Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. hsa-miR-6813-3p, hsa-miR-2277-3p, and hsa-let-7f-1-3p in EVs Expression Decreases with Increasing Severity of Depression
2.3. Target Gene Prediction of hsa-miR-6813-3p and hsa-miR-2277-3p
2.4. GO Analysis and Pathway Enrichment Analysis of hsa-miR-6813-3p and hsa-miR-2277-3p
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Psychometric Evaluation
4.3. Laboratory Method
4.4. Isolation of EVs from Serum and Purification of miRNA in EVs
4.5. Formation of Cells Stably Expressing miRNA and Purification of Total RNA
4.6. Microarray Analysis
4.7. Reverse Transcription and Quantitative Real-Time PCR Analysis (RT-qPCR)
4.8. Selection of Candidate Target Genes
4.9. GO and Pathway Enrichment Analysis
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Rojas, L.; Porras-Segovia, A.; Dunne, H.; Andrade-González, N.; Cervilla, J.A. Prevalence and correlates of major depressive disorder: A systematic review. Braz. J. Psychiatry 2020, 42, 657–672. [Google Scholar] [CrossRef]
- Hawton, K.; Casañas I Comabella, C.; Haw, C.; Saunders, K. Risk factors for suicide in individuals with depression: A systematic review. J. Affect. Disord. 2013, 147, 17–28. [Google Scholar] [CrossRef]
- Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and severity of depression: A patient-level meta-analysis. JAMA 2010, 303, 47–53. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef]
- Kishi, T.; Yoshimura, R.; Ikuta, T.; Iwata, N. Brain-derived neurotrophic factor and major depressive disorder: Evidence from meta-analyses. Front. Psychiatry 2017, 8, 308. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Does depression be associated with increased oxidative stress? Systematic Review and Meta-analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Landucci Bonifacio, K.; Morelli, N.R.; Vargas, H.O.; Barbosa, D.S.; Carvalho, A.F.; Nunes, S.O.V. Major differences in neurooxidative and Neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol. Neurobiol. 2019, 56, 141–156. [Google Scholar] [CrossRef]
- Wise, T.; Cleare, A.J.; Herane, A.; Young, A.H.; Arnone, D. Diagnostic and therapeutic utility of neuroimaging in depression: An overview. Neuropsychiatr. Dis. Treat. 2014, 10, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; et al. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J. Cell. Biochem. 2018, 119, 3783–3797. [Google Scholar] [CrossRef]
- Żurawek, D.; Turecki, G. The miRNome of Depression. Int. J. Mol. Sci. 2021, 22, 11312. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef]
- Maffioletti, E.; Tardito, D.; Gennarelli, M.; Bocchio-Chiavetto, L. Micro spies from the brain to the periphery: New clues from studies on microRNAs in neuropsychiatric disorders. Front. Cell. Neurosci. 2014, 8, 75. [Google Scholar] [CrossRef]
- Gao, Y.N.; Zhang, Y.Q.; Wang, H.; Deng, Y.L.; Li, N.M. A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity. Int. J. Mol. Sci. 2022, 23, 4555. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Carollo, A.; Neoh, M.J.Y.; Esposito, G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int. J. Mol. Sci. 2022, 24, 436. [Google Scholar] [CrossRef]
