Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis
Abstract
:1. Background
2. GBS Infection during Pregnancy
3. GBS-Induced Maternal, Placental, and Fetal Immune Responses
4. Human Perinatal GBS Infection
5. Maternal, Placental, and Fetal Inflammatory Changes in GBS-Exposed Placenta
6. Brain Injuries Associated with GBS-Induced Inflammation
7. Sex-Dichotomic Behavioral Impairments Due to Exposure to GBS-Induced Chorioamnionitis
8. Anatomo-Behavioral Correlations in GBS-Exposed Offspring
9. Translating Placento- and Neuro-Protective Research into Clinical Practice
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atladottir, H.O.; Thorsen, P.; Ostergaard, L.; Schendel, D.E.; Lemcke, S.; Abdallah, M.; Parner, E.T. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 1423–1430. [Google Scholar] [CrossRef]
- Boksa, P. Effects of prenatal infection on brain development and behavior: A review of findings from animal models. Brain Behav. Immun. 2010, 24, 881–897. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. Am. J. Psychiatry 2010, 167, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.; Boksa, P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev. Neurobiol. 2012, 72, 1335–1348. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, J.; Gerges, N.; Guiraut, C.; Grbic, D.; Allard, M.J.; Fortier, L.C.; Vaillancourt, C.; Sebire, G. Activation of the IL-1beta/CXCL1/MMP-10 axis in chorioamnionitis induced by inactivated Group B Streptococcus. Placenta 2016, 47, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, J.D.; Deslauriers, J.; Grignon, S.; Fortier, L.C.; Lepage, M.; Stroh, T.; Poyart, C.; Sebire, G. White matter injury and autistic-like behavior predominantly affecting male rat offspring exposed to group B streptococcal maternal inflammation. Dev. Neurosci. 2013, 35, 504–515. [Google Scholar] [CrossRef]
- Randis, T.M.; Gelber, S.E.; Hooven, T.A.; Abellar, R.G.; Akabas, L.H.; Lewis, E.L.; Walker, L.B.; Byland, L.M.; Nizet, V.; Ratner, A.J. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J. Infect. Dis. 2014, 210, 265–273. [Google Scholar] [CrossRef]
- Allard, M.J.; Brochu, M.E.; Bergeron, J.D.; Segura, M.; Sebire, G. Causal role of group B streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments. J. Dev. Orig. Health Dis. 2019, 10, 595–602. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef]
- Tita, A.T.; Andrews, W.W. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Brenner, R.A.; Johnson, Y.R.; Azimi, P.H.; Philips, J.B., 3rd; Regan, J.A.; Clark, P.; Weisman, L.E.; Rhoads, G.G.; Kong, F.; et al. The effectiveness of risk-based intrapartum chemoprophylaxis for the prevention of early-onset neonatal group B streptococcal disease. Am. J. Obstet. Gynecol. 2001, 184, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzia, H.K.; Heine, R.P. Diagnosis and management of group B streptococcus in pregnancy. Obstet. Gynecol. Clin. North. Am. 2014, 41, 629–647. [Google Scholar] [CrossRef]
