Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue
Abstract
:1. Introduction
2. Isolation Strategies and Applications of Nuclei from FFPE Tissues
2.1. Enzymatic Dissociation Strategies
Tissues | Thickness | Protease | Time | Application | References |
---|---|---|---|---|---|
tumor | 30 μm | 0.5% pepsin | 30 min | DNA content | [17] |
brain, lung, breast, testis, kidney, and colon tumor | 50 μm | 0.5% pepsin | 30 min | ISH | [18] |
—— | 50 μm | 0.5% pepsin | 30 min | FISH | [19] |
brain | —— | 0.5% pepsin | 30 min | FISH | [21] |
breast, ovary, tumor | 40 μm | 0.005% pepsin | 2 h | FISH | [22] |
tumor | —— | 0.25% trypsin | Overnight | DNA ploidy | [23] |
—— | 20–30 μm | 0.005% PK | 30 min | FISH | [20] |
HNSCC | 5 μm | PK | 1 h | FISH | [24] |
lymph nodes, tonsils | —— | 0.01% PK | 2 h | ISH, FISH | [27] |
liver cancer | 10 μm | 0.005% PK | 2 h | FISH | [28] |
breast, brain, bladder, ovarian, and pancreas | 40–60 μm | collagenase, hyaluronidase | Overnight | aCGH, WES | [25] |
breast cancer | 100 μm | 16 h | sn-WGSA | [26] |
2.2. Mechanical Extraction Strategies
3. Potential Development of Single-Nucleus Sequencing Technologies for FFPE Tissues
3.1. Based on A-Tailing Capture
3.2. Targeted Probe Capture
3.3. Random Primer Capture Technique
4. Current Limitations and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Bakken, T.E.; Hodge, R.D.; Miller, J.A.; Yao, Z.; Nguyen, T.N.; Aevermann, B.; Barkan, E.; Bertagnolli, D.; Casper, T.; Dee, N. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 2018, 13, e0209648. [Google Scholar] [CrossRef] [PubMed]
- Lacar, B.; Linker, S.B.; Jaeger, B.N.; Krishnaswami, S.R.; Gage, F.H. Corrigendum: Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 2016, 7, 12020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lehmann, B.D.; Shyr, Y.; Guo, Y. The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies. Int. J. Genom. 2017, 2017, 1926304. [Google Scholar] [CrossRef]
- Blow, N. Tissue preparation: Tissue issues. Nature 2007, 448, 959–964. [Google Scholar] [CrossRef]
- Maynard, A.; Mccoach, C.E.; Rotow, J.K.; Harris, L.; Haderk, F.; Kerr, D.L.; Yu, E.A.; Schenk, E.L.; Tan, W.; Zee, A. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 2020, 182, 1232–1251.e22. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Zada, M.; Wang, S.Y.; Bornstein, C.; Amit, I. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 2021, 27, 491–503. [Google Scholar] [CrossRef]
- Trinks, A.; Milek, M.; Beule, D.; Kluge, J.; Florian, S.; Sers, C.; Horst, D.; Morkel, M.; Bischoff, P. Robust detection of clinically relevant features in single-cell RNA profiles of patient-matched fresh and formalin-fixed paraffinembedded (FFPE) lung cancer tissue. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Vallejo, A.F.; Harvey, K.; Wang, T.; Wise, K.; Butler, L.M.; Polo, J.; Plummer, J.; Swarbrick, A.; Martelotto, L.G. snPATHO-seq: Unlocking the FFPE archives for single nucleus RNA profiling. bioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Chung, H.; Melnikov, A.; McCabe, C.; Drokhlyansky, E.; Van Wittenberghe, N.; Magee, E.M.; Waldman, J.; Spira, A.; Chen, F.; Mazzilli, S.; et al. SnFFPE-Seq: Towards scalable single nucleus RNA-Seq of formalin-fixed paraffin embedded (FFPE) tissue. bioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Janesick, A.; Shelansky, R.; Gottscho, A.D.; Wagner, F.; Rouault, M.; Beliakoff, G.; de Oliveira, M.F.; Kohlway, A.; Abousoud, J.; Morrison, C.A.; et al. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Chen, H.; Zhu, Y.; Lv, Y.; Zhang, S.; Chen, J.; Chen, H.; Yang, L.; Jiang, W.; et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq. Nat. Commun. 2023, 14, 2734. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Braunschweig, T.; Hewitt, S.M. Optimization of Recovery of RNA From Formalin-fixed, Paraffin-embedded Tissue. Diagn. Mol. Pathol. 2007, 15, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Mckinney, M.D.; Moon, S.J.; Kulesh, D.A.; Larsen, T.; Schoepp, R.J. Detection of viral RNA from paraffin-embedded tissues after prolonged formalin fixation. J. Clin. Virol. 2008, 44, 39–42. [Google Scholar] [CrossRef]
