Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Results
2.1. Plasmatic Cytokines’ Determination
2.2. Plasmatic LBP Protein Dosage
2.3. Evaluation of the Plasmatic Free Fatty Acids
3. Materials and Methods
3.1. Study Design
3.2. Cervical Length Measurment
3.3. Diagnosis of GDM
3.4. Collection of Plasma Samples
3.5. LBP Protein Dosage
3.6. Free Fatty Acids Evaluation
3.7. Cytokines’ Plasma Determination
3.8. Ethics Approval
3.9. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Amelio, P.; Sassi, F. Gut Microbiota, Immune System, and Bone. Calcif. Tissue Int. 2018, 102, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Viennois, E.; Chassaing, B. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes 2018, 9, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, X.; Yang, J.; Wei, Y.; Zhao, Y. Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia. Front. Cell Infect. Microbiol. 2019, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Natividad, J.M.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res. 2013, 69, 42–51. [Google Scholar] [CrossRef]
- Andersen, K.; Kesper, M.S.; Marschner, J.A.; Konrad, L.; Ryu, M.; Kumar Vr, S.; Kulkarni, O.P.; Mulay, S.R.; Romoli, S.; Demleitner, J.; et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J. Am. Soc. Nephrol. 2017, 28, 76–83. [Google Scholar] [CrossRef]
- Jonsson, A.L.; Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79–87. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef]
- Kamada, N.; Núñez, G. Role of the Gut Microbiota in the Development and Function of Lymphoid Cells. J. Immunol. 2013, 190, 1389–1395. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Lim, P.S.; Chang, Y.K.; Wu, T.K. Serum Lipopolysaccharide-Binding Protein is Associated with Chronic Inflammation and Metabolic Syndrome in Hemodialysis Patients. Blood Purif. 2019, 47, 28–36. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Eviston, D.; Hsu, P.; Mariño, E.; Chidgey, A.; Santner-Nanan, B.; Wong, K.; Richards, J.L.; Yap, Y.-A.; Collier, F.; et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat. Commun. 2019, 10, 3031. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; Salazar, N.; Margolles, A.; González, S.; Gueimonde, M.; Reyes-Gavilán, C.G.d.L.; Suárez, A. Free fatty acids profiles are related to gut microbiota signatures and short-chain fatty acids. Front. Immunol. 2017, 8, 823. [Google Scholar] [CrossRef] [PubMed]
- Stehle, J.J.R.; Leng, X.; Kitzman, D.W.; Nicklas, B.J.; Kritchevsky, S.B.; High, K.P. Lipopolysaccharide-binding protein, a surrogate marker of microbial translocation, is associated with physical function in healthy older adults. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2012, 67, 1212–1218. [Google Scholar] [CrossRef]
- Ziętek, M.; Celewicz, Z.; Szczuko, M. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism. Nutrients 2021, 13, 1244. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochim. Pol. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017, 24, 50. [Google Scholar] [CrossRef]
- Schroeder, B.O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Dualib, P.M.; Ogassavara, J.; Mattar, R.; da Silva, E.M.K.; Dib, S.A.; Pititto, B.D.A. Gut microbiota and gestational Diabetes Mellitus: A systematic review. Diabetes Res. Clin. Pract. 2021, 180, 109078. [Google Scholar] [CrossRef]
- Villafan-Bernal, J.R.; Acevedo-Alba, M.; Reyes-Pavon, R.; Diaz-Parra, G.A.; Lip-Sosa, D.L.; Vazquez-Delfin, H.I.; Hernandez-Muñoz, M.; Bravo-Aguirre, D.E.; Figueras, F.; Martinez-Portilla, R.J. Plasma Levels of Free Fatty Acids in Women with Gestational Diabetes and Its Intrinsic and Extrinsic Determinants: Systematic Review and Meta-Analysis. J. Diabetes Res. 2019, 2019, 7098470. [Google Scholar] [CrossRef]