- Lu, B.; Wu, J.; Chen, X.; Gao, C.; Yang, J.; Li, Y.; Wang, J.; Zeng, J.; Fang, Y.; Wang, D.; et al. Microbiological and clinical characteristics of Group B Streptococcus isolates causing materno-neonatal infections: High prevalence of CC17/PI-1 and PI-2b sublineage in neonatal infections. J. Med. Microbiol. 2018, 67, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Teatero, S.; Ferrieri, P.; Martin, I.; Demczuk, W.; McGeer, A.; Fittipaldi, N. Serotype Distribution, Population Structure, and Antimicrobial Resistance of Group B Streptococcus Strains Recovered from Colonized Pregnant Women. J. Clin. Microbiol. 2017, 55, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Patras, K.A.; Nizet, V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front. Pediatr. 2018, 6, 27. [Google Scholar] [CrossRef]
- Gupta, R.; Ghosh, S.; Monks, B.; DeOliveira, R.B.; Tzeng, T.C.; Kalantari, P.; Nandy, A.; Bhattacharjee, B.; Chan, J.; Ferreira, F.; et al. RNA and beta-hemolysin of group B Streptococcus induce interleukin-1beta (IL-1beta) by activating NLRP3 inflammasomes in mouse macrophages. J. Biol. Chem. 2014, 289, 13701–13705. [Google Scholar] [CrossRef]
- Henneke, P.; Dramsi, S.; Mancuso, G.; Chraibi, K.; Pellegrini, E.; Theilacker, C.; Hubner, J.; Santos-Sierra, S.; Teti, G.; Golenbock, D.T.; et al. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J. Immunol. 2008, 180, 6149–6158. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Beninati, C.; Biondo, C.; Galbo, R.; Akira, S.; Henneke, P.; Golenbock, D.; Teti, G. Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J. Immunol. 2004, 172, 6324–6329. [Google Scholar] [CrossRef]
- Wennekamp, J.; Henneke, P. Induction and termination of inflammatory signaling in group B streptococcal sepsis. Immunol. Rev. 2008, 225, 114–127. [Google Scholar] [CrossRef]
- Biondo, C.; Mancuso, G.; Midiri, A.; Signorino, G.; Domina, M.; Lanza Cariccio, V.; Mohammadi, N.; Venza, M.; Venza, I.; Teti, G.; et al. The interleukin-1beta/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect. Immun. 2014, 82, 4508–4517. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Klebanoff, M.; Carey, J.C.; MacPherson, C.; Leveno, K.J.; Moawad, A.H.; Sibai, B.; Heine, R.P.; Ernest, J.M.; Dombrowski, M.P.; et al. Vaginal fetal fibronectin measurements from 8 to 22 weeks’ gestation and subsequent spontaneous preterm birth. Am. J. Obstet. Gynecol. 2000, 2, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.W.; Sever, J.L. Group B Streptococcus and pregnancy: A review. Am. J. Obstet. Gynecol. 2008, 198, 440–448. [Google Scholar] [CrossRef]
- Keelan, J.A. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J. Reprod. Immunol. 2018, 125, 89–99. [Google Scholar] [CrossRef]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of Invasive Early-Onset and Late-Onset Group B Streptococcal Disease in the United States, 2006 to 2015: Multistate Laboratory and Population-Based Surveillance. JAMA Pediatr. 2019, 173, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Chung, K.; Kocak, H.; Bertolotto, C.; Uh, A.; Hobel, C.J.; Simmons, C.F.; Doran, K.; Liu, G.Y.; Equils, O. Group B streptococcus induces trophoblast death. Microb. Pathog. 2008, 45, 231–235. [Google Scholar] [CrossRef]