- Masuda, N.; Ohnishi, T.; Kawamoto, S.; Monden, M.; Okubo, K. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 1999, 27, 4436–4443. [Google Scholar] [CrossRef]
- Cuevas-Diaz Duran, R.; Gonzalez-Orozco, J.C.; Velasco, I.; Wu, J.Q. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front. Cell Dev. Biol. 2022, 10, 884748. [Google Scholar] [CrossRef]
- Hedley, D.W.; Friedlander, M.L.; Taylor, I.W.; Rugg, C.A.; Musgrove, E.A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1983, 31, 1333–1335. [Google Scholar] [CrossRef]
- Arnoldus, E.P.; Dreef, E.J.; Noordermeer, I.A.; Verheggen, M.M.; Thierry, R.F.; Peters, A.C.; Cornelisse, C.J.; Van, d.P.M.; Raap, A.K. Feasibility of in situ hybridisation with chromosome specific DNA probes on paraffin wax embedded tissue. J. Clin. Pathol. 1991, 44, 900–904. [Google Scholar] [CrossRef]
- Lee, W.; Han, K.; Harris, C.P.; Meisner, L.F. Detection of aneuploidy and possible deletion in paraffin-embedded rhabdomyosarcoma cells with FISH. Cancer Genet. Cytogenet. 1993, 68, 99–103. [Google Scholar] [CrossRef]
- Liehr, T.; Grehl, H.; Rautenstrauss, B. Fish Analysis of Interphase Nuclei Extracted from Paraffin-Embedded Tissue. Trends Genet. 1995, 11, 377–378. [Google Scholar] [CrossRef]
- Liehr, T.; Grehl, H.; Rautenstrauss, B. Accumulation of peripheral myelin protein 22 (PMP22) in onion bulbs of nerves biopsied from patients with different subtypes of Charcot-Marie-Tooth disease type 1. Acta Neuropathol. 1997, 94, 514. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Ubiali, A.; Balzarini, P.; Cadei, M.; Alpi, F.; Grigolato, P. High-level detection of gene amplification and chromosome aneuploidy in extracted nuclei from paraffin-embedded tissue of human cancer using FISH: A new approach for retrospective studies. Eur. J. Histochem. 2005, 49, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Schutte, B.; Reynders, M.M.; Bosman, F.T.; Blijham, G.H. Flow cytometric determination of DNA ploidy level in nuclei isolated from paraffin-embedded tissue. Cytometry 1985, 6, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T.; Uwe, C.; Erich, G. Nucleus extraction from single mounted tissue sections. Genet. Anal. Biomol. Eng. 1999, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Holley, T.; Lenkiewicz, E.; Evers, L.; Tembe, W.; Ruiz, C.; Gsponer, J.R.; Rentsch, C.A.; Bubendorf, L.; Stapleton, M.; Amorese, D.; et al. Deep Clonal Profiling of Formalin Fixed Paraffin Embedded Clinical Samples. PLoS ONE 2012, 7, e0050586. [Google Scholar] [CrossRef] [PubMed]
- Martelotto, L.G.; Baslan, T.; Kendall, J.; Geyer, F.C.; Burke, K.A.; Spraggon, L.; Piscuoglio, S.; Chadalavada, K.; Nanjangud, G.; Ng, C.K.Y. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 2017, 23, 376. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Zhang, S.Q.; Zhao, T. A new method to make nuclei or cell microarrays. Diagn. Mol. Pathol. 2006, 15, 109–114. [Google Scholar] [CrossRef]
- Tantiwetrueangdet, A.; Panvichian, R.; Sornmayura, P.; Pinpradap, K.; Leelaudomlipi, S. Fluorescence in situ hybridization method in isolated single nuclei extracted from paraffin-embedded hepatocellular carcinoma tissues. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2007, 90, 363–368. [Google Scholar]