- Kuang, Y.-S.; Lu, J.-H.; Li, S.-H.; Li, J.; Yuan, M.-Y.; He, J.R.; Chen, N.-N.; Xiao, W.-Q.; Shen, S.-Y.; Qiu, L.; et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience 2017, 6, gix058. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Zhang, Y.; Shan, C.; Zhang, Y.; Fang, K.; Xia, Y.; Shi, Z. Relationships between gut microbiota, plasma glucose and gestational diabetes mellitus. J. Diabetes Investig. 2021, 12, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018, 67, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial Changes during Pregnancy, Birth, and Infancy. Front. Microbiol. 2016, 7, 1031. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Thomas, A.; Reisetter, A.C.; Scholtens, D.M.; Wolever, T.M.; Josefson, J.; Layden, B.T. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl. Res. 2014, 164, 153–157. [Google Scholar] [CrossRef]
- Silvano, A.; Seravalli, V.; Strambi, N.; Cecchi, M.; Tartarotti, E.; Parenti, A.; Di Tommaso, M. Tryptophan metabolism and immune regulation in the human placenta. J. Reprod. Immunol. 2021, 147, 103361. [Google Scholar] [CrossRef]
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The Maternal–Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life 2022, 12, 424. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Di Mauro, A.; Capozza, M.; Rizzo, V.; Schettini, F.; Panza, R.; Laforgia, N. Dysbiosis and prematurity: Is there a role for probiotics? Nutrients 2019, 11, 1273. [Google Scholar] [CrossRef]
- Cömert, T.K.; Akpinar, F.; Erkaya, S.; Durmaz, B.; Durmaz, R. The effect of gestational weight gain on serum total oxidative stress, total antioxidant capacity and gut microbiota. Biosci. Microbiota. Food Health 2022, 41, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Menon, R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front. Immunol. 2014, 5, 567. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.A.; Ahmad, I.M.; Zimmerman, M.C. Oxidative Stress and Preterm Birth: An Integrative Review. Biol. Res. Nurs. 2018, 20, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Iams, J.D.; Goldenberg, R.L.; Meis, P.J.; Mercer, B.M.; Moawad, A.; Das, A.; Thom, E.; McNellis, D.; Copper, R.L.; Johnson, F.; et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N. Engl. J. Med. 1996, 334, 567–572. [Google Scholar] [CrossRef]
- Di Tommaso, M.; Berghella, V. Cervical length for the prediction and prevention of preterm birth. Expert. Rev. Obstet. Gynecol. 2013, 8, 345–355. [Google Scholar] [CrossRef]
- Romero, R.; Dey, S.K.; Fisher, S.J. Preterm labor: One syndrome, many causes. Science 2014, 345, 760–765. [Google Scholar] [CrossRef]
- Lannon, S.M.R.; Vanderhoeven, J.P.; Eschenbach, D.A.; Gravett, M.G.; Waldorf, K.M.A. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes. Reprod. Sci. 2014, 21, 1215–1227. [Google Scholar] [CrossRef]
- Jung, E.Y.; Park, J.W.; Ryu, A.; Lee, S.Y.; Cho, S.-H.; Park, K.H. Prediction of impending preterm delivery based on sonographic cervical length and different cytokine levels in cervicovaginal fluid in preterm labor. J. Obstet. Gynaecol. Res. 2016, 42, 158–165. [Google Scholar] [CrossRef]
- Sisti, G.; Paccosi, S.; Parenti, A.; Seravalli, V.; Linari, C.; Di Tommaso, M.; Witkin, S. Pro-infl ammatory mediators in vaginal fluid and short cervical length in pregnancy. Bratisl. Med. J. 2020, 121, 278–281. [Google Scholar] [CrossRef]
- Molvarec, A.; Tamási, L.; Losonczy, G.; Madách, K.; Prohászka, Z.; Rigó, J. Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress. Chaperones 2010, 15, 237–247. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, K.H.; Kim, H.J.; Kim, Y.M.; Ahn, K.; Lee, K. Inflammation-related immune proteins in maternal plasma as potential predictive biomarkers for rescue cerclage outcome in women with cervical insufficiency. Am. J. Reprod. Immunol. 2022, 88, e13557. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S. The Association of Prenatal C-Reactive Protein and Interleukin-8 Levels with Maternal Characteristics and Preterm Birth. Am. J. Perinatol. 2022. [Google Scholar] [CrossRef]
- Park, C.W.; Yoon, B.H.; Park, J.S.; Jun, J.K. A Fetal and an Intra-Amniotic Inflammatory Response Is More Severe in Preterm Labor than in Preterm PROM in the Context of Funisitis: Unexpected Observation in Human Gestations. PLoS ONE 2013, 8, e62521. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; World Health Organization: Geneva, Switzerland, 2013; Available online: https://apps.who.int/iris/handle/10665/85975 (accessed on 1 August 2023).
