Pitaya Nutrition, Biology, and Biotechnology: A Review
Abstract
:1. Introduction, Origin, History, and Domestication
2. Nutritional Composition
2.1. Betalains
2.2. Betalain Biosynthesis
3. Biological Activities
3.1. Antioxidant Activities
3.2. Anticancer Activities
3.3. Antimicrobial Activities
3.4. Antihyperlipidemic and Antidiabetic Activities
3.5. Wound-Healing Activities
3.6. Anti-Anemia and Anti-Inflammatory Activities
3.7. Micro-Vascular Protective Activities
3.8. Hepato-Protective Activities
3.9. Prebiotic Effects
4. Uses
4.1. Industrial Uses
4.2. Essential Oil
4.3. Other Uses
5. Taxonomy and Systematics of the Genus Hylocereus
6. Botany
6.1. Vegetative Growth
6.2. Flowers and Phenology
6.3. The Fruit
6.4. Post-Harvest
7. Pollination and Pollinators
8. Cytology
9. Agronomy, Cultivation, Pests, and Diseases
9.1. Agronomy and Cultivation
9.1.1. Irrigation
9.1.2. Fertilization
9.1.3. Light
9.1.4. Temperature
9.1.5. Pruning
9.1.6. Flowering
9.2. Pest and Diseases
10. Propagation, Micropropagation, Cell, and Tissue Culture
10.1. Conventional Propagation
10.2. Tissue Culture
10.2.1. Selection and Preparation of Disinfectant Explants
10.2.2. Basal Media In Vitro
10.2.3. Shoot Proliferation
10.2.4. Rooting and Acclimatization of Plantlets
11. Somatic Embryogenesis and Shoot Bud Organogenesis
12. Breeding through Biotechnology
12.1. Somaclonal Variation and In Vitro Selection
12.2. In Vitro Mutagenesis
12.3. Androgenesis, Gynogenesis and Altered Ploidy
12.4. Virus-Induced Gene Silencing in Pitaya
13. Marker Technology
13.1. Morphological and Biochemical Markers
13.2. DNA-Based Molecular Markers
13.2.1. RAPD
13.2.2. ISSR
13.2.3. SSR
13.2.4. AFLP
13.2.5. SNP
14. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thulaja, N.R.; Abd Rahman, N. Dragon Fruit. Available online: https://eresources.nlb.gov.sg/infopedia/articles/SIP_768_2005-01-11.html (accessed on 4 July 2023).
- Verona-Ruiz, A.; Urcia-Cerna, J.; Paucar-Menacho, L. Pitahaya (Hylocereus spp.): Culture, physicochemical characteristics, nutritional composition, and bioactive compounds. Sci. Agropecu. 2020, 11, 439–453. [Google Scholar] [CrossRef]
- Hernández, Y.D.O.; Salazar, J.A.C. Pitahaya (Hylocereus spp.): A short review. Comun. Sci. 2012, 3, 220–237. [Google Scholar]
- De Oviedo, G.F. Historia General y Natural de las Indias; Real Academia de la Historia: Madrid, Spain, 1853; Volume 3. [Google Scholar]
- Bravo-Hollis, H. Las Cactaceas de Mexico; Universidad Nacional Autonóma de México: Mexico City, Mexico, 1978; Volume 1, p. 743. [Google Scholar]
- Inés, O.C. Frutas de América Tropical y Subtropical Historia y Usos; Editorial Norma: Bogota, Colombia, 1991; pp. 1–179. [Google Scholar]
- Britton, N.L. Flora of Bermuda; Charles Scribner’s Sons: New York, NY, USA, 1918. [Google Scholar]
- Nerd, A.; Tel-Zur, N.; Mizrahi, Y. Fruits of Vine and Columnar Cacti; University of California Press: Berkeley, CA, USA, 2002; pp. 185–197. [Google Scholar]
- Casas, A.; Barbera, G. Mesoamerican Domestication and Diffusion; University of California: Berkeley, CA, USA, 2002; pp. 143–162. [Google Scholar]
- Mizrahi, Y.; Nerd, A.; Nobel, P.S. Cacti as crops. Hortic. Rev. 2010, 18, 291–319. [Google Scholar]
- Mizrahi, Y.; Nerd, A. Climbing and columnar cacti: New arid land fruit crops. Perspect. New Crops New Uses 1999, 1, 358–366. [Google Scholar]
- Mizrahi, Y.; Nerd, A.; Sitrit, Y. New Fruits for Arid Climates. In Trends in New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 2002; pp. 378–384. [Google Scholar]
- Chen, J.; Xie, F.; Shah, K.; Chen, C.; Zeng, J.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. Plant Sci. 2023, 328, 111595. [Google Scholar] [CrossRef]
- Xie, F.; Chen, C.; Chen, J.; Chen, J.; Hua, Q.; Shah, K.; Zhang, Z.; Zhao, J.; Hu, G.; Chen, J. Betalain biosynthesis in red pulp pitaya is regulated via HuMYB132: A RR type MYB transcription factor. BMC Plant Biol. 2023, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, F.; Xie, F.; Chen, J.; Hua, Q.; Chen, J.; Wu, Z.; Zhang, Z.; Zhang, R.; Zhao, J.; et al. Pitaya Genome and Multiomics Database (PGMD): A comprehensive and integrative resource of Selenicereus undatus. Genes 2022, 13, 745. [Google Scholar] [CrossRef]
- Xiong, R.; Liu, C.; Xu, M.; Wei, S.; Huang, J.; Tang, H. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season. BMC Genom. 2020, 21, 329. [Google Scholar] [CrossRef]
- Tel-Zur, N.; Dudai, M.; Raveh, E.; Mizrahi, Y. In situ induction of chromosome doubling in vine cacti (Cactaceae). Sci. Hortic. 2011, 129, 570–576. [Google Scholar] [CrossRef]
- Chen, C.; Xie, F.; Shah, K.; Hua, Q.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Genome-wide identification of WRKY gene family in pitaya reveals the involvement of HmoWRKY42 in betalain biosynthesis. Int. J. Mol. Sci. 2022, 23, 10568. [Google Scholar] [CrossRef]
- Fouqué, A. Espèces fruitières d’Amérique tropicale. Fruits 1972, 27, 200–218. [Google Scholar]
- Jorge, L.F.; Ferro, V.O. Anatomical and phytochemical aspects of Hylocereus undatus (Haworth) Britton & Rose. Rev. Farm. Bioquim. Univ. Sao Paulo 1989, 25, 123–136. [Google Scholar]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer International Publishing: Gewerbestr, Switzerland, 2012. [Google Scholar]
- Pérez-Arbeláez, E. Plantas Útiles de Colombia; Hugo, V., Ed.; Hagers Handbuch der Pharmazeutischen Praxis: Medellín, Colombia, 1990; p. 184. [Google Scholar]
- Le Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Choo, W.S.; Yong, W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011, 2, 418–425. [Google Scholar]
- Arévalo-Galarza, M.; Ortíz-Hernández, Y. Post-harvest behavior of pitahaya fruit (Hylocereus undatus). Cactáceas Y Succulentas Mex. 2004, 49, 85–90. [Google Scholar]
- Charoensiri, R.; Kongkachuichai, R.; Suknicom, S.; Sungpuag, P. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem. 2009, 113, 202–207. [Google Scholar] [CrossRef]
- Nurul, S.; Asmah, R. Variability in nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia. Int. Food Res. J. 2014, 21, 1689–1697. [Google Scholar]
- Obregón-La Rosa, A.J.; Contreras-López, E.; Elías-Peñafiel, C.; Muñoz-Jauregui, A.M.; Yuli-Posadas, R.Á.; Cóndor-Salvatierra, E.J. Nutritional and physicochemical profile of the pitahaya cultivated in the central coast of Peru. Rev. Fac. Agron. Univ. Zulia 2022, 39, 223911. [Google Scholar] [CrossRef]
- Quijano-Célis, C.; Echeverri-Gil, D.; Pino, J.A. Characterization of odor-active compounds in yellow pitaya (Hylocereus megalanthus (Haw.) Britton et Rose). Rev. CENIC Cienc. Químicas 2012, 43, 1–7. [Google Scholar]
