Hydroquinine Inhibits the Growth of Multidrug-Resistant Pseudomonas aeruginosa via the Suppression of the Arginine Deiminase Pathway Genes
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterization of Antibiotic Susceptibility Profiles
2.2. Hydroquinine Inhibits and Kills MDR P. aeruginosa Isolated from Clinical Samples
2.3. Hydroquinine Demonstrates Partial Synergistic Effect with Ceftazidime against Clinical MDR P. aeruginosa Strains
2.4. Molecular Docking Simulations Reveal the Potential for Interaction between Hydroquinine and ADI-Pathway-Related Target Proteins
2.5. Hydroquinine Inhibits P. aeruginosa Growth through Decreased Expression of ADI-Pathway-Related Genes
3. Discussion
4. Materials and Methods
4.1. Hydroquinine Preparation
4.2. Strains and Cultivation of Pseudomonas aeruginosa
4.3. Antibiotic Susceptibility Testing of P. aeruginosa Strains
4.4. Antibacterial Activity of Hydroquinine by Broth Microdilution Method
4.5. Synergistic Activity Using Broth Microdilution Checkerboard Method
4.6. AlphaFold Protein Structure Prediction
4.7. Molecular Docking Analysis
4.8. Studying Gene Expression Levels
4.8.1. RNA Extraction
4.8.2. Complementary DNA (cDNA) Synthesis
4.8.3. Quantitative Reverse Transcription PCR (RT-qPCR)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance. In Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit: A critical review. Genes. Dis. 2019, 6, 109–119. [Google Scholar] [CrossRef]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef]
- Richards, M.J.; Edwards, J.R.; Culver, D.H.; Gaynes, R.P. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care. Med. 1999, 27, 887–892. [Google Scholar] [CrossRef]
- Mirzaei, B.; Bazgir, Z.N.; Goli, H.R.; Iranpour, F.; Mohammadi, F.; Babaei, R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from northeast of Iran. BMC Res. Notes 2020, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Balahbib, A.; Rebezov, M.; Shariati, M.A.; Wilairatana, P.; Mubarak, M.S.; Benali, T.; El Omari, N. Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review. Molecules 2022, 27, 1484. [Google Scholar] [CrossRef]
- Siriyong, T.; Srimanote, P.; Chusri, S.; Yingyongnarongkul, B.E.; Suaisom, C.; Tipmanee, V.; Voravuthikunchai, S.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2017, 17, 405. [Google Scholar] [CrossRef]
- Kraikongjit, S.; Jongjitvimol, T.; Mianjinda, N.; Sirithep, N.; Kaewbor, T.; Jumroon, N.; Jongjitwimol, J. Antibacterial effect of plant resin collected from Tetrigona apicalis (Smith, 1857) in Thung Salaeng Luang National Park, Phitsanulok. Walailak J. Sci. Tech. 2017, 15, 599–607. [Google Scholar] [CrossRef]
- Jongjitvimol, T.; Kraikongjit, S.; Paensuwan, P.; Jongjitwimol, J. In vitro biological profiles and chemical contents of ethanolic nest entrance extracts of thai stingless bees Tetrigona apicalis. J. Biol. Sci. 2020, 20, 157–165. [Google Scholar] [CrossRef]
- National Health Care Institute. Hydroquinine (Inhibin®) for Patients with Nocturnal Muscle Cramps. Available online: https://english.zorginstituutnederland.nl/publications/reports/2020/03/04/hydroquinine-inhibin-for-patients-with-nocturnal-muscle-cramps (accessed on 2 August 2023).
- Nationnal Center for Advancing Translation Science. Hydroquinine 31J30Q51T6L. Available online: https://drugs.ncats.io/substance/31J3Q51T6L (accessed on 1 March 2023).