- Baldi, S.; Pagliai, G.; Dinu, M.; Di Gloria, L.; Nannini, G.; Curini, L.; Pallecchi, M.; Russo, E.; Niccolai, E.; Danza, G.; et al. Effect of ancient Khorasan wheat on gut microbiota, inflammation, and short-chain fatty acid production in patients with fibromyalgia. World J. Gastroenterol. 2022, 28, 1965–1980. [Google Scholar] [CrossRef]
- Wahlgren, J.; Sorsa, T.; Sutinen, M.; Tervahartiala, T.; Teronen, O.; Hietanen, J.; Salo, T.; Maisi, P.; Pirilä, E.; Tjäderhane, L. Expression and induction of collagenases (MMP-8 and -13) in plasma cells associated with bone-destructive lesions. J. Pathol. 2001, 194, 217–224. [Google Scholar] [CrossRef]
- Van Lint, P.; Libert, C. Matrix metalloproteinase-8: Cleavage can be decisive. Cytokine Growth Factor. Rev. 2006, 17, 217–223. [Google Scholar] [CrossRef]
- Ledingham, M.A.; Denison, F.C.; Riley, S.C.; Norman, J.E. Matrix metalloproteinases-2 and -9 and their inhibitors are produced by the human uterine cervix but their secretion is not regulated by nitric oxide donors. Hum. Reprod. 1999, 14, 2089–2096. [Google Scholar] [CrossRef]
- Socha, M.W.; Flis, W.; Pietrus, M.; Wartęga, M.; Stankiewicz, M. Signaling Pathways Regulating Human Cervical Ripening in Preterm and Term Delivery. Cells 2022, 11, 3690. [Google Scholar] [CrossRef]
- Biggio, J.R.; Ramsey, P.S.; Cliver, S.P.; Lyon, M.D.; Goldenberg, R.L.; Wenstrom, K.D. Midtrimester amniotic fluid matrix metalloproteinase-8 (MMP-8) levels above the 90th percentile are a marker for subsequent preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2005, 192, 109–113. [Google Scholar] [CrossRef]
- Nien, J.K.; Yoon, B.H.; Espinoza, J.; Kusanovic, J.P.; Erez, O.; Soto, E.; Richani, K.; Gomez, R.; Hassan, S.; Mazor, M.; et al. A rapid MMP-8 bedside test for the detection of intra-amniotic inflammation identifies patients at risk for imminent preterm delivery. Am. J. Obstet. Gynecol. 2006, 195, 1025–1030. [Google Scholar] [CrossRef]
- Rahkonen, L.; Rutanen, E.M.; Nuutila, M.; Sainio, S.; Sorsa, T.; Paavonen, J. Matrix metalloproteinase-8 in cervical fluid in early and mid pregnancy: Relation to spontaneous preterm delivery Leena. Prenat. Diagn. 2010, 30, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Molvarec, A.; Derzsy, Z.; Kocsis, J.; Bőze, T.; Nagy, B.; Balogh, K.; Makó, V.; Cervenak, L.; Mézes, M.; Karádi, I.; et al. Circulating anti-heat-shock-protein antibodies in normal pregnancy and preeclampsia. Cell Stress. Chaperones 2009, 14, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Romão-Veiga, M.; Matias, M.L.; Ribeiro, V.R.; Nunes, P.R.; Borges, V.T.M.; Peraçoli, J.C.; Peraçoli, M.T.S. Induction of systemic inflammation by hyaluronan and hsp70 in women with pre-eclampsia. Cytokine 2018, 105, 23–31. [Google Scholar] [CrossRef]