- Maliga, Z.; Nirmal, A.J.; Ericson, N.G.; Boswell, S.A.; U’Ren, L.; Podyminogin, R.; Chow, J.; Chen, Y.-A.; Chen, A.A.; Weinstock, D.M.; et al. Micro-region transcriptomics of fixed human tissue using Pick-Seq. bioRxiv, 2021; preprint. [Google Scholar] [CrossRef]
- Thomsen, E.R.; Mich, J.K.; Yao, Z.; Hodge, R.D.; Doyle, A.M.; Jang, S.; Shehata, S.I.; Nelson, A.M.; Shapovalova, N.V.; Levi, B.P.; et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 2016, 13, 87–93. [Google Scholar] [CrossRef]
- Foley, J.W.; Zhu, C.; Jolivet, P.; Zhu, S.X.; Lu, P.; Meaney, M.J.; West, R.B. Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ. Genome Res. 2019, 29, 1816–1825. [Google Scholar] [CrossRef]
- Isakova, A.; Neff, N.; Quake, S.R. Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proc. Natl. Acad. Sci. USA 2021, 118, e2113568118. [Google Scholar] [CrossRef] [PubMed]
- Datlinger, P.; Rendeiro, A.F.; Boenke, T.; Senekowitsch, M.; Krausgruber, T.; Barreca, D.; Bock, C. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 2021, 18, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Parkhurst, C.N.; Magee, E.M.; Phillips, D.; Habibi, E.; Chen, F.; Yeung, B.Z.; Waldman, J.; Artis, D.; Regev, A. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 2021, 18, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; van Gent, M.; Drayman, N.; Basu, A.; Gack, M.U.; Tay, S. High-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nat. Commun. 2021, 12, 5636. [Google Scholar] [CrossRef] [PubMed]
- Salmen, F.; De Jonghe, J.; Kaminski, T.S.; Alemany, A.; Parada, G.E.; Verity-Legg, J.; Yanagida, A.; Kohler, T.N.; Battich, N.; van den Brekel, F.; et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nat. Biotechnol. 2022, 40, 1780–1793. [Google Scholar] [CrossRef] [PubMed]
- Yeakley, J.M.; Shepard, P.J.; Goyena, D.E.; VanSteenhouse, H.C.; McComb, J.D.; Seligmann, B.E. A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS ONE 2017, 12, e0178302. [Google Scholar] [CrossRef]
- Trejo, C.; Imler, E.; Babic, M.; Shepard, P.; Seligmann, B. Abstract 5241: Whole transcriptome TempO-Seq profiling of focal areas of H&E stained FFPE: Differentiation of normal colon and cancer phenotypes between donors. In Proceedings of the AACR Annual Meeting, Atlanta, GA, USA, 29 March–3 April 2019. [Google Scholar]
- Teder, H.; Koel, M.; Paluoja, P.; Jatsenko, T.; Rekker, K.; Laisk-Podar, T.; Kukuskina, V.; Velthut-Meikas, A.; Fjodorova, O.; Peters, M.; et al. TAC-seq: Targeted DNA and RNA sequencing for precise biomarker molecule counting. NPJ Genom. Med. 2018, 3, 34. [Google Scholar] [CrossRef]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef]
- Sang, G.; Chen, J.; Zhao, M.; Shi, H.; Han, J.; Sun, J.; Guan, Y.; Ma, X.; Zhang, G.; Gong, Y.; et al. High throughput detection of variation in single-cell whole transcriptome through streamlined scFAST-seq. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Phan, H.V.; Gent, M.v.; Drayman, N.; Basu, A.; Gack, M.U.; Tay, S. Droplet-based single-cell RNA sequencing of paraformaldehyde-fixed cells. Protocol Exchange 2021. [Google Scholar] [CrossRef]
- Kondrashova, O.; Love, C.J.; Lunke, S.; Hsu, A.L.; Australian Ovarian Cancer Study, G.; Waring, P.M.; Taylor, G.R. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq. PLoS ONE 2015, 10, e0143006. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Van, T.H.T.A.; Stout, T.A.E.; Roelen, B.A.J. Reverse transcription priming methods affect normalisation choices for gene expression levels in oocytes and early embryos. Mol. Hum. Reprod. 2021, 27, gaab040. [Google Scholar]
