Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mineral Phase and Chemical Composition of Volcanic Rocks
2.2. Identification of Microorganisms by SEM
2.3. Endolith Viability
2.4. Microbial Community Composition
2.5. Microbial Distribution According to Rock Type
2.6. Microbial Distribution According to Chemical Composition
2.7. Elucidation of Microbial Adaptation to the Environment Inferred through Taxonomy
2.8. Implications for Astrobiology
3. Materials and Methods
3.1. Sample Collection
3.2. Identification of Mineral Phase and Chemical Composition of Volcanic Rock Samples
3.3. Scanning Electron Microscopy (SEM)
3.4. Processing of Samples and Analysis of the Viability of Endolytic Microorganisms
3.5. DNA Extraction and Sequencing
3.6. Metabarcoding Data Processing
3.7. Prediction of Metabolic Pathways
4. Conclusions
- -
- A great diversity of endolithic microorganisms was found colonizing the volcanic rocks of the Antarctic Deception Island. These rocks provide microorganisms with a source of nutrients, a water reservoir, and a microclimate that protects them from low temperatures and solar radiation.
- -
- Much more bacterial than eukaryotic diversity was found in these volcanic rocks, since they better withstand extreme environments. Prokaryotes utilize survival mechanisms and different nutrition strategies, since both chemolithoautotrophic and photoautotrophic bacteria were present in these populations.
- -
- The interiors of the rocks host living organisms whose mechanisms of molecular adaptation can be elucidated thanks to the omic and bioinformatic sciences. The results of these analyses have shown fundamental and common metabolic pathways such as the biosynthesis and degradation of fatty acids, the metabolism of amino acids, the TCA cycle, and the metabolism of sulfur and nitrogen.
- -
- Some of these endolithic microorganisms also synthesize pigments such as prodigiosin and flavonoids, which act as photoprotective-screening and photoprotective-quenching pigments. Other microorganisms found in these samples produce enzymes capable of degrading contaminants, such as ethylbenzene, dioxins and xylene, to defend themselves against environmental toxins.
- -
- This extreme ecosystem is a good terrestrial analogue of extraterrestrial environments. The demonstration of the existence of living microorganisms inside the Antarctic volcanic rocks broadens the scenarios for the search for life on other planets from an astrobiological perspective.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCA | Canonical Correspondence Analysis |
PCA | Principal Component Analysis |
SEM | Scanning Electron Microscopy |
XRD | X-ray Diffraction |
References
- Omelon, C.R. Endolithic Microorganisms and Their Habitats. In Their World: A Diversity of Microbial Environments; Hurst, C., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Friedmann, E.I. Endolithic Microorganisms in the Antarctic Cold Desert. Science 1982, 215, 1045–1053. [Google Scholar] [CrossRef]
- Walker, J.J.; Spear, J.R.; Pace, N.R. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 2005, 434, 1011–1014. [Google Scholar] [CrossRef]
- Kappen, L.; Friedmann, E.I. Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. Polar Biol. 1983, 1, 227–232. [Google Scholar] [CrossRef]
- Li, J.; Mara, P.; Schubotz, F.; Sylvan, J.B.; Burgaud, G.; Klein, F.; Beaudoin, D.; Wee, S.Y.; Dick, H.J.B.; Lott, S.; et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 2020, 579, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Chen, L.; Guo, K.; Xie, J.; Shu, Y.; He, S.; Xiao, F. Progress of uranium-contaminated soil bioremediation technology. J. Environ. Radioact. 2021, 241, 106773. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, D.E.; Dew, D.; du Plessis, C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 2003, 21, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, S.; Rasmussen, B.; Ivarsson, M.; Muhling, J.; Broman, C.; Marone, F.; Stampanoni, M.; Bekker, A. Fungus-like mycelial fossils in 2.4-billion- year- old vesicular basalt. Nat. Ecol. Evol. 2017, 1, 0141. [Google Scholar] [CrossRef] [PubMed]
