High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells
Abstract
:1. Introduction
2. Results
2.1. Characterization of Primary Peritoneal Mesothelial Cells and Fibroblast Cells and the Effect of a High-Na+ Environment and Osmolarity on Cell Viability
2.2. Connection between a High Salt and Osmotic Environment and Inflammation
2.3. Effect of a High Salt and Osmotic Environment on the Profibrotic Growth Factor Production
2.4. Effect of CTGF; TGF-ß and PDGF-BB on Peritoneal Fibroblast
2.5. High Salt and Osmotic Environment-Induced Mesothelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells
2.6. Role of a High Salt and Osmotic Environment in ECM Production
2.7. Ex Vivo Effect of a High Salt and Osmotic Environment on Peritoneum
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Primary Human Peritoneal Mesothelial Cells (HPMCs)
5.2. Primary Human Peritoneal Fibroblast Cells (HPFs)
5.3. Human Umbilical Vein Endothelial Cells (HUVECs)
5.4. Peripheral Blood Mononuclear Cells (PBMCs)
5.5. Ex Vivo Peritoneal Samples
5.6. Immunofluorescence Staining
5.7. RNA Isolation and cDNA Synthesis
5.8. Real-Time Polymerase Chain Reaction (PCR)
5.9. SiriusRed Collagen Detection Assay
5.10. LDH Cytotoxicity Assay
5.11. MTT Cell Proliferation Assay
5.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Htay, H.; Jha, V.; Wainstein, M.; Johnson, D.W. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 2022, 18, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Sinnakirouchenan, R.; Holley, J.L. Peritoneal dialysis versus hemodialysis: Risks, benefits, and access issues. Adv. Chronic Kidney Dis. 2011, 18, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Baroni, G.; Schuinski, A.; de Moraes, T.P.; Meyer, F.; Pecoits-Filho, R. Inflammation and the peritoneal membrane: Causes and impact on structure and function during peritoneal dialysis. Mediat. Inflamm. 2012, 2012, 912595. [Google Scholar] [CrossRef] [PubMed]
- Gayomali, C.; Hussein, U.; Cameron, S.F.; Protopapas, Z.; Finkelstein, F.O. Incidence of encapsulating peritoneal sclerosis: A single-center experience with long-term peritoneal dialysis in the United States. Perit. Dial. Int. 2011, 31, 279–286. [Google Scholar] [CrossRef]
- Jagirdar, R.M.; Bozikas, A.; Zarogiannis, S.G.; Bartosova, M.; Schmitt, C.P.; Liakopoulos, V. Encapsulating Peritoneal Sclerosis: Pathophysiology and Current Treatment Options. Int. J. Mol. Sci. 2019, 20, 5765. [Google Scholar] [CrossRef]
- Bansal, S.; Sheth, H.; Siddiqui, N.; Bender, F.H.; Johnston, J.R.; Piraino, B. Incidence of encapsulating peritoneal sclerosis at a single U.S. university center. Adv. Perit. Dial. 2010, 26, 75–81. [Google Scholar]
- Suryantoro, S.D.; Thaha, M.; Sutanto, H.; Firdausa, S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J. Clin. Med. 2023, 12, 4401. [Google Scholar] [CrossRef]
- Koçak, G.; Azak, A.; Astarcı, H.M.; Huddam, B.; Karaca, G.; Ceri, M.; Can, M.; Sert, M.; Duranay, M. Effects of renin-angiotensin-aldosterone system blockade on chlorhexidine gluconate-induced sclerosing encapsulated peritonitis in rats. Ther. Apher. Dial. 2012, 16, 75–80. [Google Scholar] [CrossRef]
- Jing, S.; Kezhou, Y.; Hong, Z.; Qun, W.; Rong, W. Effect of renin-angiotensin system inhibitors on prevention of peritoneal fibrosis in peritoneal dialysis patients. Nephrology 2010, 15, 27–32. [Google Scholar] [CrossRef]