- Dwivedi, Y. Emerging role of miRNAs in major depressive disorder: Diagnosis and therapeutic implications. Dial. Clin. Neurosci. 2014, 16, 43–61. [Google Scholar] [CrossRef]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Lässer, C.; Alikhani, V.S.; Ekström, K.; Eldh, M.; Paredes, P.T.; Bossios, A.; Sjöstrand, M.; Gabrielsson, S.; Lötvall, J.; Valadi, H. Human saliva, plasma, and breast milk exosomes contain RNA that is taken up by macrophages. J. Transl. Med. 2011, 9, 9. [Google Scholar] [CrossRef]
- Caby, M.P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present in the human blood plasma. Int. Immunol. 2005, 17, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Pisitkun, T.; Shen, R.F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 2004, 101, 13368–13373. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Ridinger, J.; Rupp, A.K.; Janssen, J.W.; Altevogt, P. Body fluid-derived exosomes are novel templates for clinical diagnosis. J. Transl. Med. 2011, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Cosmopoulos, K.; Thorley-Lawson, D.A.; van Eijndhoven, M.A.; Hopmans, E.S.; Lindenberg, J.L.; de Gruijl, T.D.; Würdinger, T.; Middeldorp, J.M. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA 2010, 107, 6328–6333. [Google Scholar] [CrossRef] [PubMed]
- Jotatsu, T.; Izumi, H.; Morimoto, Y.; Yatera, K. Selection of miRNAs in extracellular vesicles for the diagnosis of malignant pleural mesothelioma by in vitro analysis. Oncol. Rep. 2020, 44, 2198–2210. [Google Scholar] [CrossRef]
- Wei, Z.X.; Xie, G.J.; Mao, X.; Zou, X.P.; Liao, Y.J.; Liu, Q.S.; Wang, H.; Cheng, Y. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology 2020, 45, 1050–1058. [Google Scholar] [CrossRef]
- Ran, L.Y.; Kong, Y.T.; Xiang, J.J.; Zeng, Q.; Zhang, C.Y.; Shi, L.; Qiu, H.T.; Liu, C.; Wu, L.L.; Li, Y.L.; et al. Serum extracellular vesicle microRNA dysregulation and childhood trauma in adolescents with major depressive disorder. Bosn. J. Basic Med. Sci. 2022, 22, 959–971. [Google Scholar] [CrossRef]
- Honorato-Mauer, J.; Xavier, G.; Ota, V.K.; Chehimi, S.N.; Mafra, F.; Cuóco, C.; Ito, L.T.; Ormond, R.; Asprino, P.F.; Oliveira, A.; et al. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents. Transl. Psychiatry 2023, 13, 47. [Google Scholar] [CrossRef]
- Oraki Kohshour, M.; Papiol, S.; Delalle, I.; Rossner, M.J.; Schulze, T.G. Extracellular vesicle approach to major psychiatric disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2022. epub ahead of print. [Google Scholar] [CrossRef]
- Smalheiser, N.R.; Lugli, G.; Rizavi, H.S.; Torvik, V.I.; Turecki, G.; Dwivedi, Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE 2012, 7, e33201. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, Y.; Wang, X.; Wu, J.; Liu, K.; Zhou, J.; Liu, L.; Zhang, C. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS ONE 2015, 10, e0121975. [Google Scholar] [CrossRef]
- Maffioletti, E.; Cattaneo, A.; Rosso, G.; Maina, G.; Maj, C.; Gennarelli, M.; Tardito, D.; Bocchio-Chiavetto, L. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J. Affect. Disord. 2016, 200, 250–258. [Google Scholar] [CrossRef]
- Gheysarzadeh, A.; Sadeghifard, N.; Afraidooni, L.; Pooyan, F.H.; Mofid, M.R.; Valadbeigi, H.; Bakhtiari, H.; Keikhavani, S. Serum-based miRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J. Res. Med. Sci. 2018, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Enatescu, V.R.; Papava, I.; Enatescu, I.; Antonescu, M.; Anghel, A.; Seclaman, E.; Sirbu, I.O.; Marian, C. Circulating plasma microRNAs in patients with major depressive disorder treated with antidepressants: A pilot study. Psychiatry Investig. 2016, 13, 549–557. [Google Scholar] [CrossRef]