- Volpato, L.K.; Nadkarni, S.; Horevicz, V.V.; Donatello, N.; Parma, G.O.C.; Martins, D.F.; Piovezan, A.P. Contribution of plasma, placental, inflammatory and pro-resolving mediators in labor induction. Placenta 2022, 122, 9–17. [Google Scholar] [CrossRef]
- Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. J. Immunol. 2003, 170, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Vilotić, A.; Nacka-Aleksić, M.; Pirković, A.; Bojić-Trbojević, Z.; Dekanski, D.; Krivokuća, M.J. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int. J. Mol. Sci. 2022, 23, 14574. [Google Scholar] [CrossRef] [PubMed]
- Osmers, R.G.W.; Blaser, J.; Kuhn, W.; Tschesche, H. Interleukin-8 synthesis and the onset of labor. Obstet. Gynecol. 1995, 86, 223–229. [Google Scholar] [CrossRef]
- Shimoya, K.; Matsuzaki, N.; Taniguchi, T.; Okada, T.; Saji, F.; Murata, Y. Interleukin-8 level in maternal serum as a marker for screening of histological chorioamnionitis at term. Int. J. Gynecol. Obstet. 1997, 57, 153–159. [Google Scholar] [CrossRef]
- Ross, K.M.; Miller, G.; Culhane, J.; Grobman, W.; Simhan, H.N.; Wadhwa, P.D.; Williamson, D.; McDade, T.; Buss, C.; Entringer, S.; et al. Patterns of peripheral cytokine expression during pregnancy in two cohorts and associations with inflammatory markers in cord blood. Am. J. Reprod. Immunol. 2016, 76, 406–414. [Google Scholar] [CrossRef]
- Yockey, L.J.; Iwasaki, A. Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity 2018, 49, 397–412. [Google Scholar] [CrossRef]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Fisher, F.M.; Da Silva, N.F.; Khanolkar, M.; Evans, M.; Harte, A.L.; Kumar, S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Sandler, N.G.; Koh, C.; Roque, A.; Eccleston, J.L.; Siegel, R.B.; Demino, M.; Kleiner, D.E.; Deeks, S.G.; Liang, T.J.; Heller, T.; et al. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 2011, 141, 1220–1230.e3. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 2000, 12, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Meheissen, M.A. Markers of Bacterial Translocation in Type 2 Diabetes Mellitus. In Biomarkers in Disease: Methods, Discoveries and Applications; Patel, V.B., Preedy, V.R., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.M.; Ortega, F.; Serino, M.; Luche, E.; Waget, A.; Pardo, G.; Salvador, J.; Ricart, W.; Frühbeck, G.; Burcelin, R.; et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int. J. Obes. 2011, 36, 1442–1449. [Google Scholar] [CrossRef]
- Mokkala, K.; Pussinen, P.; Houttu, N.; Koivuniemi, E.; Vahlberg, T.; Laitinen, K. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: A randomised clinical trial. Benef. Microbes 2018, 9, 199–208. [Google Scholar] [CrossRef]