- Klaffenbach, D.; Friedrich, D.; Strick, R.; Strissel, P.L.; Beckmann, M.W.; Rascher, W.; Gessner, A.; Dotsch, J.; Meissner, U.; Schnare, M. Contribution of different placental cells to the expression and stimulation of antimicrobial proteins (AMPs). Placenta 2011, 32, 830–837. [Google Scholar] [CrossRef]
- Patras, K.A.; Rosler, B.; Thoman, M.L.; Doran, K.S. Characterization of host immunity during persistent vaginal colonization by Group B Streptococcus. Mucosal Immunol. 2015, 8, 1339–1348. [Google Scholar] [CrossRef]
- Doster, R.S.; Sutton, J.A.; Rogers, L.M.; Aronoff, D.M.; Gaddy, J.A. Streptococcus agalactiae Induces Placental Macrophages to Release Extracellular Traps Loaded with Tissue Remodeling Enzymes via an Oxidative Burst-Dependent Mechanism. mBio 2018, 9, e02084-18. [Google Scholar] [CrossRef]
- Sutton, J.A.; Rogers, L.M.; Dixon, B.; Kirk, L.; Doster, R.; Algood, H.M.; Gaddy, J.A.; Flaherty, R.; Manning, S.D.; Aronoff, D.M. Protein kinase D mediates inflammatory responses of human placental macrophages to Group B Streptococcus. Am. J. Reprod. Immunol. 2019, 81, e13075. [Google Scholar] [CrossRef]
- Botelho, R.M.; Tenorio, L.P.G.; Silva, A.L.M.; Tanabe, E.L.L.; Pires, K.S.N.; Goncalves, C.M.; Santos, J.C.; Marques, A.L.X.; Allard, M.J.; Bergeron, J.D.; et al. Biomechanical and functional properties of trophoblast cells exposed to Group B Streptococcus in vitro and the beneficial effects of uvaol treatment. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, E.L.; Gardiner, S.; Tickner, J.; Trim, L.; Beagley, K.W.; Carey, A.J. Group B Streptococcus serotypes Ia and V induce differential vaginal immune responses that may contribute to long term colonization of the female reproductive tract. Am. J. Reprod. Immunol. 2020, 83, e13199. [Google Scholar] [CrossRef]
- Silva, A.L.M.; Silva, E.C.O.; Botelho, R.M.; Tenorio, L.P.G.; Marques, A.L.X.; Rodrigues, I.; Almeida, L.I.M.; Sousa, A.K.A.; Pires, K.S.N.; Tanabe, I.S.B.; et al. Uvaol Prevents Group B Streptococcus-Induced Trophoblast Cells Inflammation and Possible Endothelial Dysfunction. Front. Physiol. 2021, 12, 766382. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, R.A.; Aronoff, D.M.; Gaddy, J.A.; Petroff, M.G.; Manning, S.D. Distinct Group B Streptococcus Sequence and Capsule Types Differentially Impact Macrophage Stress and Inflammatory Signaling Responses. Infect. Immun. 2021, 89, e00647-20. [Google Scholar] [CrossRef] [PubMed]
- Boldenow, E.; Hogan, K.A.; Chames, M.C.; Aronoff, D.M.; Xi, C.; Loch-Caruso, R. Role of cytokine signaling in group B Streptococcus-stimulated expression of human beta defensin-2 in human extraplacental membranes. Am. J. Reprod. Immunol. 2015, 73, 263–272. [Google Scholar] [CrossRef]
- Ayash, T.A.; Vancolen, S.Y.; Segura, M.; Allard, M.-J.; Sebire, G. Protective effects of interleukin-1 blockade on group B Streptococcus-induced chorioamnionitis and subsequent neurobehavioral impairments of the offspring. Front. Endocrinol. 2022, 13, 833121. [Google Scholar] [CrossRef]
- Jena, M.K.; Nayak, N.; Chen, K.; Nayak, N.R. Role of Macrophages in Pregnancy and Related Complications. Arch. Immunol. Ther. Exp. 2019, 67, 295–309. [Google Scholar] [CrossRef]