- Yuan, H.; Mischoulon, D.; Fava, M.; Otto, M.W. Circulating microRNAs as biomarkers for depression: Many candidates, few finalists. J. Affect. Disord. 2018, 233, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.; Court, J.; Navabi, H.; Adams, M.; Mason, M.D.; Hobot, J.A.; Newman, G.R.; Jasani, B. Analysis of antigen-presenting cell-derived exosomes based on mmune-magnetic isolation and flow cytometry. J. Immunol. Methods 2001, 247, 163–174. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Nishi, K.; Izumi, H.; Tomonaga, T.; Nagano, C.; Morimoto, Y.; and Horie, S. IL-6-Mediated Upregulated miRNAs in Extracellular Vesicles Derived from Lund Human Mesencephalic (LUHMES) Cells: Effects on Astrocytes and Microglia. Biomolecules 2023, 13, 718. [Google Scholar] [CrossRef]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef]
- Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The emerging role of exosomes in mental disorders. Transl. Psychiatry 2019, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Sharma, P.; Bullock, K.M.; Hansen, K.M.; Ludwig, N.; Whiteside, T.L. Transport of extracellular vesicles across the blood-brain barrier: Brain pharmacokinetics and effects of inflammation. Int. J. Mol. Sci. 2020, 21, 4407. [Google Scholar] [CrossRef]
- Saeedi, S.; Nagy, C.; Ibrahim, P.; Théroux, J.F.; Wakid, M.; Fiori, L.M.; Yang, J.; Rotzinger, S.; Foster, J.A.; Mechawar, N.; et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol. Psychiatry 2021, 26, 7417–7424. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.S.; Dweep, H.; Rose, S.; Wickramasinghe, P.J.; Vyas, K.K.; McCullough, S.; Porter-Gill, P.A.; Frye, R.E. Integrated microRNA-mRNA expression profiling identifies novel targets and networks associated with autism. J. Pers. Med. 2022, 12, 920. [Google Scholar] [CrossRef]
- Gao, Q.; Lei, F.; Zeng, Q.; Gao, Z.; Niu, P.; Junnan, N.; Li, J.; Zhang, J. Functional passenger-strand miRNAs and their heterogeneous paracrine effects in exosomes derived from human colon cancer cells and their heterogeneous paracrine effects. Int. J. Biol. Sci. 2020, 16, 1044–1058. [Google Scholar] [CrossRef]
- Cano, A.; Muñoz-Morales, Á.; Sánchez-López, E.; Ettcheto, M.; Souto, E.B.; Camins, A.; Boada, M.; Ruíz, A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics 2023, 15, 298. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Xing, H.; Wang, Y.; Guo, Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol. Ther. Nucleic Acids 2021, 23, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.H.; Wu, J.; Mou, F.F.; Xie, W.H.; Wang, F.B.; Wang, Q.L.; Fang, J.; Xu, Y.W.; Dong, Y.R.; Liu, J.R.; et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 2018, 32, 654–668. [Google Scholar] [CrossRef]
- Huang, L.Y.; Song, J.X.; Cai, H.; Wang, P.P.; Yin, Q.L.; Zhang, Y.D.; Chen, J.; Li, M.; Song, J.J.; Wang, Y.L.; et al. Healthy Serum-Derived Exosomes Improve Neurological Outcomes and Protect Blood-Brain Barrier by Inhibiting Endothelial Cell Apoptosis and Reversing Autophagy-Mediated Tight Junction Protein Reduction in Rat Stroke Model. Front. Cell. Neurosci. 2022, 16, 841544. [Google Scholar] [CrossRef]