- Zainoldin, K.H.; Baba, A.S. The effects of Hylocereus polyrhizus and Hylocereus undatus on physiocochemical, proteolysis, exopolysaccharides production, and therapeutic properties of yogurt. World Acad. Sci. Eng. Technol. 2009, 60, 361–366. [Google Scholar]
- Arivalagan, M.; Karunakaran, G.; Roy, T.; Dinsha, M.; Sindhu, B.; Shilpashree, V.; Satisha, G.; Shivashankara, K. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef] [PubMed]
- To, L.V.; Ngu, N.; Duc, N.D.; Trinh, D.T.; Thanh, N.C.; Mien, D.V.; Hai, C.N.; Long, T.N. Quality assurance system for dragon fruit. ACIAR Proc. 1999, 100, 101–114. [Google Scholar]
- Constantino, L.V.; Zeffa, D.M.; Ventorim, M.F.; Gonçalves, L.S.A.; Marcos, A.W.; dos Santos Sanzovo, A.W.; Rossetto, L.M.; Alves, S.M.; Resende, J.T.V.; Takahashi, L.S.A. Nutritional quality and technological potential of pitaya species. Semin. Ciênc. Agrárias 2021, 42, 2023–2030. [Google Scholar] [CrossRef]
- Al-Alwani, M.A.; Mohamad, A.B.; Kadhum, A.A.H.; Ludin, N.A. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 130–137. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Motafakkerazad, R.; Nakajima, Y.; Matsugo, S.; Rimbach, G. Free radical scavenging and antioxidant activity of betanin: Electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem. Toxicol. 2014, 73, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef]
- Lugo-Radillo, A.; Delgado-Enciso, I.; Peña-Beltrán, E. Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Nat. Prod. Bioprospect. 2012, 2, 154–155. [Google Scholar] [CrossRef]
- Sunnadeniya, R.; Bean, A.; Brown, M.; Akhavan, N.; Hatlestad, G.; Gonzalez, A.; Symonds, V.V.; Lloyd, A. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE 2016, 11, 0149417. [Google Scholar] [CrossRef]
- Harris, N.N.; Javellana, J.; Davies, K.M.; Lewis, D.H.; Jameson, P.E.; Deroles, S.C.; Calcott, K.E.; Gould, K.S.; Schwinn, K.E. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol. 2012, 12, 34. [Google Scholar] [CrossRef]
- Hatlestad, G.J.; Sunnadeniya, R.M.; Akhavan, N.A.; Gonzalez, A.; Goldman, I.L.; McGrath, J.M.; Lloyd, A.M. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat. Genet. 2012, 44, 816–820. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Paredes-Lopez, O. Natural Colorants for Food and Nutraceutical Uses; CRC Press: Boca Raton, FL, USA, 2002; p. 342. [Google Scholar]
- Abang Zaidel, D.N.; Md Rashid, J.; Hamidon, N.H.; Mohd Kassim, A.S. Extraction and characterisation of pectin from dragon fruit (Hylocereus polyrhizus) peels. Chem. Eng. Trans. 2017, 56, 805–810. [Google Scholar]
- Esquivel, P.; Stintzing, F.C.; Carle, R. Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Z. Naturforsch. C 2007, 62, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Normala, H.; Mardhiah, H. Determination and evaluation of antioxidative activity in red dragon fruit (Hylocereus undatus) and green kiwi fruit (Actinidia deliciosa). Am. J. Appl. Sci. 2010, 7, 1432–1438. [Google Scholar]
- Zhong, X.; Zhang, S.; Wang, H.; Yang, J.; Li, L.; Zhu, J.; Liu, Y. Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus’ Foo-Lon’) peel: Composition, antioxidant activities and enzyme inhibitory activity. Ultrason. Sonochem. 2022, 90, 106213. [Google Scholar] [CrossRef] [PubMed]
- VH, E.S.; Utomo, S.B.; Syukri, Y.; Redjeki, T. Phytochemical screening and analysis polyphenolic antioxidant activity of methanolic extract of white dragon fruit (Hylocereus undatus). Indones. J. Pharm. 2012, 23, 60–64. [Google Scholar]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Wu, L.; Hsu, H.; Chen, Y.; Chiu, C.; Lin, Y.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Lim, H.K.; Tan, C.P.; Karim, R.; Ariffin, A.A.; Bakar, J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010, 119, 1326–1331. [Google Scholar] [CrossRef]
- Taira, J.; Tsuchida, E.; Katoh, M.C.; Uehara, M.; Ogi, T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem. 2015, 166, 531–536. [Google Scholar] [CrossRef]
- Luo, H.; Cai, Y.; Peng, Z.; Liu, T.; Yang, S. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem. Cent. J. 2014, 8, 1. [Google Scholar] [CrossRef]
- Nurmahani, M.; Osman, A.; Hamid, A.A.; Ghazali, F.M.; Dek, M. Antibacterial property of Hylocereus polyrhizus and Hylocereus undatus peel extracts. Int. Food Res. J. 2012, 19, 77–84. [Google Scholar]
- Ismail, O.; Abdel-Aziz, M.; Ghareeb, M.; Hassan, R. Exploring the biological activities of the Hylocereus polyrhizus extract. J. Innov. Pharm. Biol. Sci. 2017, 4, 1–6. [Google Scholar]
- Rohin, M.A.K.; Ali, A.M.; Mat Hasan, S.A. Hypocholesterolemic effect of red pitaya (Hylocereus sp.) on hypercholesterolemia induced rats. Int. Food Res. J. 2009, 16, 431–440. [Google Scholar]
- Omidizadeh, A.; Yusof, R.M.; Roohinejad, S.; Ismail, A.; Bakar, M.Z.; Bekhit, A.E. Anti-diabetic activity of red pitaya (Hylocereus polyrhizus) fruit. RSC Adv. 2014, 4, 62978–62986. [Google Scholar] [CrossRef]
- Wichienchot, S.; Jatupornpipat, M.; Rastall, R. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem. 2010, 120, 850–857. [Google Scholar] [CrossRef]
- Sudha, K.; Baskaran, D.; Ramasamy, D.; Siddharth, M. Evaluation of functional properties of Hylocereus undatus (White dragon fruit). Int. J. Agric. Sci. Res. 2017, 7, 451–456. [Google Scholar]
- Perez, G.R.; Vargas, S.R.; Ortiz, H.Y. Wound healing properties of Hylocereus undatus on diabetic rats. Phytother. Res. 2005, 19, 665–668. [Google Scholar] [CrossRef]
- Temak, Y.; Cholke, P.; Mule, A.; Shingade, A.; Narote, S.; Kagde, A.; Lagad, R.; Sake, V. In vivo and in-vitro evaluation of antimicrobial activity of peel extracts of red dragon fruit (Hylocereus polyrhizus). Res. J. Pharmacogn. Phytochem. 2019, 11, 23–26. [Google Scholar] [CrossRef]
- Tsai, Y.; Lin, C.; Chen, W.; Huang, Y.; Chen, C.; Huang, K.; Yang, C. Evaluation of the antioxidant and wound-healing properties of extracts from different parts of Hylocereus polyrhizus. Agronomy 2019, 9, 27. [Google Scholar] [CrossRef]
- Widyaningsih, A.; Setiyani, O.; Umaroh, U.; Sofro, M.A.U.; Amri, F. Effect of consuming red dragon fruit (Hylocereus costaricensis) juice on the levels of hemoglobin and erythrocyte among pregnant women. Belitung Nurs. J. 2017, 3, 255–264. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Solís, R.V.; Baez, E.G.; Flores, J.M.M. Microvascular protective activity in rabbits of triterpenes from Hylocereus undatus. J. Nat. Med. 2007, 61, 296–301. [Google Scholar] [CrossRef]
- Islam, A.M.T.; Chowdhury, M.A.U.; Uddin, M.E.; Rahman, M.M.; Habib, M.R.; Uddin, M.G.M.; Rahman, M.A. Protective effect of methanolic extract of Hylocereus polyrhizus fruits on carbon tetra chloride-induced hepatotoxicity in rat. Eur. J. Med. Plants 2013, 3, 500. [Google Scholar] [CrossRef]