- McMahon, S.; Parnell, J. The deep history of Earth’s biomass. J. Geol. Soc. 2018, 175, 716–720. [Google Scholar] [CrossRef]
- Ivarsson, M.; Sallstedt, T.; Carlsson, D.T. Morphological Biosignatures in Volcanic Rocks—Applications for Life Detection on Mars. Front. Earth Sci. 2019, 7, 91. [Google Scholar] [CrossRef]
- Schmid-Beurmann, H.A.; Kahl, W.A.; Bach, W.; Ivarsson, M.; Böttcher, M.E.; Peckmann, J. Dispersal of endo-lithic microorganisms in vesicular volcanic rock: Distribution, settlement and pathways revealed by 3D X-ray microscopy. Terra Nova. 2023, 00, 1–8. [Google Scholar] [CrossRef]
- Golubic, S.; Radtke, G.; Le Campion-Alsumard, T. Endolithic fungi in marine ecosystems. Trends Microbiol. 2005, 13, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Lazar, C.S.; Lehmann, R.; Stoll, W.; Rosenberger, J.; Totsche, K.U.; Küsel, K. The endolithic bacterial diversity of shallow bedrock ecosystems. Sci. Total. Environ. 2019, 679, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Roobol, M.J. The volcanic hazard at Deception Island, South Shetland Islands. BAS Bulletin. 1982, 51, 237–245. [Google Scholar]
- Smellie, J.L. Geology, BAS GEOMAP Series, Sheets 6-A and 6-B, 1:25,000, supplementary text. In Geology and Geomorphology of Deception Island; Smellie, J.L., López-Martínez, J., Thomson, J.W., Thomson, M.R.A., Eds.; British Antarctic Survey: Cambridge, UK, 2002; pp. 11–30. [Google Scholar]
- Barker, P.F. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: Ridge crest–trench interactions. J. Geol. Soc. 1982, 139, 787–801. [Google Scholar] [CrossRef]
- Valencio, A.; Mendía, E.; Vilas, J.F. Palaeomagnetism and K-Ar age of Mesozoic and Cenozoic igneous rocks from Antarctica. Earth Planet. Sci. Lett. 1979, 45, 61–68. [Google Scholar] [CrossRef]
- Keller, R.A.; Fisk, M.R.; White, W.M.; Birkenmajer, K. Isotopic and trace element constraints on mixing and melting models of marginal basin volcanism, Bransfield Strait, Antarctica. Earth Planet. Sci. Lett. 1992, 111, 287–303. [Google Scholar] [CrossRef]
- Oliva-Urcia, B.; Gil-Peña, I.; Maestro, A.; López-Martínez, J.; Galindo-Zaldívar, J.; Soto, R.; Gil-Imaz, A.; Rey, J.; Pueyo, O. Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model. J. S. Am. Earth Sci. 2015, 105, 1353–1370. [Google Scholar] [CrossRef]
- Antoniades, D.; Giralt, S.; Geyer, A.; Álvarez-Valero, A.M.; Pla-Rabes, S.; Granados, I.; Liu, E.J.; Toro, M.; Smellie, J.L.; Oliva, M. The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Sci. Rep. 2018, 8, 17279. [Google Scholar] [CrossRef]
- Martí, J.; Geyer, A.; Aguirre-Diaz, G. Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica). Bull. Volcanol. 2013, 75, 732. [Google Scholar] [CrossRef]
- Smellie, J.L. Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarct. Sci. 2001, 13, 188–209. [Google Scholar] [CrossRef]
- Geyer, A.; Pedrazzi, D.; Almendros, J.; Berrocoso, M.; López-Martínez, J.; Maestro, A.; Carmona, E.; Álvarez-Valero, A.M.; de Gill, A. Chapter 7.1 Deception Island. Geol. Soc. Lond. Mem. 2021, 55, 667–693. [Google Scholar] [CrossRef]
- Torrecillas, C.; Berrocoso, M.; García-García, A. The Multidisciplinary Scientific Information Support System (SIMAC) for Deception Island. In Antarctica; Fütterer, D., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 397–402. [Google Scholar] [CrossRef]
- López-Martínez, J.; Serrano, E.; Rey, J.; Smellie, J.L. Geomorphological Map of Deception Island Sheet 6B. In Geology and Geomorphology of Deception Island; López-Martínez, J., Smellie, J.L., Thomson, J.W., Thomson, M.R.A., Eds.; British Antarctic Survey: Cambridge, UK, 2000. [Google Scholar]