- Gao, W.; Li, F.; Liu, L.; Xu, X.; Zhang, B.; Wu, Y.; Yin, D.; Zhou, S.; Sun, D.; Huang, Y.; et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp. Neurol. 2018, 307, 99–108. [Google Scholar] [CrossRef]
- Chen, Y.A.; Lu, C.H.; Ke, C.C.; Chiu, S.J.; Jeng, F.S.; Chang, C.W.; Yang, B.H.; Liu, R.S. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer’s Disease Pathology and Improve Cognitive Deficits. Biomedicines 2021, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, G.; Stockmeier, C.A. Astrocyte pathology in major depressive disorder: Insights from human postmortem brain tissue. Curr. Drug Targets 2013, 14, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. A genome-wide meta-analysis of depression identified 102 independent variants and highlighted the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Zorrilla, E.P.; Luborsky, L.; McKay, J.R.; Rosenthal, R.; Houldin, A.; Tax, A.; McCorkle, R.; Seligman, D.A.; Schmidt, K. The relationship of depression and stressors to immunological assays: A meta-analytic review. Brain Behav. Immun. 2001, 15, 199–226. [Google Scholar] [CrossRef] [PubMed]
- Kalia, M. Neurobiological basis of depression: An update. Metabolism 2005, 54 (Suppl. S1), 24–27. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Hamilton, M. Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Kriston, L.; von Wolff, A. Not as golden as standards should be: Interpretation of the Hamilton Rating Scale for Depression. J. Affect. Disord. 2011, 128, 175–177. [Google Scholar] [CrossRef]
- Murakami, M.; Izumi, H.; Kurita, T.; Koi, C.; Morimoto, Y.; Yoshino, K. UBE2L6 is involved in cisplatin resistance by regulating the transcription of ABCB6. Anti Cancer Agents Med. Chem. 2020, 20, 1487–1496. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
HAMD score | 16.50 ± 3.92 |
Age, (years) | 50.13 ± 7.16 |
Sex | |
Female, n (%) | 8.0 (50.0) |
Male, n (%) | 8.0 (50.0) |
Years of education | 12.0 (1.50) |
Ethnicity | |
Japanese, n (%) | 16 (100.0) |
Drinking status | |
Current drinker, n (%) | 7.0 (43.75) |
Lifetime abstainer, n (%) | 9.0 (56.25) |
Smoking status | |
Current smoker, n (%) | 2.0 (12.50) |
Past smoker, n (%) | 6.0 (37.50) |
Never smoker, n (%) | 8.0 (50.0) |
Number of episode | 1.0 (1.0) |
Antidepressant use | |
Yes, n (%) | 12.0 (75.0) |
No, n (%) | 4.0 (25.0.) |
Benzodiazepine use | |
Yes, n (%) | 10.0 (62.50) |
No, n (%) | 6.0 (37.50) |
Care setting | |
Inpatient, n (%) | 14.0 (87.50) |
Outpatient, n (%) | 2.0 (12.50) |
Mild | Moderate | Severe | p-Value | |
---|---|---|---|---|
HAMD score | 12.0 (0.50) | 16.0 (1.0) | 23.0 (1.50) | 0.003 * |
Age, (years) | 53.0 (3.75) | 48.50 (3.88) | 49.0 (6.75) | 0.555 |
Sex | ||||
Female, n (%) | 2.0 (66.67) | 6.0 (60.0) | 0 | 0.354 |
Male, n (%) | 1.0 (33.33) | 4.0 (40.0) | 3.0 (100.0) | |
Years of education | 16.0 (1.5) | 12 (1.0) | 12 (1.0) | 0.304 |
Drinking status | ||||
Current drinker, n (%) | 2.0 (66.67) | 5 (50.0) | 0 | 0.377 |
Smoking status | ||||
Current smoker, n (%) | 0 | 1 (10.0) | 1 (33.3) | 0.376 |
Number of episode | 3.0 (0.50) | 1.0 (0.88) | 0 (0.50) | 0.194 |
Antidepressant use | ||||
Yes, n (%) | 3.0 (100.0) | 7.0 (70.0) | 2.0 (66.67) | 0.777 |
No, n (%) | 0 | 3.0 (30.0) | 1.0 (33.33) | |
Benzodiazepine use | ||||
Yes, n (%) | 1.0 (33.33) | 7.0 (70.0) | 2.0 (66.67) | 0.764 |
No, n (%) | 2.0 (66.67) | 3.0 (30.0) | 1.0 (33.33) |
miRNA | Control | Mild | Moderate | Severe | 2-Group p-Value | 2-Group FDR p-Value | 4-Group p-Value | 4-Group FDR p-Value |