- Pinto, Y.; Frishman, S.; Turjeman, S.; Eshel, A.; Nuriel-Ohayon, M.; Shtossel, O.; Ziv, O.; Walters, W.; Parsonnet, J.; Ley, C.; et al. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut 2023, 72, 918–928. [Google Scholar] [CrossRef]
- Turjeman, S.; Collado, M.C.; Koren, O. The gut microbiome in pregnancy and pregnancy complications. Curr. Opin. Endocr. Metab. Res. 2021, 18, 133–138. [Google Scholar] [CrossRef]
- Yan, M.; Guo, X.; Ji, G.; Huang, R.; Huang, D.; Li, Z.; Zhang, D.; Chen, S.; Cao, R.; Yang, X.; et al. Mechanismbased role of the intestinal microbiota in gestational diabetes mellitus: A systematic review and meta-analysis. Front. Immunol. 2023, 13, 1097853. [Google Scholar] [CrossRef]
- Espinoza, J.; Romero, R.; Chaiworapongsa, T.; Kim, J.C.; Yoshimatsu, J.; Edwin, S.; Rathnasabapathy, C.; Tolosa, J.; Donnenfeld, A.; Craparo, F.; et al. Lipopolysaccharide-binding protein in microbial invasion of the amniotic cavity and human parturition. J. Matern. Fetal Neonatal Med. 2002, 12, 313–321. [Google Scholar] [CrossRef]
- Martinez-Lopez, D.G.; Funderburg, N.T.; Cerissi, A.; Rifaie, R.; Aviles-Medina, L.; Llorens-Bonilla, B.J.; Sleasman, J.; Luciano, A.A. Lipopolysaccharide and soluble CD14 in cord blood plasma are associated with prematurity and chorioamnionitis. Pediatr. Res. 2014, 75, 67–74. [Google Scholar] [CrossRef]
- López, M.; Figueras, F.; Coll, O.; Goncé, A.; Hernández, S.; Loncá, M.; Vila, J.; Gratacós, E.; Palacio, M. Inflammatory Markers Related to Microbial Translocation Among HIV-Infected Pregnant Women: A Risk Factor of Preterm Delivery. J. Infect. Dis. 2016, 213, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Scholl, T.O. Association of elevated free fatty acids during late pregnancy with preterm delivery. Obstet. Gynecol. 2008, 112, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jiang, W.-R.; Xia, Y.-Y.; Mansell, T.; Saffery, R.; Cannon, R.D.; De Seymour, J.; Zou, Z.; Xu, G.; Han, T.-L.; et al. Complex patterns of circulating fatty acid levels in gestational diabetes mellitus subclasses across pregnancy. Clin. Nutr. 2021, 40, 4140–4148. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | All Pregnant Women | Pregnant Women with Short Cervix ≤ 25 mm | Pregnant Women with Cervix > 25 mm | p Value |
---|---|---|---|---|
Number of enrolled pregnant women | 89 | 64 | 25 | |
Ethnicity | 1.000 | |||
Caucasian | 88 | 63 | 25 | |
Asian | 1 | 1 | 0 | |
Age at sampling (years) | ||||
mean ± SD | 33.2 ± 6.8 | 33.1 ± 7.0 | 33.4 ± 6.5 | 0.985 |
BMI kg/m2 | ||||
mean ± SD | 23.70 ± 5.3 | 23.45 ± 5.3 | 24.24 ± 5.4 | 0.467 |
Gestational diabetes mellitus | 25 (28%) | 15 (23.4%) | 10 (40%) | 0.118 |
Gestational age at sampling (weeks) | ||||
mean ± SD | 28.4 ± 2.4 | 28.3 ± 2.2 | 28.5 ± 3.0 | 0.919 |
Length of the cervix (mm) at sampling | ||||
mean ± SD | 19.6 ± 9.0 | 15.1 ± 5.8 | 31.0 ± 4.7 | <0.001 |
Gestational age at birth (weeks) | ||||
