Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression
Abstract
:1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Blood Immunophenotype Differences in IPF Patients vs. Healthy Individuals at Baseline
2.3. Association between Blood Immunophenotype and Severity of IPF at Baseline
2.4. Relationships between Baseline Blood Immunophenotype and Disease Progression
2.5. Machine Learning Classification
2.6. Reproducibility of IPF Immunophenotypes at Long-Term
3. Discussion
3.1. Previous Studies and Interpretation of the Findings
3.2. Clinical Implications
3.3. Strengths and Limitations
4. Materials and Methods
4.1. Study Design and Ethics
4.2. Measurements
4.2.1. Lung Function and Disease Progression
4.2.2. Fluorescence-Activated Cell Staining Analysis (FACS)
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolters, P.J.; Blackwell, T.S.; Eickelberg, O.; Loyd, J.E.; Kaminski, N.; Jenkins, G.; Maher, T.M.; Molina-Molina, M.; Noble, P.W.; Raghu, G.; et al. Time for a change: Is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir. Med. 2018, 6, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Heukels, P.; Moor, C.C.; von der Thusen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med. 2019, 147, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, R.A.; Fisher, A.J.; Borthwick, L.A. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021, 10, 2763. [Google Scholar] [CrossRef]
- Selman, M.; King, T.E.; Pardo, A.; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 2001, 134, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, I.E.; Eickelberg, O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet 2012, 380, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, D.; Cardenes, N.; Sellares, J.; Bueno, M.; Corey, C.; Hanumanthu, V.S.; Peng, Y.; D’Cunha, H.; Sembrat, J.; Nouraie, M.; et al. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L1164–L1173. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Gonzalez, F.; Faner, R.; Rojas, M.; Agusti, A.; Serrano, M.; Sellares, J. Cellular Senescence in Lung Fibrosis. Int. J. Mol. Sci. 2021, 22, 7012. [Google Scholar] [CrossRef] [PubMed]
- Herazo-Maya, J.D.; Noth, I.; Duncan, S.R.; Kim, S.; Ma, S.F.; Tseng, G.C.; Feingold, E.; Juan-Guardela, B.M.; Richards, T.J.; Lussier, Y.; et al. Peripheral nlood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci. Transl. Med. 2013, 5, 205ra136. [Google Scholar] [CrossRef]
- Gilani, S.R.; Vuga, L.J.; Lindell, K.O.; Gibson, K.F.; Xue, J.; Kaminski, N.; Valentine, V.G.; Lindsay, E.K.; George, M.P.; Steele, C.; et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognose of patients with idiopathic pulmonary fibrosis. PLoS ONE 2010, 5, e8959. [Google Scholar] [CrossRef]
- Habiel, D.M.; Espindola, M.S.; Kitson, C.; Azzara, A.V.; Coelho, A.L.; Stripp, B.; Hogaboam, C.M. Characterization of CD28null T cells in idiopathic pulmonary fibrosis. Mucosal Immunol. 2019, 12, 212–222. [Google Scholar] [CrossRef]
- Vuga, L.J.; Tedrow, J.R.; Pandit, K.V.; Tan, J.; Kass, D.J.; Xue, J.; Chandra, D.; Leader, J.K.; Gibson, K.F.; Kaminski, N.; et al. C-X-C Motif Chemokine 13 (CXCL13) Is a Prognostic Biomarker of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care 2014, 189, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Anstrom, K.J.; King, T.E.; Lasky, J.A., Jr.; Martinez, F.J. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 2012, 366, 1968–1977. [Google Scholar] [PubMed]
- Owen, J.A.; Punt, J.; Stranford, S.A.; Jones, P.P. Kuby Immunology, 8th ed.; Freeman, W.H., Ed.; Macmillan Learning: New York, NY, USA, 2018. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Gregory, A.D.; Kliment, C.R.; Metz, H.E.; Kim, K.H.; Kargl, J.; Agostini, B.A.; Crum, L.T.; Oczypok, E.A.; Oury, T.A.; Houghton, A.M. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 2015, 98, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Car, B.D.; Meloni, F.; Luisetti, M.; Semenzato, G.; Gialdroni-Grassi, G.; Walz, A. Elevated IL-8 and MCP-1 in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am. J. Respir. Crit. Care. Med. 1994, 149, 655–659. [Google Scholar] [CrossRef]