- Ramli, N.S.; Brown, L.; Ismail, P.; Rahmat, A. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complement. Altern. Med. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Rohin, M.A.K.; Abu Bakar, C.A.; Ali, A.M. Isolation and characterization of oligosaccharides composition in organically grown red pitaya, white pitaya and papaya. Int. J. Pharm. Pharm. Sci. 2014, 6, 131–136. [Google Scholar]
- Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2005, 70, 11–19. [Google Scholar] [CrossRef]
- Nagai, T.; Inoue, R.; Inoue, H.; Suzuki, N. Preparation and antioxidant properties of water extract of propolis. Food Chem. 2003, 80, 29–33. [Google Scholar] [CrossRef]
- Booker, F.L.; Miller, J.E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L.) Merr.] leaves following exposure to ozone. J. Exp. Bot. 1998, 49, 1191–1202. [Google Scholar] [CrossRef]
- Wybraniec, S.; Platzner, I.; Geresh, S.; Gottlieb, H.E.; Haimberg, M.; Mogilnitzki, M.; Mizrahi, Y. Betacyanins from vine cactus Hylocereus polyrhizus. Phytochemistry 2001, 58, 1209–1212. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem. 2002, 77, 101–106. [Google Scholar]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in inflammation: Mechanistic aspects and applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.; Cho, E.; Lee, J.E. Association of choline and betaine levels with cancer incidence and survival: A meta-analysis. Clin. Nutr. 2019, 38, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Swarup, K.R.A.; Sattar, M.A.; Abdullah, N.A.; Abdulla, M.H.; Salman, I.M.; Rathore, H.A.; Johns, E.J. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacogn. Res. 2010, 2, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Tze, N.L.; Han, C.P.; Yusof, Y.A.; Ling, C.N.; Talib, R.A.; Taip, F.S.; Aziz, M.G. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol. 2012, 21, 675–682. [Google Scholar] [CrossRef]
- Montoya-Arroyo, A.; Schweiggert, R.M.; Pineda-Castro, M.; Sramek, M.; Kohlus, R.; Carle, R.; Esquivel, P. Characterization of cell wall polysaccharides of purple pitaya (Hylocereus sp.) pericarp. Food Hydrocoll. 2014, 35, 557–564. [Google Scholar] [CrossRef]
- Kamairudin, N.; Abd Gani, S.S.; Masoumi, H.R.F.; Basri, M.; Hashim, P.; Mokhtar, N.M.; Lane, M.E. Modeling of a natural lipstick formulation using an artificial neural network. RSC Adv. 2015, 5, 68632–68638. [Google Scholar] [CrossRef]
- Kamairudin, N.; Gani, S.S.A.; Masoumi, H.R.F.; Hashim, P. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design. Molecules 2014, 19, 16672–16683. [Google Scholar] [CrossRef]
- Ariffin, A.A.; Bakar, J.; Tan, C.P.; Rahman, R.A.; Karim, R.; Loi, C.C. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009, 114, 561–564. [Google Scholar] [CrossRef]
- Chemah, T.; Aminah, A.; Noriham, A.; Wan Aida, W. Determination of pitaya seeds as a natural antioxidant and source of essential fatty acids. Int. Food Res. J. 2010, 17, 1003–1010. [Google Scholar]
- Gong, X.; Ma, L.; Li, L.; Yuan, Y.; Peng, S.; Lin, M. Analysis of aroma compounds of pitaya fruit wine. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012125. [Google Scholar] [CrossRef]
- Ho, L.; Abdul Latif, N.W.B. Nutritional composition, physical properties, and sensory evaluation of cookies prepared from wheat flour and pitaya (Hylocereus undatus) peel flour blends. Cogent Food Agric. 2016, 2, 1136369. [Google Scholar] [CrossRef]
- Attar, Ş.H.; Gündeşli, M.A.; Urün, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules 2022, 27, 808. [Google Scholar] [CrossRef] [PubMed]
- Bárcenas, R.T.; Yesson, C.; Hawkins, J.A. Molecular systematics of the Cactaceae. Cladistics 2011, 27, 470–489. [Google Scholar] [CrossRef]
- Korotkova, N.; Borsch, T.; Arias, S. A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 2017, 327, 1–46. [Google Scholar] [CrossRef]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Available online: https://powo.science.kew.org (accessed on 4 July 2023).
- Innes, C.; Garnaud, V.; Kroenlein, M.; Glass, C. L’encyclopédie Illustrée des Cactus; Bordas: Paris, France, 1992; pp. 139–140. [Google Scholar]
- Hunt, D.R.; Taylor, N.P.; Charles, G. The New Cactus Lexicon: Descriptions and Illustrations of the Cactus Family. In David Hunt Books; 2006. [Google Scholar]
- Tel-Zur, N.; Mizrahi, Y.; Cisneros, A.; Mouyal, J.; Schneider, B.; Doyle, J. Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genet. Resour. Crop Evol. 2011, 58, 1075–1085. [Google Scholar] [CrossRef]
- Cisneros, A.; Tel-Zur, N. Genomic analysis in three Hylocereus species and their progeny: Evidence for introgressive hybridization and gene flow. Euphytica 2013, 194, 109–124. [Google Scholar] [CrossRef]
- Lichtenzveig, J.; Abbo, S.; Nerd, A.; TelZur, N.; Mizrahi, Y. Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am. J. Bot. 2000, 87, 1058–1065. [Google Scholar] [CrossRef]
- Infante, R. In vitro axillary shoot proliferation and somatic embryogenesis of yellow pitaya Mediocactus coccineus (Salm-Dyck). Plant Cell Tissue Organ Cult. 1992, 31, 155–159. [Google Scholar] [CrossRef]
- Tel-Zur, N.; Abbo, S.; Bar-Zvi, D.; Mizrahi, Y. Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): Evidence from hybridization and cytological studies. Ann. Bot. 2004, 94, 527–534. [Google Scholar] [CrossRef]
- Plume, O.; Straub, S.C.; Tel-Zur, N.; Cisneros, A.; Schneider, B.; Doyle, J.J. Testing a hypothesis of intergeneric allopolyploidy in vine cacti (Cactaceae: Hylocereeae). Syst. Bot. 2013, 38, 737–751. [Google Scholar] [CrossRef]
- Sánchez, C.; Fischer, G.; Sanjuanelo, D.W. Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer]. Agron. Colomb. 2013, 31, 38–47. [Google Scholar]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an attractive alternative crop for Mediterranean region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Pushpakumara, D.; Gunasena, H.; Karyawasam, M. Flowering and fruiting phenology, pollination vectors and breeding system of dragon fruit (Hylocereus spp.). Sri Lankan J. Agric. Sci. 2005, 42, 81–91. [Google Scholar]
- Muniz, J.P.O.; Bomfim, I.G.A.; Corrêa, M.C.M.; Freitas, B.M. Floral biology, pollination requirements and behavior of floral visitors in two species of pitaya. Rev. Ciênc. Agron. 2019, 50, 640–649. [Google Scholar] [CrossRef]
- Boning, C.R. Florida’s Best Fruiting Plants: Native and Exotic Trees, Shrubs, and Vines; Pineapple Press Inc.: Sarasota, FL, USA, 2021; p. 232. [Google Scholar]
- Rojas-Sandoval, J.; Praciak, A. Hylocereus undatus (Dragon Fruit). Available online: https://www.cabi.org/isc/datasheet/27317 (accessed on 4 July 2023).