---|---|---|---|---|---|---|---|---|
hsa-let-7f-1-3p | 10.08 | 11.98 | 9.082 | 7.194 | 3.27 × 10−1 | 6.98 × 10−1 | 8.14 × 10−2 | 1.28 × 10−1 |
hsa-miR-2277-3p | 11.34 | 7.750 | 6.410 | 0 | 6.63 × 10−5 * | 1.07 × 10−2 * | 6.25 × 10−4 * | 3.94 × 10−2 * |
hsa-miR-6813-3p | 26.85 | 23.40 | 15.49 | 11.23 | 1.52 × 10−5 * | 1.01 × 10−3 * | 9.21 × 10−5 * | 7.90 × 10−3 * |
Pathway | p-Value | Matched Entities | Pathway Entities | |
---|---|---|---|---|
1 | Burn wound healing | 4.61 × 10−4 | 6 | 128 |
2 | Dravet syndrome | 7.57 × 10−4 | 3 | 20 |
3 | GDNF-RET signaling axis | 1.18 × 10−3 | 3 | 23 |
4 | Differentiation Pathway | 1.25 × 10−3 | 4 | 50 |
5 | Pluripotent stem cell differentiation pathway | 1.25 × 10−3 | 4 | 50 |
6 | NRP1-triggered signaling pathways in pancreatic cancer | 1.68 × 10−3 | 4 | 57 |
7 | Development of ureteric collection system | 2.35 × 10−3 | 4 | 61 |
8 | Benzo(a)pyrene metabolism | 2.48 × 10−3 | 2 | 9 |
9 | Hair follicle development-organogenesis-part 2 of 3 | 2.94 × 10−3 | 3 | 32 |
10 | Metapathway biotransformation Phase I and II | 5.63 × 10−3 | 6 | 190 |
11 | Oxidative Damage | 6.20 × 10−3 | 3 | 40 |
12 | Estrogen Receptor Pathway | 6.69 × 10−3 | 2 | 13 |
13 | Development of pulmonary dendritic cells and macrophage subsets | 6.69 × 10−3 | 2 | 13 |
14 | Hair Follicle Development-Cytodifferentiation (Part_3_of_3) | 8.80 × 10−3 | 4 | 87 |
15 | Nuclear Receptors Meta-Pathway | 9.78 × 10−3 | 8 | 318 |
16 | Estrogen metabolism | 1.01 × 10−2 | 2 | 18 |
17 | Tamoxifen metabolism | 1.27 × 10−2 | 2 | 21 |
18 | Cardiac Progenitor Differentiation | 1.37 × 10−2 | 3 | 53 |
19 | Complement activation | 1.56 × 10−2 | 2 | 22 |
20 | Complement system in neuronal development and plasticity | 1.70 × 10−2 | 4 | 106 |
21 | Imatinib and chronic myeloid leukemia | 1.71 × 10−2 | 2 | 21 |
22 | Complement and coagulation cascades | 1.83 × 10−2 | 3 | 60 |
23 | miRNA targets in ECM and membrane receptors | 1.87 × 10−2 | 2 | 45 |
24 | Hypothesized Pathways in Pathogenesis of Cardiovascular Disease | 2.38 × 10−2 | 2 | 25 |
25 | Angiotensin II receptor type 1 pathway | 2.95 × 10−2 | 2 | 28 |
26 | Glucocorticoid receptor pathway | 2.99 × 10−2 | 3 | 71 |
27 | Cannabinoid receptor signaling | 3.15 × 10−2 | 2 | 31 |
28 | Inflammatory response pathway | 3.35 × 10−2 | 2 | 33 |
29 | Endothelin Pathways | 3.56 × 10−2 | 2 | 33 |
30 | Amino acid conjugation of benzoic acid | 3.79 × 10−2 | 1 | 4 |
31 | Clock-controlled autophagy in bone metabolism | 4.06 × 10−2 | 3 | 80 |
32 | GABA receptor Signaling | 4.22 × 10−2 | 2 | 37 |
33 | Melatonin metabolism and effects | 4.44 × 10−2 | 2 | 42 |
34 | Sulindac Metabolic Pathway | 4.71 × 10−2 | 1 | 6 |
35 | IL-18 signaling pathway | 4.75 × 10−2 | 6 | 287 |
Pathway | p-Value | Matched Entities | Pathway Entities | |
---|---|---|---|---|
1 | Metapathway biotransformation Phase I and II | 9.95 × 10−7 | 37 | 190 |
2 | GPCRs, Class A Rhodopsin-like | 3.28 × 10−4 | 42 | 262 |
3 | Development of ureteric collection system | 9.31 × 10−4 | 14 | 61 |
4 | Dopaminergic neurogenesis | 1.13 × 10−3 | 9 | 30 |
5 | Hair follicle development-organogenesis-part 2 of 3 | 1.48 × 10−3 | 9 | 32 |
6 | Mammalian disorder of sexual development | 1.70 × 10−3 | 8 | 25 |
7 | Role of Osx and miRNAs in tooth development | 1.79 × 10−3 | 6 | 37 |
8 | Neural Crest Differentiation | 2.20 × 10−3 | 19 | 101 |