- Rattanachak, N.; Weawsiangsang, S.; Jongjitvimol, T.; Baldock, R.A.; Jongjitwimol, J. Hydroquinine possesses antibacterial activity, and at half the MIC, induces the overexpression of RND-type efflux pumps using multiplex digital PCR in Pseudomonas aeruginosa. Trop. Med. Infect. Dis. 2022, 7, 156. [Google Scholar] [CrossRef]
- Jongjitwimol, J.; Baldock, R.A. Hydroquinine: A potential new avenue in drug discovery for drug-resistant bacteria? Expert. Opin. Drug. Discov. 2023, 18, 227–229. [Google Scholar] [CrossRef]
- Rattanachak, N.; Weawsiangsang, S.; Daowtak, K.; Thongsri, Y.; Ross, S.; Ross, G.; Nilsri, N.; Baldock, R.A.; Pongcharoen, S.; Jongjitvimol, T.; et al. High-throughput transcriptomic profiling reveals the inhibitory effect of hydroquinine on virulence factors in Pseudomonas aeruginosa. Antibiotics 2022, 11, 1436. [Google Scholar] [CrossRef] [PubMed]
- Casiano-Colón, A.; Marquis, R.E. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol. 1988, 54, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Teng, J.L.; Botelho, M.G.; Lo, R.C.; Lau, S.K.; Woo, P.C. Arginine metabolism in bacterial pathogenesis and cancer therapy. Int. J. Mol. Sci. 2016, 17, 363. [Google Scholar] [CrossRef] [PubMed]
- Mercenier, A.; Simon, J.P.; Vander Wauven, C.; Haas, D.; Stalon, V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J. Bacteriol. 1980, 144, 159–163. [Google Scholar] [CrossRef]
- Lu, C.D.; Winteler, H.; Abdelal, A.; Haas, D. The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. J. Bacteriol. 1999, 181, 2459–2464. [Google Scholar] [CrossRef]
- Vander Wauven, C.; Piérard, A.; Kley-Raymann, M.; Haas, D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: Evidence for a four-gene cluster encoding the arginine deiminase pathway. J. Bacteriol. Res. 1984, 160, 928–934. [Google Scholar] [CrossRef]
- Galkin, A.; Kulakova, L.; Sarikaya, E.; Lim, K.; Howard, A.; Herzberg, O. Structural Insight into Arginine Degradation by Arginine Deiminase, an Antibacterial and Parasite Drug Target. J. Biol. Chem. 2004, 279, 14001–14008. [Google Scholar] [CrossRef]
- Kim, Y.; Skarina, T.; Mesa, N.; Stogios, P.; Savchenko, S.; Joachimiak, A.; Center for Structural Genomics of Infectious Diseases (CSGID). Crystal Structure of the Carbamate Kinase from Pseudomonas aeruginosa. Available online: https://www.rcsb.org/structure/8CRV (accessed on 8 January 2023).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Del Mar Cendra, M.; Torrents, E. Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle. Virulence 2020, 11, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.M.; Brogden, R.N. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1985, 29, 105–161. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Müsken, M.; Di Fiore, S.; Dötsch, A.; Fischer, R.; Häussler, S. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 2010, 156, 431–441. [Google Scholar] [CrossRef]
- Scribani Rossi, C.; Barrientos-Moreno, L.; Paone, A.; Cutruzzolà, F.; Paiardini, A.; Espinosa-Urgel, M.; Rinaldo, S. Nutrient sensing and biofilm modulation: The example of L-arginine in Pseudomonas. Int. J. Mol. Sci. 2022, 23, 4386. [Google Scholar] [CrossRef]
- Kolbeck, S.; Abele, M.; Hilgarth, M.; Vogel, R.F. Comparative proteomics reveals the anaerobic lifestyle of meat-spoiling Pseudomonas species. Front. Microbiol. 2021, 12, 664061. [Google Scholar] [CrossRef]
- Arai, H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2011, 2, 103. [Google Scholar] [CrossRef]
- Armitage, J.P.; Evans, M.C. The motile and tactic behaviour of Pseudomonas aeruginosa in anaerobic environments. FEBS Lett. 1983, 156, 113–118. [Google Scholar] [CrossRef]
