Starting Editorial of “Cellular Damage: Protection and Induction” Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells
1. Introduction
2. Cellular Damage
3. Protection of Cells
4. Therapy Targeting Bad Cells
5. Future Prospects
Author Contributions
Conflicts of Interest
References
- Bodelón, G.; Costas, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Gold nanoparticles for regulation of cell function and behavior. Nano Today 2017, 13, 40–60. [Google Scholar] [CrossRef]
- Karlsson, J.O.M.; Toner, M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials 1996, 17, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Bryant, S.J.; Wilkinson, B.L.; Bryant, G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2021, 1865, 129749. [Google Scholar] [CrossRef]
- Miller, M.A.; Zachary, J.F. Chapter 1—Mechanisms and Morphology of Cellular Injury, Adaptation, and Death11For a glossary of abbreviations and terms used in this chapter see E-Glossary 1-1. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Mosby: Philadelphia, PA, USA, 2017; pp. 2–43.e19. ISBN 978-0-323-35775-3. [Google Scholar]
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022, 7, 286. [Google Scholar] [CrossRef]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, T.J. The proliferation rate paradox in antimitotic chemotherapy. MBoC 2012, 23, 1–6. [Google Scholar] [CrossRef]
- Damjanov, I. Chapter 1—Cell Pathology. In Pathology Secrets, 3rd ed.; Damjanov, I., Ed.; Mosby: Philadelphia, PA, USA, 2009; pp. 7–18. ISBN 978-0-323-05594-9. [Google Scholar]
- Peters, A.; Nawrot, T.S.; Baccarelli, A.A. Hallmarks of environmental insults. Cell 2021, 184, 1455–1468. [Google Scholar] [CrossRef]
- Orrenius, S.; Nicotera, P.; Zhivotovsky, B. Cell Death Mechanisms and Their Implications in Toxicology. Toxicol. Sci. 2011, 119, 3–19. [Google Scholar] [CrossRef]
- Hack, S.J.; Beane, W.S.; Tseng, K.A.-S. Biophysics at the edge of life and death: Radical control of apoptotic mechanisms. Front. Cell Death 2023, 2, 1147605. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef]
- Ekpo, M.D.; Xie, J.; Hu, Y.; Liu, X.; Liu, F.; Xiang, J.; Zhao, R.; Wang, B.; Tan, S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int. J. Mol. Sci. 2022, 23, 2639. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002, 23, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, Y.; Pan, Y.; Fang, M.; Tong, Z.; Sun, Y.; Tan, S. Exploring the application and mechanism of sodium hyaluronate in cryopreservation of red blood cells. Mater. Today Bio. 2021, 12, 100156. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.T.; Reyes, G.; Gries, K.; Ceylan, C.Ü.; Sharma, S.; Meurer, M.; Knop, M.; Chabes, A.; Hombauer, H. Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis. Proc. Natl. Acad. Sci. USA 2017, 114, E4442–E4451. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, K.O.; Comizzoli, P.; Rushing, J.S.; Lersten, I.L.; Nel-Themaat, L. The ART of cryopreservation and its changing landscape. Fertil. Steril. 2022, 117, 469–476. [Google Scholar] [CrossRef]
- Krishnan, M.; Kumar, S.; Kangale, L.J.; Ghigo, E.; Abnave, P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021, 11, 667. [Google Scholar] [CrossRef]
- Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459. [Google Scholar] [CrossRef]
- Promislow, D.; Anderson, R.M.; Scheffer, M.; Crespi, B.; DeGregori, J.; Harris, K.; Horowitz, B.N.; Levine, M.E.; Riolo, M.A.; Schneider, D.S.; et al. Resilience integrates concepts in aging research. iScience 2022, 25, 104199. [Google Scholar] [CrossRef]
- Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 2013, 12, 526–542. [Google Scholar] [CrossRef]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
Cellular Damage | Protection of Cells | Therapy Targeting Bad Cells |
---|---|---|
Chemical and biophysical approaches to cryopreservation | Regenerative medicine techniques | Radiation-induced cellular injuries |
Molecular mechanisms of biophysical damage | Pharmacological interventions for cellular protection | Chemotherapy strategies |
Environmental and internal triggers of biophysical strain | Cellular resilience and recovery pathways | Targeted therapies for specific cell types |
Innovations in understanding cellular damage | Advanced strategies for cellular protection and repair | Intentional cellular disruptions in therapeutic settings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Zhou, W. Starting Editorial of “Cellular Damage: Protection and Induction” Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells. Int. J. Mol. Sci. 2023, 24, 13702. https://doi.org/10.3390/ijms241813702
Tan S, Zhou W. Starting Editorial of “Cellular Damage: Protection and Induction” Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells. International Journal of Molecular Sciences. 2023; 24(18):13702. https://doi.org/10.3390/ijms241813702
Chicago/Turabian StyleTan, Songwen, and Wenhu Zhou. 2023. "Starting Editorial of “Cellular Damage: Protection and Induction” Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells" International Journal of Molecular Sciences 24, no. 18: 13702. https://doi.org/10.3390/ijms241813702
APA StyleTan, S., & Zhou, W. (2023). Starting Editorial of “Cellular Damage: Protection and Induction” Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells. International Journal of Molecular Sciences, 24(18), 13702. https://doi.org/10.3390/ijms241813702