- Guo, Y.; Ma, J.; Dang, K.; Li, Z.; Ge, Q.; Huang, Y.; Wang, G.; Zhao, X. Transcriptomic profiling of nuclei from PFA-fixed and FFPE brain tissues. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Fraser, P.; von Ahlfen, S.; Missel, A.; Bendrat, K.; Schlumpberger, M. Determinants of RNA Quality from FFPE Samples. PLoS ONE 2007, 2, 1261–1267. [Google Scholar]
- Wang, W.J.; Chu, L.X.; He, L.Y.; Zhang, M.J.; Dang, K.T.; Gao, C.; Ge, Q.Y.; Wang, Z.G.; Zhao, X.W. Spatial transcriptomics: Recent developments and insights in respiratory research. Mil. Med. Res. 2023, 10, 38. [Google Scholar] [CrossRef]
- McKellar, D.W.; Mantri, M.; Hinchman, M.M.; Parker, J.S.L.; Sethupathy, P.; Cosgrove, B.D.; Vlaminck, I.D. Spatial total RNA-sequencing maps coding, noncoding and viral RNAs in tissues. Nat. Biotechnol. 2023, 41, 476–477. [Google Scholar]
Approach | Technology | Input | Samples | Throughput | Target | SN or SC? | Genes Measured | Reads/Sample | UMI | Full-Length | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|
Based on dA-tailing | Pick-Seq | FFPE | Human tonsil, breast cancer | Low | Poly-A RNA | 5~10 cells | 2700, 4640 | / | No | No | [29] |
FRISCR | Fixed | hESCs | Low | Poly-A RNA | SC | 12,000 | / | No | Yes | [30] | |
Smart-3SEQ | FFPE | DCIS | Low | Poly-A RNA | No | ~3000 | / | No | No | [31] | |
Smart-total-seq | Cell lines | Fibroblasts, HEK293T, and MCF7 | Low | Total RNA | SC | / | / | No | Yes | [32] | |
scifi-RNA-seq | Fixed | Clone E6-1 | High | Poly-A RNA | SN | / | / | 2000~6000 | No | [33] | |
inCITE-seq | Fixed | Hela | High | Poly-A RNA | SN | 1158 | / | 2655 | No | [34] | |
FD-seq | Fixed | A549 cells | High | Poly-A RNA | SC | ~3000 | 58.6 K | ~8000 | No | [35] | |
VASA-seq | Frozen | HEK293T and mESCs | High | Total RNA | SC | ~10,000 | 750 K | / | Yes | [36] | |
snFFPE-Seq | FFPE | Brain | High | Poly-A RNA | SN | 276 | 154 | / | No | [10] | |
Based on targeted probe | TempO-Seq | Cell lines | Reference RNA | Low | Target mRNA | No | 2244 | 1.9 M | No | No | [37,38] |
TAC-seq | FF | Endometrial biopsies | Low | Target mRNA | No | / | / | Yes | No | [39] | |
Fixed-RNA | FFPE | Breast | High | Target mRNA | SN | 1850 | / | / | No | [9,11] | |
Based on random primer | SPLiT-seq | Fixed | 293T, 3T3, and Hela-S3 | High | Total RNA | SN | ~5000 | >500 K | 12,000~15,000 | No | [40] |
scFAST-seq | FF | K562, A549, and HCC827 | High | Total RNA | SC | ~1000 | / | ~2000 | Yes | [41] | |
snRandom-seq | FFPE | 293T, 3T3, and some organs | High | Total RNA | SN | ~4000 | 25~29 K | ~10,000 | Yes | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, W.; Ye, K.; He, L.; Ge, Q.; Huang, Y.; Zhao, X. Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue. Int. J. Mol. Sci. 2023, 24, 13744. https://doi.org/10.3390/ijms241813744
Guo Y, Wang W, Ye K, He L, Ge Q, Huang Y, Zhao X. Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue. International Journal of Molecular Sciences. 2023; 24(18):13744. https://doi.org/10.3390/ijms241813744
Chicago/Turabian StyleGuo, Yunxia, Wenjia Wang, Kaiqiang Ye, Liyong He, Qinyu Ge, Yan Huang, and Xiangwei Zhao. 2023. "Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue" International Journal of Molecular Sciences 24, no. 18: 13744. https://doi.org/10.3390/ijms241813744
APA StyleGuo, Y., Wang, W., Ye, K., He, L., Ge, Q., Huang, Y., & Zhao, X. (2023). Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue. International Journal of Molecular Sciences, 24(18), 13744. https://doi.org/10.3390/ijms241813744