- García-Lopez, E.; Serrano, S.; Calvo, M.A.; Perez, S.P.; Sanchez-Casanova, S.; García-Descalzo, L.; Cid, C. Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland. Microorganisms 2021, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.P.; Tian, F.; Roux, S.; Gazitúa, M.C.; Solonenko, N.E.; Li, Y.F.; Davis, M.E.; Van Etten, J.L.; Mos-ley-Thompson, E.; Rich, V.I.; et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; MacEachran, D.P.; Burd, H.; Sathitsuksanoh, N.; Bi, C.; Yeh, Y.; Lee, T.S.; Hillson, N.J.; Chhabra, S.R.; Singer, S.W.; et al. Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. Appl. Environ. Microbiol. 2013, 79, 4433–4439. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Zakhary, S.; Larocque, M.; Lazar, C.S. From Surface to Subsurface: Diversity, Composition, and Abundance of Sessile and Endolithic Bacterial, Archaeal, and Eukaryotic Communities in Sand, Clay and Rock Substrates in the Laurentians (Quebec, Canada). Microorganisms 2022, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.S.; Umesha, S.; Prasad, K.S.; Niranjana, P. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum. Curr. Microbiol. 2015, 72, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lopez, E.; Rodriguez-Lorente, I.; Alcazar, P.; Cid, C. Microbial Communities in Coastal Glaciers and Tidewater Tongues of Svalbard Archipelago, Norway. Front. Mar. Sci. 2019, 5, 512. [Google Scholar] [CrossRef]
- Winkel, M.; Trivedi, C.B.; Mourot, R.; Bradley, J.A.; Vieth-Hillebrand, A.; Benning, L.G. Seasonality of Glacial Snow and Ice Microbial Communities. Front. Microbiol 2022, 13, 876848. [Google Scholar] [CrossRef]
- Schoenle, A.; Hohlfeld, M.; Rosse, M.; Filz, P.; Wylezich, C.; Nitsche, F.; Arndt, H. Global comparison of bico-soecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 2020, 73, 125665. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO; Cambridge University Press: Cambridge, UK, 2003; 268p. [Google Scholar] [CrossRef]
- Poole, I.; Cantril, D. Fossil woods from Williams Point Beds, Livingston Island, Antarctica: A late cretaceous southern high latitude flora. Palaeontology 2001, 44, 1081–1112. [Google Scholar] [CrossRef]
- Held, B.W.; Blanchette, R.A. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol. 2017, 121, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Descalzo, L.; Alcazar, A.; Baquero, F.; Cid, C. Biotechnological Applications of Cold-Adapted Bacteria. In Extremophiles: Sustainable Resources and Biotechnological Implications; Singh, O.V., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 159–174. [Google Scholar] [CrossRef]
- Dantas, G.; Gorne, I.; da Silva, C.M.; Arbilla, G. Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Concentrations in Urban Areas Impacted by Chemical and Petrochemical Industrial Emissions. Bull. Environ. Contam. Toxicol. 2021, 108, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Mergelov, N.; Mueller, C.W.; Prater, I.; Shorkunov, I.; Dolgikh, A.; Zazovskaya, E.; Shishkov, V.; Krupskaya, V.; Abrosimov, K.; Cherkinsky, A.; et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 2018, 8, 3367. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Brock. Biologia de los Microorganismos, 14th ed.; Nakagawa, J.M., Ed.; Pearson Education: Madrid, Spain, 2015. [Google Scholar]
- Siebert, J.; Hirsch, P.; Hoffmann, B.; Gliesche, C.G.; Peissl, K.; Jendrach, M. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard range): Diversity, properties and interactions. Biodivers. Conserv. 1996, 5, 1337–1363. [Google Scholar] [CrossRef]
- Martinez-Alonso, E.; Pena-Perez, S.; Serrano, S.; Garcia-Lopez, E.; Alcazar, A.; Cid, C. Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci. Rep. 2019, 9, 12158. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, T.; Schmidt, W.E.; Suda, S.; Fredericq, S. A metabarcoding framework for facilitated survey of endo-lithic phototrophs with tufA. BMC Ecol. 2016, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Cid, C.; Garcia-Descalzo, L.; Casado-Lafuente, V.; Amils, R.; Aguilera, A. Proteomic analysis of the response of an acidophilic strain of Chlamydomonas sp. (Chlorophyta) to natural metal-rich water. Proteomics 2010, 10, 2026–2036. [Google Scholar] [CrossRef] [PubMed]