- Chang, F.; Yen, C.; Chen, Y.; Chang, L. Flowering and fruit growth of pitaya (Hylocereus undatus Britt. & Rose). J. Chin. Hortic. Sci. 1997, 43, 314–321. [Google Scholar]
- Nerd, A.; Gutman, F.; Mizrahi, Y. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 1999, 17, 39–45. [Google Scholar] [CrossRef]
- Nerd, A.; Mizrahi, Y. The effect of ripening stage on fruit quality after storage of yellow pitaya. Postharvest Biol. Technol. 1999, 15, 99–105. [Google Scholar] [CrossRef]
- Zahid, N.; Ali, A.; Siddiqui, Y.; Maqbool, M. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biol. Technol. 2013, 79, 69–72. [Google Scholar] [CrossRef]
- Weiss, J.; Nerd, A.; Mizrahi, Y. Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 1994, 29, 1487–1492. [Google Scholar] [CrossRef]
- Castillo, R.; Livera, M.; Brechú, A.E.; Márquez-Guzmán, J. Compatibilidad sexual entre dos tipos de Hylocereus (Cactaceae). Rev. Biol. Trop. 2003, 51, 699–705. [Google Scholar] [PubMed]
- Le Bellec, F. Pollination and fecundation of Hylocereus undatus and H. costaricensis in Reunion Island. Fruits 2004, 59, 411–422. [Google Scholar] [CrossRef]
- Metz, C.; Nerd, A.; Mizrahi, Y. Viability of pollen of two fruit crop cacti of the genus Hylocereus is affected by temperature and duration of storage. HortScience 2000, 35, 199–201. [Google Scholar] [CrossRef]
- Tran, D.; Yen, C. Morphological characteristics and pollination requirement in red pitaya (Hylocereus spp.). Int. J. Agric. Biosyst. Eng. 2014, 8, 268–272. [Google Scholar]
- Zee, F.; Yen, C.; Nishina, M. Pitaya (dragon fruit, strawberry pear). Fruits Nuts 2004, 9, 1–13. [Google Scholar]
- Orozco, A.; Gardea, A.A.; Rascón-Chu, A.; Sánchez, A. Effect of salinity on seed germination, growth and metabolic activity of pitaya seedlings [Stenocereus thurberi (Engelm.) Buxb.]. J. Prof. Assoc. Cactus Dev. 2017, 19, 67–78. [Google Scholar] [CrossRef]
- Cavalcante, Ĩ.H.L.; Beckmann, M.Z.; Martins, A.B.G.; Galbiatti, J.A.; Cavalcante, L.F. Water salinity and initial development of pitaya (Hylocereus undatus). Int. J. Fruit Sci. 2008, 7, 81–92. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Gomes Vieira, I.; Natale, W.; de Medeiros Corrêa, M.C.; Lopes Evangelista, F.; Leal Diniz, J.G.; Kenji Taniguchi, C.A.; Lima Neto, A.J.; Santos Dias, C.T. Soil fertility, growth, nutrition and production of red pitaya subjected to liming. J. Plant Nutr. 2022, 45, 2277–2291. [Google Scholar] [CrossRef]
- Luo, J.; Xu, M.; Liu, C.; Wei, S.; Tang, H. Effects comparation of different mulching methods on soil in pitaya orchards. Int. Agrophys. 2021, 35, 269–278. [Google Scholar] [CrossRef]
- Luo, J.; Xu, M.; Qi, Z.; Xiong, R.; Cheng, Y.; Liu, C.; Wei, S.; Tang, H. Differential responses of the soil microbial community in two pitaya orchards with different mulch types. Sci. Rep. 2019, 9, 10413. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Tel-Zur, N. Cactus pear and pitaya: Fruit production and orchard management. Acta Hortic. 2022, 1342, 343–354. [Google Scholar] [CrossRef]
- Merten, S. A review of Hylocereus production in the United States. J. Prof. Assoc. Cactus Dev. 2003, 5, 98–105. [Google Scholar]
- Mizrahi, Y. Thirty-one years of research and development in the vine cacti pitaya in Israel. In Improving Pitaya Production and Marketing, Proceedings of the Workshop on Improving Pitaya Production and Marketing, Kaohsiung, Taiwan, 7–9 September 2015; Jiang, Y.L., Liu, P.C., Huang, P.H., Eds.; Fengshan Tropical Horticultural Experiment Branch: Kaohsiung, Taiwan, 2015; pp. 1–18. [Google Scholar]
- Then, K. The effect of compost application to improve the red pitaya yield under various mixture fertilizer rates. Acta Hortic. 2011, 1024, 189–192. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Peng, Y.; Xiang, P.; Zhou, Y.; Yao, B.; Zhou, Y.; Sun, C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. Chemosphere 2022, 294, 133619. [Google Scholar] [CrossRef]
- Moreira, R.A.; Cruz, M.C.M.; Fernandes, D.R.; Silva, E.B.; Oliveira, J. Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization. Pesqui. Agropecuária Trop. 2016, 46, 230–237. [Google Scholar] [CrossRef]
- Alves, D.d.A.; Cruz, M.d.C.M.; Lima, J.E.; Santos, N.C.; Rabelo, J.M.; Barroso, F.L. Productive potential and quality of pitaya with nitrogen fertilization. Pesqui. Agropecuária Bras. 2021, 56, 01882. [Google Scholar] [CrossRef]
- Muchjajib, S.; Muchjajib, U. Application of fertilizer for pitaya (Hylocereus undatus) under clay soil condition. Acta Hortic. 2010, 928, 151–154. [Google Scholar] [CrossRef]
- Chang, P.; Hsieh, C.; Jiang, Y. Responses of ‘Shih Huo Chuan’pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 2016, 198, 154–162. [Google Scholar]
- Jiang, Y.; Liao, Y.; Lin, T.; Lee, C.; Yen, C.; Yang, W. The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience 2012, 47, 1063–1067. [Google Scholar] [CrossRef]
- Chu, Y.; Chang, J. Regulation of floral bud development and emergence by ambient temperature under a long-day photoperiod in white-fleshed pitaya (Hylocereus undatus). Sci. Hortic. 2020, 271, 109479. [Google Scholar] [CrossRef]
- Gong, Y.; Bi, X.; Deng, L.; Hu, J.; Jiang, S.; Tan, L.; Wang, T.; Luo, X. Comparative study on cold resistance physiology of red pulp pitaya and white pulp pitaya. Proc. E3S Web Conf. 2019, 131, 01113. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; Mao, Y.; Wang, L.; Xiao, T.; Hu, Y.; Zhang, Y.; Ma, Y. Proteogenomic analysis of pitaya reveals cold stress-related molecular signature. PeerJ 2020, 2, 1–20. [Google Scholar] [CrossRef]
- Khoo, Y.W.; Khaw, Y.S.; Tan, H.T.; Li, S.F.; Chong, K.P. First report of Stem brown spot on ‘Thai Gold’ Selenicereus megalanthus in Malaysia caused by Nigrospora sphaerica. Plant Dis. 2022, 107, 223. [Google Scholar] [CrossRef] [PubMed]
- Zainudin, M.; Hafiz, B.A. Status of dragon fruit production in Malaysia. Turk. J. Agric. Food Sci. Technol. 2023, 11, 682–693. [Google Scholar]
- Li, X.; Li, M.; Han, C.; Jin, P.; Zheng, Y. Increased temperature elicits higher phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biol. Technol. 2017, 129, 90–96. [Google Scholar] [CrossRef]
