.R.; et al. Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel From Embryonic Stem Cell-Derived Self-Forming Retina. Stem Cells 2015, 33, 2469–2482. [Google Scholar] [CrossRef] [PubMed]
- Procyk, C.A.; Eleftheriou, C.G.; Storchi, R.; Allen, A.E.; Milosavljevic, N.; Brown, T.M.; Lucas, R.J. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. J. Neurophysiol. 2015, 114, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Flood, M.D.; Veloz, H.L.B.; Hattar, S.; Carvalho-de-Souza, J.L. Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice. Front. Cell. Neurosci. 2022, 16, 1090037. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, A.; Hoshino, A.; Finkbeiner, C.R.; Chitsazan, A.; Dai, L.; Haugan, A.K.; Eschenbacher, K.M.; Jackson, D.L.; Trapnell, C.; Bermingham-McDonogh, O.; et al. Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures. Cell Rep. 2020, 30, 1644–1659.e4. [Google Scholar] [CrossRef]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [Google Scholar] [CrossRef]
- Lu, Y.; Shiau, F.; Yi, W.; Lu, S.; Wu, Q.; Pearson, J.D.; Kallman, A.; Zhong, S.; Hoang, T.; Zuo, Z.; et al. Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Dev. Cell 2020, 53, 473–491.e9. [Google Scholar] [CrossRef]
- Hayden, C.M.; Meseck, E.K. Transmission Electron Microscopy of the Retina: A Method for Sample Preparation and Evaluation. Toxicol. Pathol. 2021, 49, 521–527. [Google Scholar] [CrossRef]
- Marban, E.; Yamagishi, T.; Tomaselli, G.F. Structure and function of voltage-gated sodium channels. J. Physiol. 1998, 508 Pt 3, 647–657. [Google Scholar] [CrossRef]
- Yau, K.W.; Hardie, R.C. Phototransduction motifs and variations. Cell 2009, 139, 246–264. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Geng, Y.; Osakada, F.; Sharma, R.; Cetin, A.H.; Callaway, E.M.; Williams, D.R.; Merigan, W.H. Imaging light responses of retinal ganglion cells in the living mouse eye. J. Neurophysiol. 2013, 109, 2415–2421. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, P.; Cameron, E.G.; Zhang, X.; Nahmou, M.; Muller, K.J.; Goldberg, J.L. Physiologic maturation is both extrinsically and intrinsically regulated in progenitor-derived neurons. Sci. Rep. 2020, 10, 2337. [Google Scholar] [CrossRef]
- Alcalde, I.; Sanchez-Fernandez, C.; Martin, C.; De Pablo, N.; Jemni-Damer, N.; Guinea, G.V.; Merayo-Lloves, J.; Del Olmo-Aguado, S. Human Stem Cell Transplantation for Retinal Degenerative Diseases: Where Are We Now? Medicina 2022, 58, 102. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, M.C.; Geng, Z.; Stahl, M.R.; Kapphahn, R.J.; Roehrich, H.; Montezuma, S.R.; Ferrington, D.A.; Dutton, J.R. Testing Mitochondrial-Targeted Drugs in iPSC-RPE from Patients with Age-Related Macular Degeneration. Pharmaceuticals 2022, 15, 62. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Cell Source | Differentiation Procedures | Differentiation Culture Media | Differentiation Factors | Immunostaining Maker | Time Length | Other Assays |
---|---|---|---|---|---|---|---|---|