- Shoesmith, J.H.; Sherris, J.C. Studies on the mechanism of arginine-activated motility in a Pseudomonas strain. J. Gen. Microbiol. 1960, 22, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Hirose, Y.; Yamaguchi, M.; Sumitomo, T.; Nakata, M.; Hanada, T.; Okuzaki, D.; Motooka, D.; Mori, Y.; Kawasaki, H.; Coady, A.; et al. Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the skin surface. Cell Rep. 2021, 34, 108924. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Pearce, R.; Omenn, G.S.; Zhang, Y. Identification of 13 Guanidinobenzoyl- or Aminidinobenzoyl-Containing Drugs to Potentially Inhibit TMPRSS2 for COVID-19 Treatment. Int. J. Mol. Sci. 2021, 22, 7060. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, B.; Chen, L.; Jiang, H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J. Transl. Med. 2023, 21, 380. [Google Scholar] [CrossRef]
- Bernier, S.P.; Ha, D.-G.; Khan, W.; Merritt, J.H.; O’Toole, G.A. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res. Microbiol. 2011, 162, 680–688. [Google Scholar] [CrossRef]
- Goncheva, M.I.; Chin, D.; Heinrichs, D.E. Nucleotide biosynthesis: The base of bacterial pathogenesis. Trends Microbiol. 2022, 30, 793–804. [Google Scholar] [CrossRef]
- Punihaole, D.; Workman, R.J.; Upadhyay, S.; Van Bruggen, C.; Schmitz, A.J.; Reineke, T.M.; Frontiera, R.R. New insights into quinine-DNA binding using raman spectroscopy and molecular dynamics simulations. J. Phys. Chem. B 2018, 122, 9840–9851. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100, 30th ed.; Clinical and Laboratory Standards Insititute: Wayne, PA, USA, 2020. [Google Scholar]
- Cohen, A.L.; Calfee, D.; Fridkin, S.K.; Huang, S.S.; Jernigan, J.A.; Lautenbach, E.; Oriola, S.; Ramsey, K.M.; Salgado, C.D.; Weinstein, R.A. Recommendations for metrics for multidrug-resistant organisms in healthcare settings: SHEA/HICPAC position paper. Infect. Control. Hosp. Epidemiol. 2008, 29, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Koletsi, P.K.; Bliziotis, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 2006, 55, 1619–1629. [Google Scholar] [CrossRef]
- Kallen, A.J.; Hidron, A.I.; Patel, J.; Srinivasan, A. Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006–2008. Infect. Control Hosp. Epidemiol. 2010, 31, 528–531. [Google Scholar] [CrossRef]
- Critchley, I.A.; Draghi, D.C.; Sahm, D.F.; Thornsberry, C.; Jones, M.E.; Karlowsky, J.A. Activity of daptomycin against susceptible and multidrug-resistant gram-positive pathogens collected in the SECURE study (Europe) during 2000–2001. J. Antimicrob. Chemother. 2003, 51, 639–649. [Google Scholar] [CrossRef]
- CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In CLSI Document M07-A9, Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2016, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Cheypratub, P.; Leeanansaksiri, W.; Eumkeb, G. The synergy and mode of action of Cyperus rotundus L. extract plus ampicillin against ampicillin-resistant Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2018, 2018, 3438453. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.D.; Lee, J.H.; Choi, K.M.; Choi, S.M.; Park, J.H. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2014, 2014, 450572. [Google Scholar] [CrossRef]
- Lemal, S.; Explained. How to plot the prediction quality metrics with AlphaFold2. Available online: https://blog.biostrand.be/explained-how-to-plot-the-prediction-quality-metrics-with-alphafold2 (accessed on 2 June 2023).
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Amino- Glycosides | Carbapenems | Cephalosporins | Fluoroquinolones | Penicillins + β-Lactamase Inhibitors | Cephalosporins + β-Lactamase Inhibitors | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Strains | Amikacin | Doripenem | Imipenem | Meropenem | Ceftazidime | Cefepime | Ciprofloxacin | Levofloxacin | Piperacillin/ Tazobactam | Cefoperazone/ Sulbactam | |