- Freitas, S.T.; Mitcham, E.J. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci. Agric. 2013, 70, 257–262. [Google Scholar] [CrossRef]
- Fernandes Lisboa, C.; Bicioni Pacheco, A.; Jesus, F.L.F.d.; Silva, M.A.P.d.; Teixeira, I.R.; Sanches, A.C.; Santana Miyagawa, E.M.; Sousa, L.L.F.; Freitas, J.M. Effect of pruning on apical dominance, agronomic traits, and post-harvest quality of pitaya in the Amazon forest biome. Dyna 2022, 89, 75–78. [Google Scholar] [CrossRef]
- Arredondo, E.; Chiamolera, F.M.; Casas, M.; Cuevas, J. Comparing different methods for pruning pitaya (Hylocereus undatus). Horticulturae 2022, 8, 661. [Google Scholar] [CrossRef]
- Chiamolera, F.M.; Parra, L.; Sánchez, E.; Casas, M.; Hueso, J.J.; Cuevas, J. Determining Optimal Levels of Pruning in Hylocereus undatus [(Haw.) Britton and Rose] in Trellis Systems. Agronomy 2023, 13, 238. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, L.; Huang, F.; Lu, G.; Wei, S.; Liu, C.; Deng, H.; Liang, G. Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. Electron. J. Biotechnol. 2022, 58, 55–69. [Google Scholar] [CrossRef]
- Khaimov, A.; Mizrahi, Y. Effects of day-length, radiation, flower thinning and growth regulators on flowering of the vine cacti Hylocereus undatus and Selenicereus megalanthus. J. Hortic. Sci. Biotechnol. 2006, 81, 465–470. [Google Scholar] [CrossRef]
- Nerd, A.; Sitrit, Y.; Kaushik, R.A.; Mizrahi, Y. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Sci. Hortic. 2002, 96, 343–350. [Google Scholar] [CrossRef]
- Then, K. Flower induction of red pitaya by foliar fertilizer spraying under Malaysian weather conditions. Acta Hortic. 2011, 1024, 193–195. [Google Scholar] [CrossRef]
- Then, T. The effects of foliar fertilizers on the red pitaya (Hylocerus polyrhizus) fruit weight. Acta Hortic. 2012, 984, 227–230. [Google Scholar] [CrossRef]
- Ye, X.; Gao, Y.; Chen, C.; Xie, F.; Hua, Q.; Zhang, Z.; Zhang, R.; Zhao, J.; Hu, G.; Qin, Y. Genome-wide identification of aquaporin gene family in pitaya reveals an HuNIP6; 1 involved in flowering process. Int. J. Mol. Sci. 2021, 22, 7689. [Google Scholar] [CrossRef]
- Castro, J.C.; Endo, E.H.; de Souza, M.R.; Zanqueta, E.B.; Polonio, J.C.; Pamphile, J.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P.; Abreu Filho, B.A. Bioactivity of essential oils in the control of Alternaria alternata in dragon fruit (Hylocereus undatus Haw.). Ind. Crops Prod. 2017, 97, 101–109. [Google Scholar] [CrossRef]
- Wu, J.; Zhan, R.; Liu, F.; Cang, J. First report of a stem and fruit spot of pitaya caused by Aureobasidium pullulans in China. Plant Dis. 2017, 101, 249. [Google Scholar] [CrossRef]
- Chuang, M.; Ni, H.; Yang, H.; Shu, S.; Lai, S.; Jiang, Y. First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis. 2012, 96, 906. [Google Scholar] [CrossRef]
- Ezra, D.; Liarzi, O.; Gat, T.; Hershcovich, M.; Dudai, M. First report of internal black rot caused by Neoscytalidium dimidiatum on Hylocereus undatus (Pitahaya) fruit in Israel. Plant Dis. 2013, 97, 1513. [Google Scholar] [CrossRef]
- Ma, W.; Yang, X.; Wang, X.; Zeng, Y.; Liao, M.; Chen, C.; Sun, S.; Jia, D. First report of anthracnose disease on young stems of Bawanghua (Hylocereus undatus) caused by Colletotrichum gloeosporioides in China. Plant Dis. 2014, 98, 991. [Google Scholar] [CrossRef] [PubMed]
- Vijaya, S.I.; Anuar, I.S.M.; Zakaria, L. Characterization and pathogenicity of Colletotrichum truncatum causing stem anthracnose of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. J. Phytopathol. 2015, 163, 67–71. [Google Scholar] [CrossRef]
- Palmateer, A.; Ploetz, R.; Van Santen, E.; Correll, J. First occurrence of anthracnose caused by Colletotrichum gloeosporioides on pitahaya. Plant Dis. 2007, 91, 631. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, T.; Palmateer, A.; Crane, J. First report of fruit rot on Hylocereus undatus caused by Bipolaris cactivora in South Florida. Plant Dis. 2010, 94, 1506. [Google Scholar] [CrossRef]
- Ben-Ze’ev, I.S.; Assouline, I.; Levy, E.; Elkind, G. First report of Bipolaris cactivora causing fruit blotch and stem rot of dragon fruit (pitaya) in Israel. Phytoparasitica 2011, 39, 195–197. [Google Scholar] [CrossRef]
- Qiu, F.; Yang, J.; Li, X.; Xie, C.; Li, J.; Zheng, F.Q. First report of Bipolaris cactivora causing flower rot of pitaya (Hylocereus costaricensis) in China. Plant Dis. 2021, 105, 1205. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J.; Zhan, R.; Ou, X. First report of reddish-brown spot disease on pitaya caused by Nigrospora sphaerica in China. Plant Dis. 2016, 100, 1792. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Mao, Z.; Ho, H.; He, Y. Storage rot of dragon fruit caused by Gilbertella persicaria. Plant Dis. 2012, 96, 1826. [Google Scholar] [CrossRef]
- Lin, J.; Ann, P.; Tsai, J.; Hsu, Z.; Chang, J. Flower and fruit wet rot of pitaya (Hylocereus spp.) caused by Gilbertella persicaria, a new disease record in Taiwan. Plant Pathol. Bull. 2014, 23, 109–124. [Google Scholar]
- Valencia-Botín, A.; Sandoval-Islas, J.; Cárdenas-Soriano, E.; Michailides, T.; Rendón-Sánchez, G. Botryosphaeria dothidea causing stem spots on Hylocereus undatus in Mexico. Plant Pathol. 2003, 52, 803. [Google Scholar] [CrossRef]
- Valencia-Botín, A.J.; Sandoval-Islas, J.S.; Cárdenas-Soriano, E.; Michailides, T.; Rendón-Sánchez, G. A new stem spot disease of pitahaya [Hylocereus undatus (Haw.) Britton and Rose] caused by Fusicoccum-like anamorph of Botryosphaeria dothidea (Moug.: Fr.) Ces. and De Not. Rev. Mex. Fitopatol. 2004, 22, 140–142. [Google Scholar]
- Hawa, M.M.; Salleh, B.; Latiffah, Z. First report of Curvularia lunata on red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Plant Dis. 2009, 93, 971. [Google Scholar] [CrossRef] [PubMed]
- Rita, W.S.; Suprapta, D.N.; Sudana, I.M.; Swantara, I.M.D. First report on Fusarium solani, a pathogenic fungus causing stem rot disease on dragon fruits (Hylocereus sp.) in Bali. J. Biol. Agric. Healthc. 2013, 3, 93–99. [Google Scholar]