- Achaiah, A.; Rathnapala, A.; Pereira, A.; Bothwell, H.; Dwivedi, K.; Barker, R.; Iotchkova, V.; Benamore, R.; Hoyles, R.K.; Ho, L.-P. Neutrophil lymphocyte ratio as an indicator for disease progression in Idiopathic Pulmonary Fibrosis. BMJ Open Respir. Res. 2022, 9, e001202. [Google Scholar] [CrossRef] [PubMed]
- Barratt, S.L.; Creamer, A.W.; Adamali, H.I.; Duckworth, A.; Fallon, J.; Fidan, S.; Nancarrow, T.; Wollerton, R.; Steward, M.; Gooptu, B.; et al. Use of peripheral neutrophil to lymphocyte ratio and peripheral monocyte levels to predict survival in fibrotic hypersensitivity pneumonitis (fHP): A multicentre retrospective cohort study. BMJ Open Respir. Res. 2021, 8, e001063. [Google Scholar] [CrossRef]
- Peterson, M.W.; Monick, M.; Hunninghake, G.W. Prognostic role of eosinophils in pulmonary fibrosis. Chest 1987, 92, 51–56. [Google Scholar] [CrossRef]
- Libby, D.M. The eosinophil in idiopathic pulmonary fibrosis. Chest 1987, 92, 7–8. [Google Scholar] [CrossRef]
- Teng, B.; Chaudhuri, N.; Abdulqawi, R.; Leonard, C. Peripheral Eosinophilia in Idiopathic Pulmonary Fibrosis—Are There Clinical Implications? A Retrospective Cohort Study of Patients Commencing Antifibrotic Therapy. B35 Lung Transplant and Ild Scientific Abstracts: Drug Induced Lung Disease, Autoimmune Lung Disease. In Proceedings of the American Thoracic Society 2018 International Conference, San Diego, CA, USA, 18–23 May 2018; p. A3110-A. [Google Scholar]
- Dumitriu, I.E. The life (and death) of CD4+ CD28(null) T cells in inflammatory diseases. Immunology 2015, 146, 185–193. [Google Scholar] [CrossRef]
- Surh, C.D.; Sprent, J. Homeostasis of naive and memory T cells. Immunity 2008, 29, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Tang, X.X. Virus infection induced pulmonary fibrosis. J. Transl. Med. 2021, 19, 496. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.A.; Striker, R. Imbalance in the game of T cells: What can the CD4/CD8 T-cell ratio tell us about HIV and health? PLoS Pathog. 2017, 13, e1006624. [Google Scholar] [CrossRef]
- Serrano-Villar, S.; Sainz, T.; Lee, S.A.; Hunt, P.W.; Sinclair, E.; Shacklett, B.L.; Ferre, A.L.; Hayes, T.L.; Somsouk, M.; Hsue, P.Y.; et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014, 10, e1004078. [Google Scholar] [CrossRef] [PubMed]
- Kandil, A.; Bazarbashi, S.; Mourad, W.A. The correlation of Epstein-Barr virus expression and lymphocyte subsets with the clinical presentation of nodular sclerosing Hodgkin disease. Cancer 2001, 91, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.K.; Moore, B.B. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev. Respir. Med. 2010, 4, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Paget, C.; Trottein, F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol. 2013, 6, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Galati, D.; De Martino, M.; Trotta, A.; Rea, G.; Bruzzese, D.; Cicchitto, G.; Stanziola, A.A.; Napolitano, M.; Sanduzzi, A.; Bocchino, M. Peripheral depletion of NK cells and imbalance of the Treg/Th17 axis in idiopathic pulmonary fibrosis patients. Cytokine 2014, 66, 119–126. [Google Scholar] [CrossRef]
- Faner, R.; Rojas, M.; Macnee, W.; Agusti, A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 306–313. [Google Scholar] [CrossRef]
- Noble, P.W.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glassberg, M.K.; Kardatzke, D.; King, T.E., Jr.; Lancaster, L.; Sahn, S.A.; Szwarcberg, J.; et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet 2011, 377, 1760–1769. [Google Scholar] [CrossRef]
- Spagnolo, P.; Kropski, J.A.; Jones, M.G.; Lee, J.S.; Rossi, G.; Karampitsakos, T.; Maher, T.M.; Tzouvelekis, A.; Ryerson, C.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther. 2021, 222, 107798. [Google Scholar] [CrossRef] [PubMed]