Reichman et al. [16] | 2017 | hiPSC | NR, RO | Essential 6 medium, ProB27 medium | N2 supplement, FGF2 | RPC: VSX2, Ki67 Photoreceptor: CRX, NRL, NEUROD1, RCVRN, CAR, RHO, OPN1SW, OPN1L/MW, CD73, OTX2 RGC: BRN3A, PAX6 AC: AP2, PAX6 HC: LIM1, PAX6 BC: PKCα, VSX2 MC: GLUTAMIN SYNTHASE, SOX9 | 28–280 days | qPCR: Eye field specification: SIX3, MITF, VSX2, PAX6, RAX, LHX2 Photoreceptor lineage: NRL, CRX, NEUROD1, RCVRN, CAR Mature photoreceptor: RHO, OPN1SW, OPN1L/MW RGC: BRN3A, BRN3B AC: GAD2 HC: LIM1 BC: PKCα MC: GLAST1, RLBP1 |
Li et al. [32] | 2018 | Urine cell-derived hiPSC | EB, RO | mTeSR1 medium, NIM, RDM | Blebbistatin, FBS, Taurine, GlutaMAX | Eye field fate: SOX1, PAX6, OTX2, LHX2, SIX3 RPC: VSX2(CHX10), MCM2 RGC: BRN3 AC: AP2 HC: PROX1 BC: PKCα MC: CRALBP Photoreceptor: RHO, OPN1SW, OPN1L/MW, RCVRN, PDE6α, GNAT1 | 6 weeks | RT-PCR: Eye field transcription factor: PAX6, LHX2, RAX, SIX3, SIX6 |
Kaya et al. [33] | 2019 | hiPSC | EB, OV, RO | E8 medium, NIM, PIM | Y-27632, FBS, taurine, GlutaMAX, retinoid, N2 supplement, IGF-1, beta-mercaptoethanol, 9-cis retinal, ATRA | RPC: VSX2(CHX10) RGC: BRN3A Pan-photoreceptor: RCVRN Photoreceptor: CRX Rod: RHO Cone: OPN1L/MW, OPN1SW AC/HC: CALB BC: PKCα MC: CRALBP Ribbon synapses: Bassoon | 200 days | Western blot: Rod photoreceptor: RHO |
Capowski et al. [34] | 2019 | hiPSC | EB, OV, RO | NIM, RDM | BMP4, FBS, taurine, chemically defined lipid supplement, ATRA | Early retinogenesis: VSX2, Ki67 RGC: BRN3B, SNCG Photoreceptor precursors: OTX2 Photoreceptor: CRX, RCVRN Cone: ARR3, OPN1L/MW, OPN1SW Rod: NRL, NR2E3, RHO Photoreceptor pre-synaptic marker: VGLUT1, CTBP2 HC: OC1 AC: CaR BC: PKCα, GNAO1 | 175 days | Optical coherence tomography (OCT) |
Regent et al. [35] | 2020 | hiPSC | EB, OV, RO | E8 or mTeSR1 medium, NIM, RIM | Y-27632, B27 supplement without vitamin A, GlutaMAX, IGF-1, FBS, taurine, 9-cis retinal, N2 supplement | RPC: CHX10 RGC: BRN3A Photoreceptor: ARL13B, PCNT, RCVRN Rod: RHO Cone: OPN1SW, OPN1L/MW AC/HC: CALB MC: CRALBP BC: PKCα | 200 days | NA |
Berber et al. [36] | 2021 | hiPSC | EB, RO | Method (1) mTeSR Plus medium, BE6.2 medium, LTR medium Method (2&3) mTeSR Plus medium, NIM, RDM, RC2 medium, RC1 medium | Method (1) Blebbistatin, IWR-1e, SAG, ATRA, DAPT Method (2) Blebbistatin, HEPES, ATRA Method (3) Blebbistatin, HEPES, ATRA, BMP4 | RPC: VSX2 RGC: BRN3A, SNCG Photoreceptor: CRX, RCVRN Rod: RHO Cone: OPN1SW AC: AP2 | 85 days | NA |
Sanjurjo-Soriano et al. [37] | 2022 | hiPSC | NR, RO | E6 medium, RDM | Method (1) N-2 supplement, FGF2 Method (2) N-2 supplement, FGF2, FBS, B27 supplement without vitamin A Method (3) N-2 supplement, FGF2, FBS, B27 supplement without vitamin A, taurine, RA | Photoreceptor: CRX, RCVRN, NR2E3 Rod: RHO Cone: ARR3, OPN1SW | 85 days | qPCR: ARR3, BRN3A, CRX, GAD2, GLAST1, LIM1, NRL, NR2E3, OPN1MW, OTX2, PKCα, RAX, RCVRN, RHO, GRK1, SIX3, VSX2 Western blot: anti-PDE6B, anti-β-tubulin |
Authors | Year | Cell Source | Differentiation Procedures | Differentiation Culture Media | Differentiation Factors | Markers | Time Length | Functional Assays | Efficiency | Tests for Efficiency |
---|---|---|---|---|---|---|---|---|---|---|
Teotia et al. [50] | 2017 | mESC, hiPSC | EB, neural-rosettes, RPC, RGC | NIM, neural expansion medium | Noggin, DKK1, glutamine, N2, B27, bFGF, IGF-1, SHH, FGF8, DAPT, follistatin, cyclopamine, BDNF, forskolin, NT4, CNTF, cAMP, Y-27632 | ATOH7, BRN3B, bIII-tubulin, THY1, GAP43, ISL1, RAX, PAX6, VSX2(CHX10) | 58 days | Electro-physiological responses (patch-clamp recording) | 84.5 ± 13.0% (ATOH7+) 68.4 ± 18.6% (BRN3+) | ICC |