- Masratul Hawa, M.; Salleh, B.; Latiffah, Z. Characterization and pathogenicity of Fusarium proliferatum causing stem rot of Hylocereus polyrhizus in Malaysia. Ann. Appl. Biol. 2013, 163, 269–280. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, T.; Peng, S.; Xu, D.; Liu, Z.; Li, H.; Hu, L.; Mo, H. Fe2+ protects postharvest pitaya (Hylocereus undulatus britt) from Aspergillus. flavus infection by directly binding its genomic DNA. Food Chem. Mol. Sci. 2022, 5, 100135. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, N.; Manickam, S.; Siddiqui, Y.; Alderson, P.G.; Maqbool, M. Effectiveness of submicron chitosan dispersions in controlling anthracnose and maintaining quality of dragon fruit. Postharvest Biol. Technol. 2013, 86, 147–153. [Google Scholar] [CrossRef]
- Zahid, N.; Alderson, P.; Ali, A.; Maqbool, M.; Manickam, S. In vitro control of Colletotrichum gloeosporioides by using chitosan loaded nanoemulsions. Acta Hortic. 2012, 1012, 769–774. [Google Scholar] [CrossRef]
- Liou, M.; Hung, C.; Liou, R. First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Dis. 2001, 85, 229. [Google Scholar] [CrossRef]
- Liao, J.; Chang, C.; Yan, C.; Chen, Y.; Deng, T. Detection and incidence of Cactus virus X in pitaya in Taiwan. Plant Pathol. Bull. 2003, 12, 225–234. [Google Scholar]
- Kim, J.; Park, C.; Nam, M.; Lee, J.; Kim, H.; Lee, S. First report of Cactus virus X infecting Hylocereus undatus in Korea. Plant Dis. 2016, 100, 2544. [Google Scholar] [CrossRef]
- Peng, C.; Yu, N.; Luo, Z.; Fan, H.; He, F.; Li, X.; Zhang, Z.; Liu, Z. Molecular identification of Cactus virus X infecting Hylocereus polyrhizus (Cactaceae) in Hainan island, China. Plant Dis. 2016, 100, 1956. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Z.; Peng, Z.; Ma, Y.; Cai, Y. High-throughput sequencing analysis of viruses in pitaya from Guizhou Province, China. Acta Phytopathol. Sin. 2017, 47, 364–369. [Google Scholar]
- Duarte, L.; Alexandre, M.; Rivas, E.; Harakava, R.; Galleti, S.; Barradas, M. Potexvirus diversity in Cactaceae from Sao Paulo state in Brazil. J. Plant Pathol. 2008, 90, 545–551. [Google Scholar]
- Mao, C.; Lu, Y.; Li, Y.; Kuo, Y.C.T. Pitaya viral diseases and their detection methods in Taiwan. Management 2018, 2, 1–9. [Google Scholar]
- Li, Y.; Mao, C.; Yu Chi, L.; Kuo, Y. Viral diseases of pitaya and other Cactaceae plants. Management 2015, 1, 1–7. [Google Scholar]
- Masyahit, M.; Sijam, K.; Awang, Y.; Ghazali, M. First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in peninsular Malaysia. Int. J. Agric. Biol. 2009, 11, 659–666. [Google Scholar]
- Van Hoa, N.; Hieu, N.T.; Hanh, T.T.M.; Uyen, D.T.K.; Dien, L.Q. Emerging infectious diseases and insect pests of dragon fruit, passionfruit, citrus, longan. Management 2016, 3, 630. [Google Scholar]
- Uyen, D.T.K.; Campbell, J.; Hieu, N.T.; Van Hoa, N.; Fullerton, R. The Introduction of Gap and Quality System for Pitaya in Vietnam. Available online: https://ap.fftc.org.tw/article/1293 (accessed on 4 July 2023).
- Bravo Avilez, D.; Rendón Aguilar, B.; Zavala Hurtado, J.A.; Fornoni, J. First report of Cactophagus spinolae (Coleoptera: Curculionidae) on two species of Stenocereus (Cactaceae) in Central Mexico. Rev. Mex. Biodivers. 2014, 85, 972–974. [Google Scholar] [CrossRef]
- Ruiz-Moreno, J.J. First record of Cactophagus spinolae (Gyllenhal) (Coleoptera: Curculionidae) on two Cactaceae species in Jalisco, Mexico. Acta Zool. Mex. 2018, 34, 1–4. [Google Scholar] [CrossRef]
- Choi, K.S.; Yang, J.Y.; Park, Y.M.; Kim, S.; Choi, H.; Lyu, D.; Kim, D.-S. Pest lists and their damages on mango, dragon fruit and atemoya in Jeju, Korea. Korean J. Appl. Entomol. 2013, 52, 45–51. [Google Scholar] [CrossRef]
- Hoa, T.; Clark, C.; Waddell, B.; Woolf, A. Postharvest quality of dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol. Technol. 2006, 41, 62–69. [Google Scholar] [CrossRef]
- ElObeidy, A.A. Mass propagation of pitaya (dragon fruit). Fruits 2006, 61, 313–319. [Google Scholar] [CrossRef]
- Andrade, R.A.d.; Martins, A.B.G.; Silva, M.T.H. Development of seedlings of red pitaya (Hylocereus undatus Haw) in different substrate volumes. Acta Scientiarum. Agron. 2008, 30, 697–700. [Google Scholar] [CrossRef]
- Kari, R.; Lukman, A.L.; Zainuddin, R. Basal media for in vitro germination of red-purple dragon fruit Hylocereus polyrhizus. J. Agrobiotechnol. 2010, 1, 87–93. [Google Scholar]
- Cavalcante, Í.H.L.; Martins, A.B.G. Effect of juvenility on cutting propagation of red pitaya. Fruits 2008, 63, 277–283. [Google Scholar] [CrossRef]
- Bozkurt, T.; İnan, S.; Dundar, I.; Kozak, S. Effect of different plant growth regulators on micropropagation of some pitaya varieties: Micropropagation of some pitaya varietie. J. Trop. Life Sci. 2022, 12, 183–190. [Google Scholar] [CrossRef]
- Mohamed-Yasseen, Y. Micropropagation of pitaya (Hylocereus undatus Britton et Rose). Vitr. Cell. Dev. Biol.-Plant 2002, 38, 427–429. [Google Scholar] [CrossRef]
- Drew, R.; Azimi, M. Micropropagation of red pitaya (Hylocereous undatus). Acta Hortic. 2000, 575, 93–98. [Google Scholar] [CrossRef]
- Bozkurt, T.; İnan, S.; Dündar, İ. Micropropagation of different pitaya varieties. Int. J. Agric. Nat. Sci. 2020, 13, 39–46. [Google Scholar]
- Qin, J.; Wang, Y.; He, G.; Chen, L.; He, H.; Cheng, X.; Xu, K.; Zhang, D. High-efficiency micropropagation of dormant buds in spine base of red pitaya (Hylocereus polyrhizus) for industrial breeding. Int. J. Agric. Biol. 2017, 19, 193–198. [Google Scholar] [CrossRef]
- Lee, Y.; Chang, J. Development of an improved micropropagation protocol for red-fleshed pitaya ‘Da Hong’ with and without activated charcoal and plant growth regulator combinations. Horticulturae 2022, 8, 104. [Google Scholar] [CrossRef]
- Hua, Q.; Chen, P.; Liu, W.; Ma, Y.; Liang, R.; Wang, L.; Wang, Z.; Hu, G.; Qin, Y. A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell Tissue Organ Cult. 2015, 120, 741–745. [Google Scholar] [CrossRef]
- Fan, Q.; Zheng, S.; Yan, F.; Zhang, B.; Qiao, G.; Wen, X. Efficient regeneration of dragon fruit (Hylocereus undatus) and an assessment of the genetic fidelity of in vitro-derived plants using ISSR markers. J. Hortic. Sci. Biotechnol. 2013, 88, 631–637. [Google Scholar] [CrossRef]