- García-López, E.; Alcazar, A.; Moreno, A.M.; Cid, C. Color producing extremophiles. In Bio-Pigmentation and Biotechnological Implementations; Singh, O.V., Ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 61–86. [Google Scholar]
- Smirnova, G.V.; Oktyabrsky, O.N. Glutathione in Bacteria. Biochemistry 2005, 70, 1199–1211. [Google Scholar] [CrossRef]
- Stomeo, F.; Valverde, A.; Pointing, S.B.; McKay, C.P.; Warren-Rhodes, K.A.; Tuffin, M.I.; Seely, M.; Cowan, D.A. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib desert. Extremophiles 2013, 17, 329–337. [Google Scholar] [CrossRef]
- Ziolkowski, L.A.; Mykytczuk, N.C.S.; Omelon, C.R.; Johnson, H.; Whyte, L.G.; Slater, G.F. Arctic gypsum endo-liths: A biogeochemical characterization of a viable and active microbial community. Biogeosciences 2013, 10, 7661–7675. [Google Scholar] [CrossRef]
- Wong, F.K.; Lau, M.C.; Lacap, D.C.; Aitchison, J.C.; Cowan, D.A.; Pointing, S.B. Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb. Ecol. 2010, 59, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Colwell, F.S.; Smith, R.P. Unifying principles of the deep terrestrial and deep marine biospheres. In Wilcock WSD; Delong, E.F., Kelley, D.S., Baross, J.A., Cary, S.C., Eds.; American Geophysical Union: Washington, DC, USA, 2004; Volume 104, pp. 355–367. [Google Scholar]
- Preston, L.J.; Dartnell, L.R. Planetary habitability: Lessons learned from terrestrial analogues. Int. J. Astrobiol. 2014, 13, 81–98. [Google Scholar] [CrossRef]
- Dance, A. Endoliths hunker down and survive in extreme environments. Proc. Natl. Acad. Sci. USA 2015, 112, 2296. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Hisado, V.; Ruiz-Blas, F.; Sobrado, J.M.; Garcia-Lopez, E.; Martinez-Alonso, E.; Alcázar, A.; Cid, C. Bacterial molecular machinery in the Martian cryosphere conditions. Front. Microbiol. 2023, 14, 1176582. [Google Scholar] [CrossRef]
- Azua-Bustos, A.; Fairén, A.G.; Silva, C.G.; Carrizo, D.; Fernández-Martínez, M.; Arenas-Fajardo, C.; Fernández-Sampedro, M.; Gil-Lozano, C.; Sánchez-García, L.; Ascaso, C.; et al. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci. Rep. 2020, 10, 19183. [Google Scholar] [CrossRef] [PubMed]
- Valles González, P.; Pastor Muro, A.; Garcia-Martinez, M. Failure analysis study on a fractured bolt. Eng. Fail. Anal. 2020, 109, 104355. [Google Scholar] [CrossRef]
- Martín-Cerezo, M.L.; García-López, E.; Cid, C. Isolation and identification of a red pigment from the Antarctic bacterium Shewanella frigidimarina. Protein Pept. Lett. 2015, 22, 1076–1082. [Google Scholar] [CrossRef]
- Garcia-Lopez, E.; Ruiz-Blas, F.; Sanchez-Casanova, S.; Perez, S.P.; Martin-Cerezo, M.L.; Cid, C. Microbial Communities in Volcanic Glacier Ecosystems. Front. Microbiol. 2022, 13, 825632. [Google Scholar] [CrossRef]
- Ruiz-Blas, F.; Muñoz-Hisado, V.; Garcia-Lopez, E.; Moreno, A.; Bartolomé, M.; Leunda, M.; Martinez-Alonso, E.; Alcázar, A.; Cid, C. The hidden microbial ecosystem in the perennial ice from a Pyrenean ice cave. Front. Microbiol. 2023, 14, 1110091. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample in-ference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, M.J.; Carmichael, S.K.; Santelli, C.M.; Strom, A.; Bräuer, S.L. Mn(II)-oxidizing Bacteria are Abundant and Environmentally Relevant Members of Ferromanganese Deposits in Caves of the Upper Tennessee River Basin. Geomicrobiol. J. 2013, 30, 779–800. [Google Scholar] [CrossRef]
- Villar, S.E.; Edwards, H.G.; Worland, M.R. Comparative evaluation of Raman spectroscopy at different wave-lengths for extremophile exemplars. Orig. Life Evol. Biosph. 2005, 35, 489–506. [Google Scholar] [CrossRef]