- Allard, M.J.; Bergeron, J.D.; Baharnoori, M.; Srivastava, L.K.; Fortier, L.C.; Poyart, C.; Sebire, G. A sexually dichotomous, autistic-like phenotype is induced by Group B Streptococcus maternofetal immune activation. Autism Res. 2017, 10, 233–245. [Google Scholar] [CrossRef]
- Kothary, V.; Doster, R.S.; Rogers, L.M.; Kirk, L.A.; Boyd, K.L.; Romano-Keeler, J.; Haley, K.P.; Manning, S.D.; Aronoff, D.M.; Gaddy, J.A. Group B Streptococcus Induces Neutrophil Recruitment to Gestational Tissues and Elaboration of Extracellular Traps and Nutritional Immunity. Front. Cell. Infect. Microbiol. 2017, 7, 19. [Google Scholar] [CrossRef]
- Andrade, E.B.; Magalhaes, A.; Puga, A.; Costa, M.; Bravo, J.; Portugal, C.C.; Ribeiro, A.; Correia-Neves, M.; Faustino, A.; Firon, A.; et al. A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection. Nat. Commun. 2018, 9, 3138. [Google Scholar] [CrossRef]
- Allard, M.J.; Giraud, A.; Segura, M.; Sebire, G. Sex-specific maternofetal innate immune responses triggered by group B Streptococci. Sci. Rep. 2019, 9, 8587. [Google Scholar] [CrossRef] [PubMed]
- Raia-Barjat, T.; Digonnet, M.; Giraud, A.; Ayash, T.; Vancolen, S.; Benharouga, M.; Chauleur, C.; Alfaidy, N.; Sebire, G. Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022, 10, 811. [Google Scholar] [CrossRef]
- Mitchell, K.; Brou, L.; Bhat, G.; Drobek, C.O.; Kramer, M.; Hill, A.; Fortunato, S.J.; Menon, R. Group B Streptococcus colonization and higher maternal IL-1beta concentrations are associated with early term births. J. Matern. Fetal. Neonatal Med. 2013, 26, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Vancolen, S.; Ayash, T.; Segura, M.; Allard, M.J.; Robaire, B.; Sebire, G. Androgens Upregulate Pathogen-Induced Placental Innate Immune Response. Int. J. Mol. Sci. 2022, 23, 4978. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Kadhim, H.; Beaudet, N.; Sarret, P.; Sebire, G. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: A novel animal model for cerebral palsy in very premature infants. Neuroscience 2009, 158, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Kadhim, H.; Larouche, A.; Roy, M.; Gobeil, F.; Sebire, G. Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine 2008, 43, 54–62. [Google Scholar] [CrossRef]
- Girard, S.; Tremblay, L.; Lepage, M.; Sebire, G. Early detection of placental inflammation by MRI enabling protection by clinically relevant IL-1Ra administration. Am. J. Obstet. Gynecol. 2012, 206, 358.e1–358.e9. [Google Scholar] [CrossRef]
- Hirsch, E.; Filipovich, Y.; Romero, R. Failure of E. coli bacteria to induce preterm delivery in the rat. J. Negat. Results Biomed. 2009, 8, 1. [Google Scholar] [CrossRef]
- Edey, L.F.; O’Dea, K.P.; Herbert, B.R.; Hua, R.; Waddington, S.N.; MacIntyre, D.A.; Bennett, P.R.; Takata, M.; Johnson, M.R. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biol. Reprod. 2016, 95, 125. [Google Scholar] [CrossRef]
- Dambaeva, S.; Schneiderman, S.; Jaiswal, M.K.; Agrawal, V.; Katara, G.K.; Gilman-Sachs, A.; Hirsch, E.; Beaman, K.D. Interleukin 22 prevents lipopolysaccharide- induced preterm labor in mice. Biol. Reprod. 2018, 98, 299–308. [Google Scholar] [CrossRef]