- Orea, D.; Medrano, A. Pitahaya (Hylocereus undatus) acclimatization: A pedagogical model. Acta Hortic. 2004, 748, 195–198. [Google Scholar] [CrossRef]
- Karimi, N.; Mofid, M.; Ebrahimi, M.; Naderi, R. Effect of areole and culture medium on callus induction and regeneration Cereus peruvianus Mill.(Cactaceae). Trakia J. Sci. 2010, 8, 31–35. [Google Scholar]
- Lopes, C.A.; Dias, G.d.M.G.; Pio, L.A.S.; da Silveira, F.A.; Rodrigues, F.A.; Pasqual, M. Indução de calos, potencial embriogênico e estabilidade genética em pitaia vermelha. Rev. Bras. De Ciências Agrárias 2016, 11, 21–25. [Google Scholar] [CrossRef]
- Suárez Román, R.S.; Caetano, C.M.; Ramírez, H.; Morales Osorio, J.G. Multiplication of Selenicereus megalanthus (yellow pitahaya) and Hylocereus polyrhizus (red dragon fruit) by somatic organogenesis view. Acta Agronómica 2014, 63, 272–281. [Google Scholar]
- Dahanayake, N.; Ranawake, A. Regeneration of dragon fruit (Hylecereus undatus) plantlets from leaf and stem explants. Trop. Agric. Res. Ext. 2011, 14, 85–89. [Google Scholar] [CrossRef]
- Pelah, D.; Kaushik, R.; Mizrahi, Y.; Sitrit, Y. Organogenesis in the vine cactus Selenicereus megalanthus using thidiazuron. Plant Cell Tissue Organ Cult. 2002, 71, 81–84. [Google Scholar] [CrossRef]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Singh, M.; Jaiswal, U.; Jaiswal, V.S. In vitro regeneration and improvement in tropical fruit trees: An assessment. In Plant Biotechnology and Molecular Markers; Srivastava, P.S., Narula, A., Srivastava, S., Eds.; Anamanya Publishers: New Delhi, India, 2004; pp. 228–243. [Google Scholar]
- Rodrigues, M.A.; Silveira, F.A.; Moreira, R.A.; Pádua, M.S.; Pinto, J.E.B.P.; Pio, L.A.S.; Santos, D.N.d.; Bueno Filho, J.S.S.; Reis, L.A.C. Regeneration of pitaya by indirect organogenesis evaluated by scanning electron microscopy and flow cytometry. Pesqui. Agropecuária Bras. 2022, 57, 02312. [Google Scholar] [CrossRef]
- Deng, R.; Fan, J.; Wang, Y.; Liu, T.; Jin, J. Mutation induction of EMS and 60Co γ irradiation in vitro cultured seedlings of red pulp pitaya (Stenocereus) and ISSR analyzing of mutant. BMC Plant Biol. 2020, 1–20. [Google Scholar] [CrossRef]
- Benega Garcia, R.; Schneider, B.; Tel-Zur, N. Androgenesis in the vine cacti Selenicereus and Hylocereus (Cactaceae). Plant Cell Tissue Organ Cult. 2009, 96, 191–199. [Google Scholar] [CrossRef]
- Benega Garcia, R.; Cisneros, A.; Schneider, B.; Tel-Zur, N. Gynogenesis in the vine cacti Hylocereus and Selenicereus (Cactaceae). Plant Cell Rep. 2009, 28, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Arroyave Martinez, M.F.; Shaked, R.; Tel-Zur, N. Homozygote depression in gamete-derived dragon-fruit (Hylocereus) lines. Front. Plant Sci. 2018, 8, 2142. [Google Scholar] [CrossRef]
- Fagundes, M.C.P.; Ramos, J.D.; Tostes, N.V.; Pasqual, M.; Rodrigues, F.A. In vitro germination of pollen grains in pitahaya species. Int. J. Fruit Sci. 2021, 21, 556–564. [Google Scholar] [CrossRef]
- Cohen, H.; Tel-Zur, N. Morphological changes and self-incompatibility breakdown associated with autopolyploidization in Hylocereus species (Cactaceae). Euphytica 2012, 184, 345–354. [Google Scholar] [CrossRef]
- Cohen, H.; Fait, A.; Tel-Zur, N. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol. 2013, 13, 173. [Google Scholar] [CrossRef]
- Abirami, K.; Swain, S.; Baskaran, V.; Venkatesan, K.; Sakthivel, K.; Bommayasamy, N. Distinguishing three Dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci. Rep. 2021, 11, 2894. [Google Scholar] [CrossRef]
- Silva, A.D.C.C.D.; Sabiao, R.R.; Chiamolera, F.; Segantini, D.M.; Martins, A.B.G. Morphological traits as tool to verify genetic variability of interspecific dragon fruit hybrids. Rev. Bras. De Frutic. 2017, 39, 168. [Google Scholar] [CrossRef]
- Tao, J.; Qiao, G.; Wen, X.; Gao, G.; Liu, T.; Peng, Z.; Cai, Y.; Chen, N.; Yan, F.; Zhang, B. Characterization of genetic relationship of dragon fruit accessions (Hylocereus spp.) by morphological traits and ISSR markers. Sci. Hortic. 2014, 170, 82–88. [Google Scholar] [CrossRef]
- Tel-Zur, N.; Abbo, S.; Bar-Zvi, D.; Mizrahi, Y. Clone identification and genetic relationship among vine cacti from the genera Hylocereus and Selenicereus based on RAPD analysis. Sci. Hortic. 2004, 100, 279–289. [Google Scholar] [CrossRef]
- Junqueira, K.P.; Faleiro, F.G.; Bellon, G.; Junqueira, N.T.V.; Fonseca, K.G.d.; Lima, C.A.d.; Santos, E.C.d. Pitaya accesses genetic variability with different pruduction levels through RAPD markers. Rev. Bras. Frutic. 2010, 32, 840–846. [Google Scholar] [CrossRef]
- Junqueira, K.P.; Faleiro, F.G.; Junqueira, N.T.V.; Bellon, G.; Lima, C.A.d.; Souza, L.S.d. Genetic diversity of native pitaya native from brazilian savannas with basis on RAPD markers. Rev. Bras. Frutic. 2010, 32, 819–824. [Google Scholar] [CrossRef]
- Rifat, T.; Khan, K.; Islam, M.S. Genetic diversity in dragon fruit (Hylocereus sp) germplasms revealed by RAPD marker. J. Anim. Plant Sci. 2019, 29, 809–818. [Google Scholar]
- Legaria Solano, J.; Alvarado Cano, M.; Hernandez, R. Genetic diversity of Pitahaya (Hylocereus undatus Haworth, Britton and Rose). Rev. Fitotec. Mex. 2005, 28, 179–185. [Google Scholar]
- Morillo, A.; Mora, M.; Morillo, Y. Analysis of the genetic diversity of dragon fruit based on ISSR markers in Colombia. Braz. J. Biol. 2022, 82, 256451. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Andrade, A.; Parra-Gómez, L.; Ferrer, M.M.; Montañez-Escalante, P.I.; Jiménez-Osornio, J. Agrodiversity of Hylocereus undatus in maya homegardens: Management and genetic variability. J. Ethnobiol. 2019, 39, 530–548. [Google Scholar] [CrossRef]
- Nashima, K.; Hosaka, F.; Shimajiri, Y.; Matsumura, M.; Tarora, K.; Urasaki, N.; Shoda, M.; Nishitani, C.; Sawamura, Y.; Yamamoto, T. SSR marker development and genetic identification of pitaya (Hylocereus spp.) collected in Okinawa Prefecture, Japan. Hortic. J. 2021, 90, 23–30. [Google Scholar] [CrossRef]
- Pan, L.; Fu, J.; Zhang, R.; Qin, Y.; Lu, F.; Jia, L.; Hu, Q.; Liu, C.; Huang, L.; Liang, G. Genetic diversity among germplasms of Pitaya based on SSR markers. Sci. Hortic. 2017, 225, 171–176. [Google Scholar] [CrossRef]