- Pap, D.; Veres-Székely, A.; Szebeni, B.; Rokonay, R.; Ónody, A.; Lippai, R.; Takács, I.M.; Tislér, A.; Kardos, M.; Oswald, F.; et al. Characterization of IL-19, -20, and -24 in acute and chronic kidney diseases reveals a pro-fibrotic role of IL-24. J. Transl. Med. 2020, 18, 172. [Google Scholar] [CrossRef]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef]
- Khalesi, S.; Williams, E.; Irwin, C.; Johnson, D.W.; Webster, J.; McCartney, D.; Jamshidi, A.; Vandelanotte, C. Reducing salt intake: A systematic review and meta-analysis of behavior change interventions in adults. Nutr. Rev. 2022, 80, 723–740. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Sakata, F.; Ishii, T.; Tawada, M.; Suzuki, Y.; Kinashi, H.; Katsuno, T.; Takei, Y.; Maruyama, S.; Mizuno, M.; et al. Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice. Nephrol. Dial. Transplant. 2019, 34, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Sakata, F.; Ito, Y.; Mizuno, M.; Sawai, A.; Suzuki, Y.; Tomita, T.; Tawada, M.; Tanaka, A.; Hirayama, A.; Sagara, A.; et al. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. Lab. Investig. 2017, 97, 432–446. [Google Scholar] [CrossRef]
- Pletinck, A.; Consoli, C.; Van Landschoot, M.; Steppan, S.; Topley, N.; Passlick-Deetjen, J.; Vanholder, R.; Van Biesen, W. Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats. Nephrol. Dial. Transplant. 2010, 25, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Terri, M.; Trionfetti, F.; Montaldo, C.; Cordani, M.; Tripodi, M.; Lopez-Cabrera, M.; Strippoli, R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front. Immunol. 2021, 12, 607204. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kang, H.Y.; Kim, K.S.; Nam, B.Y.; Paeng, J.; Kim, S.; Li, J.J.; Park, J.T.; Kim, D.K.; Han, S.H.; et al. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. Lab. Investig. 2012, 92, 1698–1711. [Google Scholar] [CrossRef]
- Küper, C.; Beck, F.X.; Neuhofer, W. NFAT5 contributes to osmolality-induced MCP-1 expression in mesothelial cells. Mediat. Inflamm. 2012, 2012, 513015. [Google Scholar] [CrossRef]
- Roth, I.; Leroy, V.; Kwon, H.M.; Martin, P.Y.; Féraille, E.; Hasler, U. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-kappaB activity. Mol. Biol. Cell 2010, 21, 3459–3474. [Google Scholar] [CrossRef]
- Kumar, R.; DuMond, J.F.; Khan, S.H.; Thompson, E.B.; He, Y.; Burg, M.B.; Ferraris, J.D. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc. Natl. Acad. Sci. USA 2020, 117, 20292–20297. [Google Scholar] [CrossRef]
- Handler, J.S.; Kwon, H.M. Transcriptional regulation by changes in tonicity. Kidney Int. 2001, 60, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Zha, S.; Shen, X.; Zhao, Y.; Li, L.; Yang, L.; Lei, M.; Liu, W. NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium. Cell Commun. Signal. 2019, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Hollborn, M.; Vogler, S.; Reichenbach, A.; Wiedemann, P.; Bringmann, A.; Kohen, L. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: Involvement of NFAT5. Mol. Vis. 2015, 21, 360–377. [Google Scholar]