Lee et al. [51] | 2018 | hiPSC | EB, neural rosettes, RGC | Human ESC medium (-bFGF), N2 medium, N2B27 medium | Dorsomorphin, SB341542, XAV939, IGF-1, N2, B27, insulin, bFGF, DAPT, BDNF | PAX6, LHX2, MATH5, BRN3B, ISL1, TUJ1(TUBB3), NF-L, THY1, SNCG | 40 days | Electro-physiological responses (patch-clamp recording) | 45% (BRN3B+ ISL1+) | IHC |
Langer et al. [52] | 2018 | hiPSC | EB, retinal organoid, RGC | NIM, RDM, BrainPhys Neuronal Medium | N2, B27, heparin, FBS | RGC: BRN3, ISL1, RBPMS, SNCG α-RGC: KCNG4, CB2, SPP1 DS-RGC: CART, CDH6, FSTL4 | 80 days | NA | NA | NA |
Chen et al. [53] | 2019 | hiPSC | Neural spheres, RGC | RDM, RMM | IWR-1e, CHIR99021, SAG, N2, FBS, BDNF, RA, Y-27632 | RPC: VSX2(CHX10) RGC: MATH5(ATOH7), BRN3B, TAU, NFM | 34 days | NA | NA | NA |
Chavali et al. [54] | 2020 | hiPSC | RPC, RGC | RPC induction medium, RGC induction medium | B27, N2, nicotinamide, XAV939, SB431542, LDN193189, IGF-1, bFGF, SHH, SAG, FGF8, follistatin, cyclopamine, DAPT, Y-27632, forskolin, cAMP, BDNF, NT4, CNTF | RPC: SOX2, RAX, PAX6 RGC: THY1/CD90, TUJ1, MAP2, BRN3A, BRN3B, RBPMS | 36 days | Electro-physiological responses (patch-clamp recording) | 58% (THY1+) 84% (BRN3B+) 12% (RBPMS+) After MACS: 95% (BRN3A+) | Flow cytometry After MACS: ICC |
Rabesandratana et al. [55] | 2020 | hiPSC | Retinal organoid, RGC | Essential 6 medium, RDM | N2, B27, FGF2 | THY1, BRN3A, PAX6, HuC/D, βIII-tubulin, RBPMS | 63 days | Electro-physiological responses (patch-clamp recording, multi electrode array) | 78.03 ± 1.47% (THY1+) | Flow cytometry |
Gudiseva et al. [56] | 2021 | hiPSC | RPC, RGC | RPC induction medium, RGC induction medium | B27, N2, nicotinamide, XAV939, SB431542, LDN193189, IGF-1, bFGF, SHH, SAG, FGF8, follistatin, cyclopamine, DAPT, Y-27632, forskolin, cAMP, BDNF, NT4, CNTF | MAP2, RBPMS, TUJ1, BRN3A, SOX4, TUBB3 (βIII-tubulin), SNCG, PAX6, NRN1, CD90 (THY1) | 40 days | NA | 87% (BRN3+) 87% (SNCG+) 81% (THY1+) 19% (RBPMS+) | Flow cytometry |
Vrathasha et al. [57] | 2022 | hiPSC | RPC, RGC | RPC induction medium, RGC induction medium | B27, N2, nicotinamide, XAV939, SB431542, LDN193189, IGF-1, bFGF, SHH, SAG, FGF8, follistatin, cyclopamine, DAPT, Y-27632, forskolin, cAMP, BDNF, NT4, CNTF | RPC: Ki67, VSX2(CHX10) RGC: BRN3/POU4F, SNCG, THY1/CD90, RBPMS | 36 days | Electro-physiological responses (patch-clamp recording) | 87% (BRN3+) 93% (SNCG+) 85.5% (THY1+) 22.5% (RBPMS+) | Flow cytometry |
Luo et al. [58] | 2022 | hESC, hiPSC | RPC, RGC | RGC culture medium | B27, N2, FGF, insulin, sodium pyruvate, SATO supplement, L-glutamine, triiodothyronine, N-acetyl cysteine, BDNF, CNTF, forskolin, DAPT, GDNF | BRN3A, BRN3B, ISL1, SNCG, GAP43, ELAVL4 (HuD), ATOH7, RPBMS | 1 week | Electro-physiological responses (calcium imaging) | NA | NA |
Authors | Year | Cell Source | Differentiation Procedures | Differentiation Culture Media | Differentiation Factors | Immunostaining Markers | Time Length | Other Assays | Efficiency | Tests for Efficiency |