- Pagliaccia, D.; Vidalakis, G.; Douhan, G.W.; Lobo, R.; Tanizaki, G. Genetic characterization of pitahaya accessions based on amplified fragment length polymorphism analysis. HortScience 2015, 50, 332–336. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, H.; Liang, G.; Ye, X.; Qin, Y.; Huang, L. Construction of a high-density genetic map for pitaya using the whole genome resequencing approach. Horticulturae 2021, 7, 534. [Google Scholar] [CrossRef]
- Chen, J.; Xie, F.; Cui, Y.; Chen, C.; Lu, W.; Hu, X.; Hua, Q.; Zhao, J.; Wu, Z.; Gao, D.; et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Hortic. Res. 2021, 8, 164. [Google Scholar] [CrossRef] [PubMed]
Nutritional Compositions | H. undatus | H. polyrhizus | H. megalanthus |
---|---|---|---|
Total phenolic content | 28.65 mg GAE | 24.22 mg GAE | 22.90 mg GAE |
Carbohydrates | 6.26 g | 5.97 g | 13.07 g |
Dietary fiber | 0.83 g | 1.01 g | 1.27 g |
Total sugar | 6.06 g | 5.60 g | 5.93 g |
Protein | 0.94 g | 0.89 g | 0.40 g |
Fat | 0.57 g | 0.57 g | 0.10 g |
Iron | 0.87 mg | 0.78 mg | 21.07 mg |
Zinc | 0.34 mg | 0.29 mg | 4.35 mg |
Sodium | 4.50 mg | 14.30 mg | 1.43 mg |
Niacin | 0.43 mg | 2.80 mg | 0.20 mg |
Potassium | 193.0 mg | 158.29 mg | 98.41 mg |
Phosphorus | 29.9 mg | 29.2 mg | 18.0 mg |
Calcium | 45.7 mg | 31.2 mg | 11.7 mg |
Magnesium | 45.9 mg | 33.2 mg | 16.1 mg |
Glucose | 1.58 g | 1.33 g | 0.99 g |
Fructose | 2.15 g | 2.0 g | 3.25 g |
Sucrose | 2.12 mg | 2.54 mg | 1.69 g |
Sorbitol | 2.61 mg | 4.52 mg | NA |
Vitamin C | 5.64 mg | 3.40 mg | 11.34 mg |
Vitamin D2 | 0.69 μg | 0.58 μg | NA |
Vitamin E | 100.0 μg | 140.0 μg | NA |
Vitamin K1 | 30.05 μg | 9.40 μg | NA |
Refs. | [24,25,26,30,31] | [24,31,32] | [28,33] |
Species | Sections | Biological Activity | Refs. |
---|---|---|---|
H. polyrhizus | Peel | Antioxidant | [42] |
H. undatus, H. polyrhizus | Peel, pulp | Antioxidant | [24] |
H. polyrhizus | Pulp | Antioxidant | [43] |
H. undatus | Pulp | Antioxidant | [44] |
H. undatus | Peel | Antioxidant | [45] |
H. undatus | Pulp | Antioxidant | [46] |
H. polyrhizus | Flesh, peel | Antimicrobial, antioxidant | [47] |
H. polyrhizus | Flesh, peel | Antioxidant, antiproliferative | [48] |
H. undatus, H. polyrhizus | Seed | Antioxidant | [49] |
H. polyrhizus | Pulp | Antioxidant | [50] |
H. undatus, H. polyrhizus | Peel | Anticancer | [51] |
H. undatus, H. polyrhizus | Peel | Antioxidant, antibacterial against Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Yersinia enterocolitica, and Campylobacter jejuni | [52] |
H. polyrhizus | Pulp | Antioxidant, antibacterial against S. aureus, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger, Fusarium oxysporum | [53] |
H. polyrhizus | Pulp | Antioxidant, hypocholesterolemic | [54] |
H. polyrhizus | Pulp | Antioxidant, hypertriglyceridemia, atherosclerosis, insulin resistance | [55] |
H. undatus, H. polyrhizus | Flesh | Antidiabetic, prebiotic | [56] |
H. undatus | Pulp | Antioxidant, antidiabetic, antilipase activities | [57] |
H. undatus | Flowers, stems, pulp, peel, | Wound-healing | [58] |
H. polyrhizus | Peel | Antioxidant, antimicrobial against E. coli, Bacillus subtilis, S. aureus, A. niger, C. albicans | [59] |
H. polyrhizus | Stem, flower, peel | Antioxidant, wound-healing | [60] |
H. Costaricensis | Juice | Antianemia, anti-inflammatory | [61] |
H. undatus | Cladodes | Micro-vascular protective | [62] |
H. polyrhizus | Pulp | Hepatoprotective | [63] |
H. polyrhizus | Pulp | Antihyperlipidemic, hepatoprotective, antidiabetic, cardiovascular | [64] |
H. undatus, H. polyrhizus | Flesh, peel | Prebiotic | [65] |
Characteristics | H. undatus | H. polyrhizus/ H. monacanthus | H. megalanthus |
---|---|---|---|
Flower shape | funnel-shape without thorns | funnel-shaped without thorns | goblet-shaped with thorns |
Thorns No. | 1–4 | 1–4 | ≥4 |
Stem rib No. | triangle | triangle | triangle |
Fruit shape | oblong with long scales | round with long scales | oblong without scales |
Peel color | red/yellow | red | yellow |
Pulp color | white | red/pink/double color | white |
Chromosome No. | 22 | 22 | 44 |
Refs. | [92,94] | [92,94] | [92,94] |
Species | Population Size | Type of Marker | No. of Markers | Refs. |
---|---|---|---|---|
H. undatus, H. ocamponis, H. costaricensis, H. purpusii, H. polyrhizus, S. megalanthus, S. grandifloras, S. coniflorus, S. atropilosus, S. rubineus, S. macdonaldiae, S. wercklei, S. innesii Kimnach, S. murrillii | 34 | RAPD | 173 | [211] |
H. undatus | 16 | RAPD | 111 | [212] |
H. undatus | 13 | RAPD | 162 | [213] |
Hylocereus | 15 | RAPD | 43 | [214] |
H. undatus | 50 | RAPD | 15 | [215] |
H. undatus, H. costariscensis, H. megalanthus | 4 | ISSR | 16 | [208] |
H. polyrhizus, H. undatus | 50 | ISSR | 111 | [210] |
S. megalanthus | 76 | ISSR | 8 | [216] |
H. undatus | 9 | ISSR | 13 | [217] |
H. undatus, H. megalanthus | 32 | SSR | 16 | [218] |
Hylocereus | 46 | SSR | 18 | [219] |
H. monacanthus, H. megalanthus | 49 | SSR | 23 | [204] |
H. guatemalensis, H. undatus, H. megalanthus, H. polyrhizus/H. costaricensis, H. ocamponis | 230 | AFLP | 51 | [220] |
H. monacanthus, H. undatus, H. megalanthus | 59 | AFLP | 192 | [91] |
H. undatus × H. monacanthus | 198 | SNP | 6434 | [221] |
H. undatus × H. polyrhizus | 203 | SNP | 6209 | [222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.; Chen, J.; Chen, J.; Qin, Y. Pitaya Nutrition, Biology, and Biotechnology: A Review. Int. J. Mol. Sci. 2023, 24, 13986. https://doi.org/10.3390/ijms241813986
Shah K, Chen J, Chen J, Qin Y. Pitaya Nutrition, Biology, and Biotechnology: A Review. International Journal of Molecular Sciences. 2023; 24(18):13986. https://doi.org/10.3390/ijms241813986
Chicago/Turabian StyleShah, Kamran, Jiayi Chen, Jiaxuan Chen, and Yonghua Qin. 2023. "Pitaya Nutrition, Biology, and Biotechnology: A Review" International Journal of Molecular Sciences 24, no. 18: 13986. https://doi.org/10.3390/ijms241813986
APA StyleShah, K., Chen, J., Chen, J., & Qin, Y. (2023). Pitaya Nutrition, Biology, and Biotechnology: A Review. International Journal of Molecular Sciences, 24(18), 13986. https://doi.org/10.3390/ijms241813986