- Kino, T.; Takatori, H.; Manoli, I.; Wang, Y.; Tiulpakov, A.; Blackman, M.R.; Su, Y.A.; Chrousos, G.P.; DeCherney, A.H.; Segars, J.H. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci. Signal. 2009, 2, ra5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Zheng, X.J.; Du, L.J.; Sun, J.Y.; Shen, Z.X.; Shi, C.; Sun, S.; Zhang, Z.; Chen, X.Q.; Qin, M.; et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015, 25, 893–910. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Zhou, L.; Shan, Y.; Tan, S.; Cai, W.; Liao, S.; Peng, L.; Lu, Z. High salt-induced activation and expression of inflammatory cytokines in cultured astrocytes. Cell Cycle 2017, 16, 785–794. [Google Scholar] [CrossRef]
- Hishida, E.; Ito, H.; Komada, T.; Karasawa, T.; Kimura, H.; Watanabe, S.; Kamata, R.; Aizawa, E.; Kasahara, T.; Morishita, Y.; et al. Crucial Role of NLRP3 Inflammasome in the Development of Peritoneal Dialysis-related Peritoneal Fibrosis. Sci. Rep. 2019, 9, 10363. [Google Scholar] [CrossRef]
- Mazzitelli, I.; Bleichmar, L.; Melucci, C.; Gerber, P.P.; Toscanini, A.; Cuestas, M.L.; Diaz, F.E.; Geffner, J. High Salt Induces a Delayed Activation of Human Neutrophils. Front. Immunol. 2022, 13, 831844. [Google Scholar] [CrossRef]
- Roselli, F.; Livrea, P.; Jirillo, E. Voltage-gated sodium channel blockers as immunomodulators. Recent Pat. CNS Drug Discov. 2006, 1, 83–91. [Google Scholar] [CrossRef]
- Offner, F.A.; Feichtinger, H.; Stadlmann, S.; Obrist, P.; Marth, C.; Klingler, P.; Grage, B.; Schmahl, M.; Knabbe, C. Transforming growth factor-beta synthesis by human peritoneal mesothelial cells. Induction by interleukin-1. Am. J. Pathol. 1996, 148, 1679–1688. [Google Scholar] [PubMed]
- Offner, F.A.; Obrist, P.; Stadlmann, S.; Feichtinger, H.; Klingler, P.; Herold, M.; Zwierzina, H.; Hittmair, A.; Mikuz, G.; Abendstein, B.; et al. IL-6 secretion by human peritoneal mesothelial and ovarian cancer cells. Cytokine 1995, 7, 542–547. [Google Scholar] [CrossRef]
- Makó, V.; Czúcz, J.; Weiszhár, Z.; Herczenik, E.; Matkó, J.; Prohászka, Z.; Cervenak, L. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1β, TNF-α, and LPS. Cytom. A 2010, 77, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Fielding, C.A.; Jones, G.W.; McLoughlin, R.M.; McLeod, L.; Hammond, V.J.; Uceda, J.; Williams, A.S.; Lambie, M.; Foster, T.L.; Liao, C.T.; et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014, 40, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Balzer, M.S. Molecular pathways in peritoneal fibrosis. Cell. Signal. 2020, 75, 109778. [Google Scholar] [CrossRef]
- Leung, J.C.; Chan, L.Y.; Tam, K.Y.; Tang, S.C.; Lam, M.F.; Cheng, A.S.; Chu, K.M.; Lai, K.N. Regulation of CCN2/CTGF and related cytokines in cultured peritoneal cells under conditions simulating peritoneal dialysis. Nephrol. Dial. Transplant. 2009, 24, 458–469. [Google Scholar] [CrossRef]
- Patel, P.; West-Mays, J.; Kolb, M.; Rodrigues, J.C.; Hoff, C.M.; Margetts, P.J. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biol. 2010, 29, 97–106. [Google Scholar] [CrossRef]
- Reinmuth, N.; Rensinghoff, S.; Raedel, M.; Fehrmann, N.; Schwöppe, C.; Kessler, T.; Bisping, G.; Hilberg, F.; Roth, G.J.; Berdel, W.; et al. Paracrine interactions of vascular endothelial growth factor and platelet-derived growth factor in endothelial and lung cancer cells. Int. J. Oncol. 2007, 31, 621–626. [Google Scholar] [CrossRef]
- Murphy, M.; Godson, C.; Cannon, S.; Kato, S.; Mackenzie, H.S.; Martin, F.; Brady, H.R. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J. Biol. Chem. 1999, 274, 5830–5834. [Google Scholar] [CrossRef]