- Piaggeschi, G.; Rolla, S.; Rossi, N.; Brusa, D.; Naccarati, A.; Couvreur, S.; Spector, T.D.; Roederer, M.; Mangino, M.; Cordero, F.; et al. Immune Trait Shifts in Association With Tobacco Smoking: A Study in Healthy Women. Front. Immunol. 2021, 12, 637974. [Google Scholar] [CrossRef] [PubMed]
- Portaro, J.K.; Glick, G.I.; Zighelboim, J. Population immunology: Age and immune cell parameters. Clin. Immunol. Immunopathol. 1978, 11, 339–345. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Sanchis, J.; Agusti-Vidal, A.; Segarra, F.; Navajas, D.; Rodriguez-Roisin, R.; Casan, P.; Sans, S. Spirometric reference values from a Mediterranean population. Bull. Eur. Physiopathol. Respir. 1986, 22, 217–224. [Google Scholar] [PubMed]
- Roca, J.; Rodriguez-Roisin, R.; Cobo, E.; Burgos, F.; Perez, J.; Clausen, J.L. Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population. Am. Rev. Respir. Dis. 1990, 141 Pt 1, 1026–1032. [Google Scholar] [CrossRef]
At Study Entry | IPF Patients during 1-Year Follow-Up | |||||
---|---|---|---|---|---|---|
Control (n = 32) | IPF (n = 32) | p-Value | Progressor (n = 18) | Stable (n = 13) | p-Value | |
Age | 71.1 ± 5.17 | 71.6 ± 7.01 | 0.344 | 71.8 ± 5.99 | 70.7 ± 8.39 | 0.679 |
Males, n (%) | 13 (40.6%) | 23 (71.9%) | 0.023 | 14 (77.8%) | 9 (69.2%) | 0.689 |
Smoking status | 0.445 | 0.784 | ||||
Former smoker | 21 (65.6%) | 25 (78.1%) | 15 (83.3%) | 10 (76.9%) | ||
Never smoker | 6 (18.8%) | 5 (15.6%) | 3 (16.7%) | 2 (15.4%) | ||
Current smoker | 5 (15.6%) | 2 (6.25%) | 0 (0.00%) | 1 (7.69%) | ||
BMI, Kg/m2 | 25.3 (3.5) | 29.2 (8.72) | 0.037 | 29.7 (10.0) | 28.5 (6.81) | 0.721 |
FVC, % ref. | 106 (20.9) | 69.8 (18.3) | <0.001 | 60.3 (10.8) | 79.5 (16.8) | 0.002 |
FEV1, % ref. | 96.4 (17.2) | 77.0 (16.7) | <0.001 | 69.3 (11.7) | 85.3 (16.8) | 0.008 |
FEV1/FVC, % | 98.0 (8.27) | 81.1 (5.80) | <0.001 | 83.1 (5.38) | 78.9 (5.63) | 0.055 |
DLCO, % ref. | NA | 46.9 (16.8) | 41.9 (14.7) | 53.9 (17.9) | 0.063 | |
Antifibrotic before *, n (%) | <0.001 | 1.000 | ||||
Yes | 0 (0%) | 12 (37.5%) | 7 (38.9%) | 5 (38.5%) | ||
Antifibrotic after *, n (%) | <0.001 | 0.497 | ||||
Yes | 0 (0%) | 30 (93.8%) | 16 (88.9%) | 13 (100%) | ||
Antifibrotic drug, n (%) | <0.001 | 0.348 | ||||
Nintedanib | 0 (0%) | 22 (73.3%) | 13 (72.2%) | 8 (61.5%) | ||
Pirfenidone | 0 (0%) | 8 (26.7%) | 3 (16.7%) | 5 (38.5%) | ||
Death, n (%) | 1.000 | 0.025 | ||||
Yes | 0 (0%) | 0 (0%) | 7 (38.9%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, N.; Casas-Recasens, S.; Olvera, N.; Hernandez-Gonzalez, F.; Cruz, T.; Albacar, N.; Alsina-Restoy, X.; Frino-Garcia, A.; López-Saiz, G.; Robres, L.; et al. Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression. Int. J. Mol. Sci. 2023, 24, 13832. https://doi.org/10.3390/ijms241813832
Mendoza N, Casas-Recasens S, Olvera N, Hernandez-Gonzalez F, Cruz T, Albacar N, Alsina-Restoy X, Frino-Garcia A, López-Saiz G, Robres L, et al. Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression. International Journal of Molecular Sciences. 2023; 24(18):13832. https://doi.org/10.3390/ijms241813832
Chicago/Turabian StyleMendoza, Nuria, Sandra Casas-Recasens, Núria Olvera, Fernanda Hernandez-Gonzalez, Tamara Cruz, Núria Albacar, Xavier Alsina-Restoy, Alejandro Frino-Garcia, Gemma López-Saiz, Lucas Robres, and et al. 2023. "Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression" International Journal of Molecular Sciences 24, no. 18: 13832. https://doi.org/10.3390/ijms241813832
APA StyleMendoza, N., Casas-Recasens, S., Olvera, N., Hernandez-Gonzalez, F., Cruz, T., Albacar, N., Alsina-Restoy, X., Frino-Garcia, A., López-Saiz, G., Robres, L., Rojas, M., Agustí, A., Sellarés, J., & Faner, R. (2023). Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression. International Journal of Molecular Sciences, 24(18), 13832. https://doi.org/10.3390/ijms241813832