- Barichello, T.; Lemos, J.C.; Generoso, J.S.; Carradore, M.M.; Moreira, A.P.; Collodel, A.; Zanatta, J.R.; Valvassori, S.S.; Quevedo, J. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae. Brain Res. Bull. 2013, 92, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Dozmorov, M.G.; Bilbo, S.D.; Kollins, S.H.; Zucker, N.; Do, E.K.; Schechter, J.C.; Zhang, J.J.; Murphy, S.K.; Hoyo, C.; Fuemmeler, B.F. Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain Behav. Immun. 2018, 70, 390–397. [Google Scholar] [CrossRef]
- Lyall, A.E.; Shi, F.; Geng, X.; Woolson, S.; Li, G.; Wang, L.; Hamer, R.M.; Shen, D.; Gilmore, J.H. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. Cereb. Cortex 2015, 25, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.T.; Barger, N.; Amaral, D.G.; Schumann, C.M. Stereological study of amygdala glial populations in adolescents and adults with autism spectrum disorder. PLoS ONE 2014, 9, e110356. [Google Scholar] [CrossRef] [PubMed]
- Back, S.A. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol. 2017, 134, 331–349. [Google Scholar] [CrossRef]
- van Tilborg, E.; Heijnen, C.J.; Benders, M.J.; van Bel, F.; Fleiss, B.; Gressens, P.; Nijboer, C.H. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog. Neurobiol. 2016, 136, 28–49. [Google Scholar] [CrossRef]
- Dell’Ovo, V.; Rosenzweig, J.; Burd, I.; Merabova, N.; Darbinian, N.; Goetzl, L. An animal model for chorioamnionitis at term. Am. J. Obstet. Gynecol. 2015, 213, 387.e1–387.e10. [Google Scholar] [CrossRef]
- Burd, I.; Brown, A.; Gonzalez, J.M.; Chai, J.; Elovitz, M.A. A mouse model of term chorioamnionitis: Unraveling causes of adverse neurological outcomes. Reprod. Sci. 2011, 18, 900–907. [Google Scholar] [CrossRef]
- Girard, S.; Tremblay, L.; Lepage, M.; Sebire, G. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J. Immunol. 2010, 184, 3997–4005. [Google Scholar] [CrossRef]
- Yellowhair, T.R.; Noor, S.; Mares, B.; Jose, C.; Newville, J.C.; Maxwell, J.R.; Northington, F.J.; Milligan, E.D.; Robinson, S.; Jantzie, L.L. Chorioamnionitis in Rats Precipitates Extended Postnatal Inflammatory Lymphocyte Hyperreactivity. Dev. Neurosci. 2019, 40, 523–533. [Google Scholar] [CrossRef]
- Allard, M.J.; Bergeron, J.D.; Sebire, G. Hyperactive behavior in female rats in utero-exposed to group B Streptococcus-induced inflammation. Int. J. Dev. Neurosci. 2018, 69, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Belzung, C.; Leman, S.; Vourc’h, P.; Andres, C. Rodent models for autism: A critical review. Drug Discov. Today Dis. Models 2005, 2, 93–101. [Google Scholar] [CrossRef]
- Meyer, U.; Feldon, J.; Fatemi, S.H. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 2009, 33, 1061–1079. [Google Scholar] [CrossRef] [PubMed]
- Limperopoulos, C.; Bassan, H.; Sullivan, N.R.; Soul, J.S.; Robertson, R.L., Jr.; Moore, M.; Ringer, S.A.; Volpe, J.J.; du Plessis, A.J. Positive screening for autism in ex-preterm infants: Prevalence and risk factors. Pediatrics 2008, 121, 758–765. [Google Scholar] [CrossRef]
- Hagberg, H.; Mallard, C.; Ferriero, D.M.; Vannucci, S.J.; Levison, S.W.; Vexler, Z.S.; Gressens, P. The role of inflammation in perinatal brain injury. Nat. Rev. Neurol. 2015, 11, 192–208. [Google Scholar] [CrossRef]