- Lin, W.; Shi, C.; Wang, W.; Wu, H.; Yang, C.; Wang, A.; Shen, X.; Tian, Y.; Cao, P.; Yuan, W. Osmolarity and calcium regulate connective tissue growth factor (CTGF/CCN2) expression in nucleus pulposus cells. Gene 2019, 704, 15–24. [Google Scholar] [CrossRef]
- Mizutani, M.; Ito, Y.; Mizuno, M.; Nishimura, H.; Suzuki, Y.; Hattori, R.; Matsukawa, Y.; Imai, M.; Oliver, N.; Goldschmeding, R.; et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am. J. Physiol. Ren. Physiol. 2010, 298, F721–F733. [Google Scholar] [CrossRef]
- Sakai, N.; Nakamura, M.; Lipson, K.E.; Miyake, T.; Kamikawa, Y.; Sagara, A.; Shinozaki, Y.; Kitajima, S.; Toyama, T.; Hara, A.; et al. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci. Rep. 2017, 7, 5392. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Lippai, R.; Veres-Székely, A.; Sziksz, E.; Iwakura, Y.; Pap, D.; Rokonay, R.; Szebeni, B.; Lotz, G.; Béres, N.J.; Cseh, Á.; et al. Immunomodulatory role of Parkinson’s disease 7 in inflammatory bowel disease. Sci. Rep. 2021, 11, 14582. [Google Scholar] [CrossRef]
- Duan, W.J.; Yu, X.; Huang, X.R.; Yu, J.W.; Lan, H.Y. Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am. J. Pathol. 2014, 184, 2275–2284. [Google Scholar] [CrossRef]
- Margetts, P.J.; Bonniaud, P.; Liu, L.; Hoff, C.M.; Holmes, C.J.; West-Mays, J.A.; Kelly, M.M. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J. Am. Soc. Nephrol. 2005, 16, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Margetts, P.J.; Kolb, M.; Galt, T.; Hoff, C.M.; Shockley, T.R.; Gauldie, J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: Effects on membrane function. J. Am. Soc. Nephrol. 2001, 12, 2029–2039. [Google Scholar] [CrossRef]
- Seeger, H.; Braun, N.; Latus, J.; Alscher, M.D.; Fritz, P.; Edenhofer, I.; Biegger, D.; Lindenmeier, M.; Wüthrich, R.P.; Segerer, S. Platelet-derived growth factor receptor-β expression in human peritoneum. Nephron Clin. Pract. 2014, 128, 178–184. [Google Scholar] [CrossRef]
- Nessim, S.J.; Perl, J.; Bargman, J.M. The renin-angiotensin-aldosterone system in peritoneal dialysis: Is what is good for the kidney also good for the peritoneum? Kidney Int. 2010, 78, 23–28. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Li, N.; Shao, Q.Y.; Zhang, Q.Y.; Sun, C.; Xu, P.F.; Jiang, C.M. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor. Am. J. Physiol. Ren. Physiol. 2021, 320, F273–F284. [Google Scholar] [CrossRef]
- Kiribayashi, K.; Masaki, T.; Naito, T.; Ogawa, T.; Ito, T.; Yorioka, N.; Kohno, N. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int. 2005, 67, 1126–1135. [Google Scholar] [CrossRef]
- Noh, H.; Ha, H.; Yu, M.R.; Kim, Y.O.; Kim, J.H.; Lee, H.B. Angiotensin II mediates high glucose-induced TGF-beta1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit. Dial. Int. 2005, 25, 38–47. [Google Scholar] [CrossRef]
- Moinuddin, Z.; Summers, A.; Van Dellen, D.; Augustine, T.; Herrick, S.E. Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front. Physiol. 2014, 5, 470. [Google Scholar] [PubMed]
- Abrahams, A.C.; Habib, S.M.; Dendooven, A.; Riser, B.L.; van der Veer, J.W.; Toorop, R.J.; Betjes, M.G.; Verhaar, M.C.; Watson, C.J.; Nguyen, T.Q.; et al. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor. PLoS ONE 2014, 9, e112050. [Google Scholar] [CrossRef] [PubMed]