PA-27853 | ≤2 | 0.5 | 2 | 0.5 | ≤1 | 2 | ≤0.25 | 1 | ≤4 | ≤8 | |
PA-S1 | ≤2 | 0.5 | 2 | ≤0.25 | 4 | 2 | ≤0.25 | 2 | 8 | ≤8 | |
PA-S2 | ≤2 | 1 | 2 | 1 | 32 | 4 | ≤0.25 | 0.5 | 32 | ≤8 | |
PA-S3 | ≤2 | 0.25 | 2 | ≤0.25 | 4 | 2 | ≤0.25 | 1 | 8 | ≤8 | |
PA-S4 | ≤2 | 4 | 2 | 1 | 32 | 4 | ≤0.25 | 2 | ≥128 | ≥64 | |
PA-S5 | ≤2 | ≥8 | ≥16 | ≥16 | ≥64 | ≥64 | ≥4 | ≥8 | 32 | ≥64 | |
PA-S6 | ≤2 | 0.25 | 2 | ≤0.25 | 4 | 2 | ≤0.25 | 0.5 | 8 | ≤8 |
Strain Code | Bacterial Source | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|---|
PA-27853 | ATCC reference strain | 2.50 | 5.00 |
PA-S1 | Blood | 2.50 | 5.00 |
PA-S2 | Pus from abdominal surgery wound | 2.50 | 5.00 |
PA-S3 | Pus from bed sore | 2.50 | 5.00 |
PA-S4 | Pus from eye infection | 2.50 | 5.00 |
PA-S5 | Sputum | 2.50 | 5.00 |
PA-S6 | Sputum | 2.50 | 5.00 |
Strains | Agents | MIC (µg/mL) | ||||
---|---|---|---|---|---|---|
Alone | Combination | FICI | ∑FICI | Interpretation | ||
PA-S4 | Hydroquinine | 2500 | 625 | 0.25 | 0.750 | Partial synergy |
Ceftazidime | 32 | 16 | 0.50 | |||
PA-S5 | Hydroquinine | 2500 | 312.5 | 0.125 | 0.625 | Partial synergy |
Ceftazidime | 64 | 32 | 0.50 |
Ligand | Targets | Estimated ΔG Value for Binding (kcal/mol) |
---|---|---|
Hydroquinine | ADI | −7.5571 |
OTC | −7.1706 | |
CK | −7.6305 | |
AOA | −7.7443 |
Gene | Primer Direction | Oligonucleotide Sequences (5′ to 3′) | Annealing Temperature (°C) | References |
---|---|---|---|---|
arcA | Forward | GAGCAACTGCGACGAGTTGC | 57.9 | This study |
Reverse | TCTGGATGGTCTCGGTCAGC | 57.9 | This study | |
arcB | Forward | CCAAGTTCATGCACTGCCTG | 54.6 | This study |
Reverse | TGATGGTATGCATGCGGTTC | 54.6 | This study | |
arcC | Forward | CGGCTACATGATCGAACAGG | 56.0 | This study |
Reverse | CGGCTTCTTCCCTGGAGTAG | 56.0 | This study | |
arcD | Forward | CCTCGATGATCCTGATCCCG | 57.9 | This study |
Reverse | CAGCAGCAGGTACTTCAGGC | 57.9 | This study | |
16s rRNA | Forward | CATGGCTCAGATTGAACGCTG | 58.0 | [15] |
Reverse | GCTAATCCGACCTAGGCTCATC | 58.0 | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weawsiangsang, S.; Rattanachak, N.; Jongjitvimol, T.; Jaifoo, T.; Charoensit, P.; Viyoch, J.; Ross, S.; Ross, G.M.; Baldock, R.A.; Jongjitwimol, J. Hydroquinine Inhibits the Growth of Multidrug-Resistant Pseudomonas aeruginosa via the Suppression of the Arginine Deiminase Pathway Genes. Int. J. Mol. Sci. 2023, 24, 13914. https://doi.org/10.3390/ijms241813914
Weawsiangsang S, Rattanachak N, Jongjitvimol T, Jaifoo T, Charoensit P, Viyoch J, Ross S, Ross GM, Baldock RA, Jongjitwimol J. Hydroquinine Inhibits the Growth of Multidrug-Resistant Pseudomonas aeruginosa via the Suppression of the Arginine Deiminase Pathway Genes. International Journal of Molecular Sciences. 2023; 24(18):13914. https://doi.org/10.3390/ijms241813914
Chicago/Turabian StyleWeawsiangsang, Sattaporn, Nontaporn Rattanachak, Touchkanin Jongjitvimol, Theerasak Jaifoo, Pensri Charoensit, Jarupa Viyoch, Sukunya Ross, Gareth M. Ross, Robert A. Baldock, and Jirapas Jongjitwimol. 2023. "Hydroquinine Inhibits the Growth of Multidrug-Resistant Pseudomonas aeruginosa via the Suppression of the Arginine Deiminase Pathway Genes" International Journal of Molecular Sciences 24, no. 18: 13914. https://doi.org/10.3390/ijms241813914
APA StyleWeawsiangsang, S., Rattanachak, N., Jongjitvimol, T., Jaifoo, T., Charoensit, P., Viyoch, J., Ross, S., Ross, G. M., Baldock, R. A., & Jongjitwimol, J. (2023). Hydroquinine Inhibits the Growth of Multidrug-Resistant Pseudomonas aeruginosa via the Suppression of the Arginine Deiminase Pathway Genes. International Journal of Molecular Sciences, 24(18), 13914. https://doi.org/10.3390/ijms241813914