mean ± SD | 38.1 ± 2.4 | 38.0 ± 2.7 | 38.6 ± 1.5 | 0.562 |
Spontaneous preterm birth | 11 (12.4%) | 11 (17.0%) | 0 (0%) | 0.030 |
Analytes | Case Group (n = 64) | Control Group (n = 25) | p Value |
---|---|---|---|
MMP-8 (pg/mL) | 848.60 (524.55–1283.61) | 3351.55 (1259.20–6426.03) | <0.001 * |
Hsp70 (ng/mL) | 66.42 (51.45–83.90) | 138.00 (81.00–167.60) | <0.001 * |
IL-8 (pg/mL) | 4.00 (3.10–6.26) | 2.60 (1.80–3.70) | <0.001 * |
LBP (µg/mL) | 19.60 (15.90–24.00) | 22.63 (15.10–26.60) | 0.471 |
Acetic acid (µmol/L) | 115.08 (105.71–129.79) | 119.50 (111.58–129.75) | 0.273 |
Propionic acid (µmol/L) | 2.03 (1.89–2.57) | 1.89 (1.49–2.84) | 0.540 |
Butyric acid (µmol/L) | 0.74 (0.57–1.11) | 0.68 (0.57–0.86) | 0.150 |
Iso-Butyric acid (µmol/L) | 7.05 (6.93–7.16) | 7.16 (7.05–7.27) | 0.007 |
Iso-Valeric acid (µmol/L) | 0.20 (0.20–0.29) | 0.29 (0.20–0.29) | 0.136 |
2-MethylButyric acid (µmol/L) | 0.20 (0.20–0.20) | 0.20 (0.20–0.29) | 0.771 |
Valeric acid (µmol/L) | 0.20 (0.10–0.20) | 0.20 (0.15–0.20) | 0.045 |
IsoHexanoic acid (µmol/L) | 0.69 (0.69–0.78) | 0.69 (0.69–0.74) | 0.132 |
Hexanoic acid (µmol/L) | 0.34 (0.34–0.50) | 0.34 (0.30–0.52) | 0.732 |
2-Ethyl-Hexanoic acid (µmol/L) | 2.57 (2.50–2.57) | 2.57 (2.50–2.57) | 0.019 |
Octanoic acid (µmol/L) | 4.10 (3.89–4.44) | 3.89 (3.79–4.62) | 0.574 |
Decanoic acid (µmol/L) | 4.27 (3.79–5.32) | 4.71 (4.13–5.61) | 0.152 |
Dodecanoic acid (µmol/L) | 2.93 (2.35–3.55) | 2.85 (2.40–3.73) | 0.722 |
Tetradecanoic acid (µmol/L) | 16.45 (13.60–22.17) | 15.96 (12.90–21.32) | 0.391 |
Hexadecanoic acid (µmol/L) | 497.75 (404.24–707.49) | 526.91 (385.76–642.01) | 0.729 |
Octadecanoic acid (µmol/L) | 172.78 (141.42–247.59) | 179.33 (152.35–229.81) | 0.869 |
Analytes | Case Group No GDM (n = 49) | Case Group GDM (n = 15) | p Values | Control Group No GDM (n = 15) | Control Group GDM (n = 10) | p Values |
---|---|---|---|---|---|---|
MMP-8 (pg/mL) | 838.96 (530.00–1249.70) | 865.10 (348.61–1341.20) | 0.930 | 1818.00 (1038.23–4987.00) | 3463.65 (1960.51–7227.65) | 0.311 |
Hsp70 (ng/mL) | 65.93 (46.70–83.40) | 71.00 (52.41–85.85) | 0.794 | 97.90 (68.60–159.20) | 144.25 (136.82–179.00) | 0.437 |
IL-8 (pg/mL) | 4.30 (2.80–5.30) | 5.00 (4.30–9.80) | 0.058 | 2.40 (1.90–3.30) | 3.30 (1.61–7.30) | 0.080 |
LBP (µg/mL) | 19.21 (3.59–24.37) | 19.75 (13.48–23.74) | 0.831 | 23.84 (15.91–29.27) | 18.54 (12.18–23.54) | 0.311 |
Acetic acid (µmol/L) | 114.17 (5.17–130.50) | 121.00 (110.17–127.50) | 0.338 | 119.50 (112.17–129.33) | 119.92 (109.63–141.92) | 0.935 |
Propionic acid (µmol/L) | 2.03 (4.76–2.43) | 2.43 (2.03–2.70) | 0.030 | 2.16 (1.62–3.11) | 1.83 (1.46–2.83) | 0.144 |
Butyric acid (µmol/L) | 0.68 (0.57–1.02) | 1.02 (0.57–1.14) | 0.306 | 0.68 (0.57–0.80) | 0.63 (0.57–0.63) | 0.849 |