- Masunaga, Y.; Muto, S.; Asakura, S.; Akimoto, T.; Homma, S.; Kusano, E.; Asano, Y. Ascites from patients with encapsulating peritoneal sclerosis augments NIH/3T3 fibroblast proliferation. Ther. Apher. Dial. 2003, 7, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Strippoli, R.; Benedicto, I.; Pérez Lozano, M.L.; Cerezo, A.; López-Cabrera, M.; del Pozo, M.A. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis. Model. Mech. 2008, 1, 264–274. [Google Scholar] [CrossRef]
- Strippoli, R.; Moreno-Vicente, R.; Battistelli, C.; Cicchini, C.; Noce, V.; Amicone, L.; Marchetti, A.; Del Pozo, M.A.; Tripodi, M. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int. 2016, 2016, 3543678. [Google Scholar] [CrossRef]
- Yung, S.; Chan, T.M. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: The role of mesothelial cells. Mediat. Inflamm. 2012, 2012, 484167. [Google Scholar] [CrossRef]
- Miyano, T.; Suzuki, A.; Sakamoto, N. Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells. PLoS ONE 2021, 16, e0261345. [Google Scholar] [CrossRef] [PubMed]
- Pires, B.R.; Mencalha, A.L.; Ferreira, G.M.; de Souza, W.F.; Morgado-Díaz, J.A.; Maia, A.M.; Corrêa, S.; Abdelhay, E.S. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. PLoS ONE 2017, 12, e0169622. [Google Scholar] [CrossRef]
- Julien, S.; Puig, I.; Caretti, E.; Bonaventure, J.; Nelles, L.; van Roy, F.; Dargemont, C.; de Herreros, A.G.; Bellacosa, A.; Larue, L. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007, 26, 7445–7456. [Google Scholar] [CrossRef]
- Díaz, R.; Sandoval, P.; Rodrigues-Diez, R.R.; Del Peso, G.; Jiménez-Heffernan, J.A.; Ramos-Ruíz, R.; Llorens, C.; Laham, G.; Alvarez-Quiroga, M.; López-Cabrera, M.; et al. Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. Int. J. Mol. Sci. 2020, 21, 5824. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Lara-Pezzi, E.; Selgas, R.; Ramírez-Huesca, M.; Domínguez-Jiménez, C.; Jiménez-Heffernan, J.A.; Aguilera, A.; Sánchez-Tomero, J.A.; Bajo, M.A.; Alvarez, V.; et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 2003, 348, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Mózes, M.M.; Szoleczky, P.; Rosivall, L.; Kökény, G. Sustained hyperosmolarity increses TGF-ß1 and Egr-1 expression in the rat renal medulla. BMC Nephrol. 2017, 18, 209. [Google Scholar] [CrossRef]
- Veres-Székely, A.; Pap, D.; Sziksz, E.; Jávorszky, E.; Rokonay, R.; Lippai, R.; Tory, K.; Fekete, A.; Tulassay, T.; Szabó, A.J.; et al. Selective measurement of α smooth muscle actin: Why β-actin can not be used as a housekeeping gene when tissue fibrosis occurs. BMC Mol. Biol. 2017, 18, 12. [Google Scholar] [CrossRef]
- Veres-Székely, A.; Pap, D.; Szebeni, B.; Őrfi, L.; Szász, C.; Pajtók, C.; Lévai, E.; Szabó, A.J.; Vannay, Á. Transient Agarose Spot (TAS) Assay: A New Method to Investigate Cell Migration. Int. J. Mol. Sci. 2022, 23, 2119. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewski, C.; Callewaert, D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 1983, 64, 313–320. [Google Scholar] [CrossRef]
Organism | Gene | Primer Pairs | |
---|---|---|---|
Human | ACTA2 [65] | F: | 5′-CCC CTG AAG AGC ATC GGA CA-3′ |
R: | 5′-TGG CGG GGA CAT TGA AGG T-3′ | ||
Human | CDH1 | F: | 5′-GAA GGA GGC GGA GAA GAG GAC CAG-3′ |
R: | 5′-GGG AAG ATA CCG GGG GAC ACT CAT-3′ | ||
Human | CTGF | F: | 5′-CTC CAC CCG GGT TAC CAA TGA CAA-3′ |
R: | 5′-CAG CAT CGG TCG CTA CAT ACT-3′ | ||
Human | FN | F: | 5′-GGC TGC CCA CGA GGA AAT CTG C-3′ |