9 | Vitamin D Metabolism | 2.26 × 10−3 | 5 | 11 |
10 | Hair Follicle Development- Cytodifferentiation (Part_3_of_3) | 2.29 × 10−3 | 17 | 87 |
11 | TYROBP causal network in microglia | 3.34 × 10−3 | 13 | 60 |
12 | Oxidation by Cytochrome P450 | 3.34 × 10−3 | 13 | 64 |
13 | Familial hyperlipidemia type 4 | 3.43 × 10−3 | 7 | 22 |
14 | Nuclear receptors meta-pathway | 4.24 × 10−3 | 44 | 318 |
15 | 1q21.1 copy number variation syndrome | 7.49 × 10−3 | 7 | 39 |
16 | Somatic sex determination | 7.68 × 10−3 | 5 | 14 |
17 | GPCRs, Other | 9.34 × 10−3 | 17 | 114 |
18 | Familial hyperlipidemia type 5 | 1.06 × 10−2 | 5 | 15 |
19 | Thyroxine (Thyroid Hormone) Production | 1.41 × 10−2 | 3 | 6 |
20 | Estrogen metabolism | 1.43 × 10−2 | 5 | 18 |
21 | Prostaglandin and leukotriene metabolism in senescence | 1.43 × 10−2 | 7 | 32 |
22 | Oxidative Stress | 1.43 × 10−2 | 7 | 29 |
23 | Zinc homeostasis | 1.57 × 10−2 | 8 | 37 |
24 | Tryptophan metabolism | 1.62 × 10−2 | 9 | 77 |
25 | Pluripotent stem cell differentiation pathway | 1.63 × 10−2 | 10 | 50 |
26 | NRF2 pathway | 1.66 × 10−2 | 21 | 143 |
27 | Striated Muscle Contraction | 1.85 × 10−2 | 8 | 38 |
28 | Genes controlling nephrogenesis | 1.88 × 10−2 | 9 | 44 |
29 | Gene regulatory network modelling somitogenesis | 2.22 × 10−2 | 4 | 12 |
30 | Peptide GPCRs | 2.26 × 10−2 | 13 | 75 |
31 | Glial Cell Differentiation | 2.29 × 10−2 | 3 | 8 |
32 | Familial hyperlipidemia type 1 | 2.38 × 10−2 | 5 | 18 |
33 | NO-cGMP-PKG mediated neuroprotection | 2.49 × 10−2 | 9 | 47 |
34 | White fat cell differentiation | 2.91 × 10−2 | 7 | 32 |
35 | Cell-type Dependent Selectivity of CCK2R Signaling | 2.97 × 10−2 | 4 | 13 |
36 | Development of pulmonary dendritic cells and macrophage subsets | 2.97 × 10−2 | 4 | 13 |
37 | MECP2 and Associated Rett Syndrome | 3.21 × 10−2 | 11 | 90 |
38 | Burn wound healing | 3.31 × 10−2 | 16 | 128 |
39 | Male infertility | 3.50 × 10−2 | 20 | 145 |
40 | FOXA2 pathway | 3.67 × 10−2 | 5 | 21 |
41 | Oligodendrocyte Specification and differentiation | 3.92 × 10−2 | 6 | 31 |
42 | Splicing factor NOVA regulated synaptic proteins | 4.35 × 10−2 | 8 | 42 |
43 | 2q37 copy number variation syndrome | 4.42 × 10−2 | 19 | 172 |
44 | Methylation Pathways | 4.75 × 10−2 | 3 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, I.; Izumi, H.; Okamoto, N.; Ikenouchi, A.; Morimoto, Y.; Horie, S.; Yoshimura, R. Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 13902. https://doi.org/10.3390/ijms241813902
Seki I, Izumi H, Okamoto N, Ikenouchi A, Morimoto Y, Horie S, Yoshimura R. Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study. International Journal of Molecular Sciences. 2023; 24(18):13902. https://doi.org/10.3390/ijms241813902
Chicago/Turabian StyleSeki, Issei, Hiroto Izumi, Naomichi Okamoto, Atsuko Ikenouchi, Yasuo Morimoto, Seichi Horie, and Reiji Yoshimura. 2023. "Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study" International Journal of Molecular Sciences 24, no. 18: 13902. https://doi.org/10.3390/ijms241813902
APA StyleSeki, I., Izumi, H., Okamoto, N., Ikenouchi, A., Morimoto, Y., Horie, S., & Yoshimura, R. (2023). Serum Extracellular Vesicle-Derived hsa-miR-2277-3p and hsa-miR-6813-3p Are Potential Biomarkers for Major Depression: A Preliminary Study. International Journal of Molecular Sciences, 24(18), 13902. https://doi.org/10.3390/ijms241813902