Iso-Butyric acid (µmol/L) | 7.05 (1.93–7.16) | 7.05 (6.93–7.27) | 0.108 | 7.16 (7.05–7.27) | 7.22 (7.05–7.22) | 0.177 |
Iso-Valeric acid (µmol/L) | 0.20 (2.20–0.29) | 0.20 (0.20–0.39) | 0.734 | 0.20 (0.20–0.29) | 0.29 (0.18–0.29) | 0.723 |
2-MethylButyric acid (µmol/L) | 0.20 (2.20–0.20) | 0.20 (0.20–0.29) | 0.794 | 0.20 (0.20–0.29) | 0.20 (0.18–0.20) | 0.723 |
Valeric acid (µmol/L) | 0.20 (2.10–0.20) | 0.20 (0.10–0.20) | 0.555 | 0.20 (0.20–0.20) | 0.20 (0.10–0.20) | 0.531 |
IsoHexanoic acid (µmol/L) | 0.69 (7.69–0.78) | 0.69 (0.69–0.78) | 0.786 | 0.69 (0.69–0.69) | 0.69 (0.67–0.69) | 1.000 |
Hexanoic acid (µmol/L) | 0.34 (4.34–0.43) | 0.34 (0.26–0.52) | 0.623 | 0.34 (0.26–0.52) | 0.34 (0.32–0.34) | 0.892 |
2-Ethyl-Hexanoic acid (µmol/L) | 2.57 (5.50–2.57) | 2.57 (2.50–2.57) | 0.688 | 2.57 (2.50–2.57) | 2.54 (2.50–2.54) | 0.428 |
Octanoic acid (µmol/L) | 4.03 (4.89–4.48) | 4.10 (3.82–4.38) | 0.886 | 3.89 (3.75–4.93) | 3.93 (3.77–4.93) | 0.807 |
Decanoic acid (µmol/L) | 4.30 (4.87–5.44) | 4.24 (3.66–5.35) | 0.634 | 4.59 (4.13–5.52) | 4.80 (4.10–6.80) | 0.723 |
Dodecanoic acid (µmol/L) | 3.00 (5.45–3.58) | 2.50 (2.25–3.35) | 0.231 | 3.05 (2.45–3.70) | 2.80 (2.21–4.80) | 0.765 |
Tetradecanoic acid (µmol/L) | 16.93 (8.95–22.81) | 15.61 (13.55–21.97) | 0.516 | 16.62 (13.95–21.18) | 13.40 (11.98–21.40) | 0.285 |
Hexadecanoic acid (µmol/L) | 502.19 (9.44–723.96) | 491.02 (416.60–600.16) | 0.981 | 542.62 (383.55–621.05) | 473.50 (393.04–703.50) | 0.643 |
Octadecanoic acid (µmol/L) | 177.54 (4.78–250.42) | 170.49 (130.39–182.78) | 0.547 | 187.22 (158.84–216.69) | 174.00 (145.04–248.00) | 0.765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvano, A.; Niccolai, E.; Baldi, S.; Seravalli, V.; Strambi, N.; Nannini, G.; Pallecchi, M.; Bartolucci, G.; Parenti, A.; Amedei, A.; et al. Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 13653. https://doi.org/10.3390/ijms241713653
Silvano A, Niccolai E, Baldi S, Seravalli V, Strambi N, Nannini G, Pallecchi M, Bartolucci G, Parenti A, Amedei A, et al. Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus. International Journal of Molecular Sciences. 2023; 24(17):13653. https://doi.org/10.3390/ijms241713653
Chicago/Turabian StyleSilvano, Angela, Elena Niccolai, Simone Baldi, Viola Seravalli, Noemi Strambi, Giulia Nannini, Marco Pallecchi, Gianluca Bartolucci, Astrid Parenti, Amedeo Amedei, and et al. 2023. "Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus" International Journal of Molecular Sciences 24, no. 17: 13653. https://doi.org/10.3390/ijms241713653
APA StyleSilvano, A., Niccolai, E., Baldi, S., Seravalli, V., Strambi, N., Nannini, G., Pallecchi, M., Bartolucci, G., Parenti, A., Amedei, A., & Di Tommaso, M. (2023). Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 24(17), 13653. https://doi.org/10.3390/ijms241713653