R: | 5′-GTG CCC CTC TTC ATG ACG CTT GTG-3′ | ||
Human | GAPDH | F: | 5′-AGC AAT GCC TCC TGC ACC ACC AA-3′ |
R: | 5′-GCG GCC ATC ACG CCA CAG TTT-3′ | ||
Human | IL1B | F: | 5′-CAC GCT CCG GGA CTC ACA G -3′ |
R: | 5′-GCC CAA GGC CAC AGG TAT TTT-3′ | ||
Human | IL6 | F: | 5′-AAA GAT GGC TGA AAA AGA TGG AT-3′ |
R: | 5′-CTC TGG CTT GTT CCT CAC TAC TCT-3′ | ||
Human | MCP1 | F: | 5′-ATG CCC CAG TCA CCT GCT GTT A-3′ |
R: | 5′-CTC CTT GGC CAC AAT GGT CTT G-3′ | ||
Human | PDGFB | F: | 5′-CTG GGC GCT CTT CCT TCC TCT C-3′ |
R: | 5′-CCA GCT CAG CCC CAT CTT CAT C-3′ | ||
Human | SNAIL1 | F: | 5′-TCA GCC TGG GTG CCC TCA AGA-3′ |
R: | 5′-CGG GAG AAG GTC CGA GCA CAC G-3′ | ||
Human | TGFB1 | F: | 5′-GCG TGC GG CAG CTG TAC ATT GAC T-3′ |
R: | 5′-CGA GGC GCC CGG GTT ATG C-3′ | ||
Mouse | ACTA2 | F: | 5′-CCC CTG AAG AGC ATC GGA CA-3′ |
R: | 5′-TGG CGG GGA CAT TGA AGG T-3′ | ||
Mouse | CDH1 | F: | 5′-AGC CCG CGG CGA CTA CTG AG-3′ |
R: | 5′-TGA AGC CGG GAC TGC AGG ACT C-3′ | ||
Mouse | CTGF | F: | 5′-CCT CCG TCG CAG GTC CCA TCA GC3-′ |
R: | 5′-GGG GAG CCG AAA TCG CAG AAG AGG-3′ | ||
Mouse | FN | F: | 5′-GGT CAG GGC CGG GGC AGA T-3′ |
R: | 5′-CTG GCT GGG GGT CTC CGT GAT AAT-3′ | ||
Mouse | GAPDH | F: | 5′-ATC TGA CGT GCC GCC TGG AGA AAC-3′ |
R: | 5′-CCC GGC ATC GAA GGT GGA AGA GT-3′ | ||
Mouse | IL1B | F: | 5′-GCC ACC TTT TGA CAG TGA TGA GAA-3′ |
R: | 5′-GAT GTG CTG CTG CGA GAT TTG A-3′ | ||
Mouse | IL6 | F: | 5′-AAC CAC GGC CTT CCC TAC TTC A-3′ |
R: | 5′-TGC CAT TGC ACA ACT CTT TTC TCA-3′ | ||
Mouse | MCP1 | F: | 5′-AGG TGT CCC AAA GAA GCT GTA-3′ |
R: | 5′-ATG TCT GGA CCC ATT CCT TCT-3′ | ||
Mouse | PDGFB | F: | 5′-CTG GGC GCT CTT CCT TCC TCT C-3′ |
R: | 5′-CCA GCT CAG CCC CAT CTT CAT C-3′ | ||
Mouse | SNAIL1 | F: | 5′-GCC ACG TCC GCA CCC ACA CTG-3′ |
R: | 5′-GCG GGA GAA GGT TCG GGC ACA G-3′ | ||
Mouse | TGFB1 | F: | 5′-GTG CGG CAG CTG TAC ATT GAC TTT-3′ |
R: | 5′-GTG CGG CAG CTG TAC ATT GAC TTT-3′ | ||
Mouse | ACE | F: | 5′-GCA CCC GGG CCA AGA CAT T-3′ |
R: | 5′-GAT CAG GTT CCA GGG GCA TAC AAG-3′ | ||
Mouse | TONEBP | F: | 5′-AAC ATT GGA CAG CCA AAA GG-3′ |
R: | 5′-GCA ACA CCA CTG GTT CAT TA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pap, D.; Pajtók, C.; Veres-Székely, A.; Szebeni, B.; Szász, C.; Bokrossy, P.; Zrufkó, R.; Vannay, Á.; Tulassay, T.; Szabó, A.J. High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells. Int. J. Mol. Sci. 2023, 24, 13765. https://doi.org/10.3390/ijms241813765
Pap D, Pajtók C, Veres-Székely A, Szebeni B, Szász C, Bokrossy P, Zrufkó R, Vannay Á, Tulassay T, Szabó AJ. High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells. International Journal of Molecular Sciences. 2023; 24(18):13765. https://doi.org/10.3390/ijms241813765
Chicago/Turabian StylePap, Domonkos, Csenge Pajtók, Apor Veres-Székely, Beáta Szebeni, Csenge Szász, Péter Bokrossy, Réka Zrufkó, Ádám Vannay, Tivadar Tulassay, and Attila J. Szabó. 2023. "High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells" International Journal of Molecular Sciences 24, no. 18: 13765. https://doi.org/10.3390/ijms241813765
APA StylePap, D., Pajtók, C., Veres-Székely, A., Szebeni, B., Szász, C., Bokrossy, P., Zrufkó, R., Vannay, Á., Tulassay, T., & Szabó, A. J. (2023). High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells. International Journal of Molecular Sciences, 24(18), 13765. https://doi.org/10.3390/ijms241813765