- Spencer, S.J.; Meyer, U. Perinatal programming by inflammation. Brain Behav. Immun. 2017, 63, 1–7. [Google Scholar] [CrossRef]
- van Kassel, M.N.; Goncalves, B.P.; Snoek, L.; Sorensen, H.T.; Bijlsma, M.W.; Lawn, J.E.; Horvath-Puho, E.; Danish, G.B.S.; Dutch Collaborative Group for Long-Term, O. Sex Differences in Long-Term Outcomes After Group B Streptococcal Infections during Infancy in Denmark and the Netherlands: National Cohort Studies of Neurodevelopmental Impairments and Mortality. Clin. Infect. Dis. 2022, 74, S54–S63. [Google Scholar] [CrossRef]
- Squarzoni, P.; Thion, M.S.; Garel, S. Neuronal and microglial regulators of cortical wiring: Usual and novel guideposts. Front. Neurosci. 2015, 9, 248. [Google Scholar] [CrossRef]
- Hagemeyer, N.; Hanft, K.M.; Akriditou, M.A.; Unger, N.; Park, E.S.; Stanley, E.R.; Staszewski, O.; Dimou, L.; Prinz, M. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017, 134, 441–458. [Google Scholar] [CrossRef]
- Tolsa, C.B.; Zimine, S.; Warfield, S.K.; Freschi, M.; Sancho Rossignol, A.; Lazeyras, F.; Hanquinet, S.; Pfizenmaier, M.; Huppi, P.S. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr. Res. 2004, 56, 132–138. [Google Scholar] [CrossRef]
- Ameis, S.H.; Catani, M. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 2015, 62, 158–181. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.; Greimel, E.; Kliemann, D.; Koerte, I.K.; Schulte-Korne, G.; Reuter, M.; Wachinger, C. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. Neuroimage Clin. 2020, 26, 102207. [Google Scholar] [CrossRef] [PubMed]
- Deslauriers, J.; Lefrancois, M.; Larouche, A.; Sarret, P.; Grignon, S. Antipsychotic-induced DRD2 upregulation and its prevention by alpha-lipoic acid in SH-SY5Y neuroblastoma cells. Synapse 2011, 65, 321–331. [Google Scholar] [CrossRef]
- Green, E.A.; Metz, D.; Galinsky, R.; Atkinson, R.; Skuza, E.M.; Clark, M.; Gunn, A.J.; Kirkpatrick, C.M.; Hunt, R.W.; Berger, P.J.; et al. Anakinra Pilot—A clinical trial to demonstrate safety, feasibility and pharmacokinetics of interleukin 1 receptor antagonist in preterm infants. Front. Immunol. 2022, 13, 1022104. [Google Scholar] [CrossRef]
- Brien, M.E.; Gaudreault, V.; Hughes, K.; Hayes, D.J.; Heazell, A.E.; Girard, S. A systematic review of the safety of blocking the IL-1 system in human pregnancy. J. Clin. Med. 2022, 11, 225. [Google Scholar] [CrossRef]
References | Species | Immunogen, Dose, Route | Timing of Administration | Maternal, Placental, and Fetal Changes in the GBS-Exposed Rodents | |
---|---|---|---|---|---|
Males | Females | ||||
Bergeron et al., 2013 [6] | Lewis rats | Killed β-hemolytic GBS Ia 16955, 1010 CFU, ip | Every 12 h G19 to G22 | ↑ cavitary lesions and Malpighian metaplasia in placenta (G22); ↑ PMN in decidua, junctional zone of placenta (G22); no difference in CD68+ or Iba-1+ macrophages in labyrinth of placenta (G22) | |
Randis et al., 2014 [7] | C57BL6/J mice | Live β-hemolytic GBS V NCTC10/84, 107 CFU, intravaginal | G13 | 50% positive maternal blood cultures (G17); 88% positive placental cultures for GBS (G17), 43% positive fetal blood cultures (G17); ↑ GBS infiltrates in decidua and labyrinth of placenta (G17); ↑ pathology score | |