---|---|---|---|---|---|---|---|---|---|---|
Meyer et al. [19] | 2011 | hiPSC | Neural cluster, OV, photoreceptors | EB medium, NIM, RDM | Noggin, DKK1, N2, B27 | OTX2, RCVRN, CRX, NRL | 120 days | RT-qPCR, electro-physiological responses, calcium imaging | 55.9 ± 6.6% (CRX+) | ICC |
Zhong et al. [12] | 2014 | hiPSC | EF, NR, RC, photoreceptors | NIM | Heparin, N2, B27, taurine, RA | Precursor: OTX2, RCVRN Rod: RHO Cone: OPN1SW, OPN1L/MW | 21 weeks | light responsiveness (electrical recording) | 90% (RHO+) | IHC |
Barnea-Cramer et al. [95] | 2016 | hiPSC | EFP, RNP, eyecup, PhRP, photoreceptors | RIM, NDM | Noggin, N2, B27, insulin, BDNF, CNTF, RA, DAPT | Progenitor: CRX, NRL, NR2E3 Rod: RHO, RCVRN, PDE6α | 100 days | NA | NA | NA |
Zhu et al. [96] | 2018 | hiPSC | NR, RO, photoreceptors | MEM, NSC medium | Noggin, DKK1, N1, IGF-1, IWR-1, SB431542, LDN193189 | Precursor: OTX2, CRX, BLIMP1, AIPL1, RCVRN Rod: NRL Cone: THRB, ARR3, RXRγ | 70 days | RT-qPCR | 12 weeks: 52 ± 6% (OTX2+) 43 ± 3% (RCVRN+) | ICC |
Ovando-Roche et al. [97] | 2018 | hiPSC | NRV, photoreceptor | NIM (in bioreactor) | N2, B27, taurine, RA | Precursor: RCVRN Rod: RHO, CD133, CD73 Cone: OPN1SW, OPN1L/MW, ARR3 | 17 weeks | NA | 68.17 ± 6.15% (RCVRN+) 11.87 ± 1.88% (RCVRN+ CD73+) | flow cytometry |
Gagliardi et al. [98] | 2018 | hiPSC | NR, RO | Essential 6 medium, ProB27 medium | N2 supplement, FGF2 | Precursor: CRX, RCVRN, CD73 Rod: RHO Cone: OPN1SW, OPN1L/MW, ARR3 | 200 days | RT-qPCR, activity of CNG channels (calcium imaging) | 55 ± 2% (CD73+) | flow cytometry |
Li et al. [32] | 2018 | hiPSC | EB, NR, RO, photoreceptors | NIM, RDM | Heparin, N2, B27, taurine | Precursor: OTX2 Rod: RHO Cone: OPN1SW, OPN1L/MW | 9 weeks | NA | NA | NA |
Ribeiro et al. [99] | 2021 | hiPSC | RO, photoreceptors | Essential 6 medium, PIM, RDM | N2, B27, RA | Precursor: CRX, RCVRN Rod: RHO Cone: OPN1SW, OPN1L/MW | 90 days | Electro-physiological responses (multi-electrode array), quantitation of light responsiveness | 59 ± 3% (arrestin + OPN1L/MW+) | flow cytometry |
Sanjurjo-Soriano et al. [37] | 2022 | hiPSC | NR, RO, photoreceptors | Essential 6 medium, RDM | N2, B27, FGF2, taurine, RA | Precursor: CRX, RCVRN Rod: RHO, NRL, NR2E3 Cone: OPN1SW, OPN1L/MW, ARR3 | 225 days | Western blot (PDE6B expression) | 23.8–50.3% (ARR3+) 49.7–76.2% (RHO+) | IHC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, N.K.; Yip, S.P.; Huang, C.-L. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int. J. Mol. Sci. 2023, 24, 13652. https://doi.org/10.3390/ijms241713652
Wong NK, Yip SP, Huang C-L. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. International Journal of Molecular Sciences. 2023; 24(17):13652. https://doi.org/10.3390/ijms241713652
Chicago/Turabian StyleWong, Nonthaphat Kent, Shea Ping Yip, and Chien-Ling Huang. 2023. "Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation" International Journal of Molecular Sciences 24, no. 17: 13652. https://doi.org/10.3390/ijms241713652
APA StyleWong, N. K., Yip, S. P., & Huang, C. -L. (2023). Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. International Journal of Molecular Sciences, 24(17), 13652. https://doi.org/10.3390/ijms241713652