- Selbmann, L.; de Hoog, G.S.; Mazzagalia, A.; Friedman, E.I.; Onofri, S. Fungi at the edge of life: Cryptoendolithic black fungi from Antarctic desert. Stud. Mycol. 2005, 51, 1–32. [Google Scholar]
- Wynn-Williams, D.D.; Edwards, H.G.M.; Garcia-Pichel, F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 1999, 34, 381–391. [Google Scholar] [CrossRef]
- Ríos, A.D.L.; Grube, M.; Sancho, L.G.; Ascaso, C. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol. Ecol. 2007, 59, 386–395. [Google Scholar] [CrossRef]
- Lauro, F.M.; Bartlett, D.H. Prokaryotic lifestyles in deep sea habitats. Extremophiles 2007, 12, 15–25. [Google Scholar] [CrossRef]
- Nagata, T.; Tamburini, C.; Aristegui, J.; Baltar, F.; Bochdansky, A.; Fonda-Umani, S.; Fukuda, H.; Gogou, A.; Hansell, D.A.; Hansman, R.J.; et al. Emerging concepts on microbial processes in the bathypelagic ocean-ecology, biogeochemistry, and genomics. Deep. Sea Res. Part II 2010, 57, 1519–1536. [Google Scholar] [CrossRef]
- Hershkovitz, N.; Oren, A.; Cohen, Y. Accumulation of Trehalose and Sucrose in Cyanobacteria Exposed to Matric Water Stress. Appl. Environ. Microbiol. 1991, 57, 645–648. [Google Scholar] [CrossRef]
- Vincent, W.F. Cold tolerance in cyanobacteria and life in the cryosphere (from Part 4: Phototrophs in cold environments). In Algae and Cyanobacteria in Extreme Environments; Springer: Dordrecht, The Netherlands, 2007; pp. 289–301. [Google Scholar]
- Wierzchos, J.; Davila, A.F.; Artieda, O.; Cámara-Gallego, B.; Ríos, A.; Nealson, K.H.; Valea, S.; García-González, M.T.; Ascaso, C. Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on Mars. Icarus 2013, 224, 334–346. [Google Scholar] [CrossRef]
Sample | IGSN | x | y | Rock Type | Picture | SEM | Metabarcoding |
---|---|---|---|---|---|---|---|
NB1_S1 | IED18NB1S1 | 617,555.389 | 3,014,808.551 | Pyroclastic rocks-loose lapilli | + | + | − |
NB1_S2 | IED18NB1S2 | 617,555.389 | 3,014,808.551 | Pyroclastic rocks-loose lapilli | + | + | + |
NB1_S3 | IED18NB1S3 | 617,555.389 | 3,014,808.551 | Pyroclastic rocks-loose lapilli | + | + | − |
DIPV36_S1 | IED18036S1 | 616,437.9272 | 3,014,413.246 | Pyroclastic rocks-loose lapilli | + | + | − |
DIPV36_S2 | IED18036S2 | 616,437.9272 | 3,014,413.246 | Pyroclastic rocks-loose lapilli | + | + | − |
DIPV36_S3 | IED18036S3 | 616,437.9272 | 3,014,413.246 | Pyroclastic rocks-loose lapilli | + | + | + |
DIVOL_4A | IED19004A | 616,387 | 3,018,440 | Pyroclastic density current deposit | + | + | + |
DIVOL_4D | IED19004D | 616,387 | 3,018,440 | Pyroclastic density current deposit | + | + | − |
DIVOL_9 | IED190009 | 617,801 | 3,019,423 | Pyroclastic rocks-loose lapilli | + | + | − |
DIVOL_12A | IED19012A | 617,509 | 302,0078 | Pyroclastic rocks-loose lapilli | + | + | + |
DIVOL_23 | IED190023 | 626,739 | 3,015,998 | Pyroclastic density current deposit | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Arias, A.; Muñoz-Hisado, V.; Valles, P.; Geyer, A.; Garcia-Lopez, E.; Cid, C. Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks. Int. J. Mol. Sci. 2023, 24, 13824. https://doi.org/10.3390/ijms241813824
Hidalgo-Arias A, Muñoz-Hisado V, Valles P, Geyer A, Garcia-Lopez E, Cid C. Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks. International Journal of Molecular Sciences. 2023; 24(18):13824. https://doi.org/10.3390/ijms241813824
Chicago/Turabian StyleHidalgo-Arias, Andrea, Víctor Muñoz-Hisado, Pilar Valles, Adelina Geyer, Eva Garcia-Lopez, and Cristina Cid. 2023. "Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks" International Journal of Molecular Sciences 24, no. 18: 13824. https://doi.org/10.3390/ijms241813824
APA StyleHidalgo-Arias, A., Muñoz-Hisado, V., Valles, P., Geyer, A., Garcia-Lopez, E., & Cid, C. (2023). Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks. International Journal of Molecular Sciences, 24(18), 13824. https://doi.org/10.3390/ijms241813824