Bergeron et al., 2016 [5] | Lewis rats | Killed β-hemolytic GBS Ia, strain 16955 1010 CFU, ip | Every 12 h G19 to G22 | ↑ IL-1β in maternal serum (3, 24, 48, 72 h); ↑ PMN (24, 48, 72 h), ↑ MMP-8 mRNA, ↑ MMP-10 mRNA, ↑ S100A9 mRNA, ↑ UPA mRNA (6 h), ↑ CXCL1 (3 h), ↑ MMP-10 (48 h) and IL-1β (72 h) in placenta; ↑ IL-1β (72 h) in fetal serum | Not studied |
Allard et al., 2017 [38] | Lewis rats | Live β-hemolytic GBS Ia, 16955, 109−10 CFU, ip | G19 | ↑ GBS infiltrates in placenta (G22); ↑ PMN in decidua, junctional zone, and labyrinth (G22) | ↑ GBS infiltrates in placenta (G22); ↑ PMN in decidua and junctional zone, but not labyrinth (G22) |
Kothary et al., 2017 [39] | C57BL6/J mice | Live β-hemolytic GBS V, 103 CFU, intravaginal | G13 | GBS invasion in vagina, uterus, placenta, decidua, and fetus (G15); ↑ CD45+ Neu7/4+ GR1+ neutrophil cells in placenta and decidua (G15); ↑ lactoferrin HDAB within fetal placental tissue (G15); ↑ NETs (G15) | |
Andrade et al., 2018 [40] | BALB/c mice | Live β-hemolytic GBS III BM110, 3 × 104 CFU, intravaginal | G17 and G18 | ↓ TNF-α, ↓ IL-17, and ↓ IFN-γ in pups’ serum (P5). No difference KC, MIP-1α, IL-1β, IL-6, and IL-10 in pups’ serum (P5). No difference KC, MIP-1α, IL-1β, IL-6, TNF-α, IL-17, IFN-γ, and IL-10 in pups’ brain (P5) | Not studied |
Allard et al., 2019 [8] | Lewis rats | Killed β-hemolytic GBS III BM110, 1010 CFU, ip | Every 12 h G19 to G22 | ↑ GBS infiltrates in placenta (G22); ↑ PMN infiltrates in decidua, junctional zone, and labyrinth (G22) | |
Allard et al., 2019 [41] | Lewis rats | Live β-hemolytic GBS Ia 16955, 109−10 CFU, ip | G19 | ↑ IL-1β (48, 72 h), ↑ IL-6 (48, 72 h), ↑ TNF-α (48, 72 h), ↑ IL-10 (72 h), and ↑ CXCL1 (48, 72 h) in maternal serum | |
↑ GBS infiltrates in placenta (48 h, 72 h); ↑ PMN in decidua (48, 72 h), junctional zone (48, 72 h), and labyrinth (72 h); ↑ CXCL1 (72 h), ↑ S100A9 (48, 72 h), ↑ MMP-8 (72 h), ↑ IL-1β (48, 72 h), ↑ IL-6 (48, 72 h), ↑ TNF-α (48, 72 h), and ↑ IL-10 (72 h) in placenta; ↑ IL-1β (72 h) and TNF-α (72 h) in fetal serum | ↑ GBS infiltrates in placenta (48 h, 72 h); ↑ PMN in decidua (48, 72 h) and junctional zone (48, 72 h), but not labyrinth of placenta; ↑ S100A9 (48, 72 h), ↑ MMP-8 (72 h), and ↑ IL-1β (48 h, 72 h); ↑ IL-6 (48, 72 h), ↑ TNF-α (48 h, 72 h), and ↑ IL-10 (72 h) in placenta; ↑ TNF-α (72 h) but not IL-1β in fetal serum |
References | Species | Immunogen, Dose, Route | Timing of Administration | Morphological Changes in the GBS-Exposed Offspring’s Brains | |
---|---|---|---|---|---|
Males | Females | ||||
Barichello et al., 2013 [51] | Wistar rats | Live GBS III 106 CFU/mL, intracerebral | P3–P4 | ↓ BDNF levels in the prefrontal cortex (P70); ↓ BDNF levels in the hippocampus (P70); and ↓ NGF levels in the hippocampus (P70) | |
Bergeron et al., 2013 [6] | Lewis rats | Killed β-hemolytic GBS Ia 16955, 1010 CFU, ip | Every 12 h G19 to G22 | ↑ area of lateral ventricles (P40); ↓ thickness of CC (P40); no difference Iba-1 in CC (P40) | ↓ Iba-1 in CC (P40); ↓MBP in CC (P40) |
↓ thickness of EC (P40); ↓ CC-1 in CC (P40); no difference Olig2 in CC (P40); no difference GFAP in CC (P40) | |||||
Allard et al., 2017 [38] | Lewis rats | Live β-hemolytic GBS Ia 16955, 109−10 CFU, ip | G19 | ↑ area of LV (P40); ↓ thickness of CC (P40); and ↓ thickness of EC (P40) | No difference area of LV (P40); no difference thickness of corpus callosum and EC (P40) |
Andrade et al., 2018 [40] | BALB/c mice | Live β-hemolytic GBS II BM110, 3 × 104 CFU, intravaginal | G17 and G18 | ↑ Evans blue leakage (BBB permeability) (P5), ↓ thickness of PC (P5), ↑area of LV (P5), ↑ TUNEL in MC, striatum, PC and hippocampus (P5), ↑ GFAP in hippocampus (CA3 region) (P5), ↑ activated microglia in hippocampus (CA3 region) (P5), no difference thickness of EC (P5) | Not studied |
Allard et al., 2019 [8] | Lewis rats | Killed β-hemolytic GBS III, BM110, 1010 CFU/mL, ip | Every 12 h G19 to G22 | ↓ thickness of CC (P40); ↓ thickness of primary MC (P40); ↓ Iba-1 in CC (P40) | No difference thickness of CC and primary MC (P40); no difference Iba-1 in CC (P40) |
↓ MBP in corpus CC (P40); no difference GFAP in CC and primary MC (P40), and Iba-1 in primary MC (P40) |
References | Species | Immunogen, Dose, Route | Time of Administration | Behavioral Changes in the GBS-Exposed Offspring | |
---|---|---|---|---|---|
Males | Females | ||||
Barichello et al., 2013 [51] | Wistar rats | Live GBS III, 106 CFU, intracerebral | P3–P4 | No difference in motor, exploratory activity, habituation memory in the OF (P70) ↓ aversive memory compared with the long-term memory test in the Step-down inhibitory avoidance task (P70) | |
Bergeron et al., 2013 [6] | Lewis rats | Killed β-hemolytic GBS Ia 16955, 1010 CFU, ip | Every 12 h G19 to G22 | ↑ latency to reach familiar odor (P9) ↓ locomotion in OF (P15–25) ↓ latency to fall of rotarod (P30–40) ↓ PPI to acoustic stimuli (P35) ↓ number and duration of social interactions (P40) | No difference to reach familiar odor (P9) No difference in the OF (P15–25) No difference of latency to fall of rotarod (P30–40) No difference for PPI (P35) ↑ duration of social interactions (P40) |
Allard et al., 2017 [38] | Lewis rats | Live β-hemolytic GBS Ia 16955, 109−10 CFU, ip | G19 | ↓ USVs (P7) ↑ latency to reach familiar odor (P9) ↑ locomotion in the OF (P20) ↓ duration of social interactions (P40) | No difference for USVs (P7) No difference to reach familiar odor (P9) No difference in the OF (P15–25) No difference in social interactions (P40) |
↓ PPI to acoustic stimuli (P35) | |||||
Allard et al., 2018 [61] | Lewis rats | Killed β-hemolytic GBS Ia A909, 1010 CFU, ip | Every 12 h G19 to G22 | No difference in the OF (P15–25) No difference for the latency to fall of rotarod (P30–40) No difference in the EPM (P35–40) No difference in the EPM (P105–110) | No difference in the OF (P15–25) ↓ latency to fall of rotarod (P40) No difference in the EPM (P35–40) ↑ open maze exploration; and ↑ distance in the EPM (P105–110) |
Andrade et al., 2018 [40] | BALB/c mice | Live β-hemolytic GBS III BM110, 3 × 104 CFU, intravaginal | G17 and G18 | ↓ distance; ↓ time spent in central area; ↓ rearing; ↓ exploration in the OF (P90); and ↓ working memory in the Radial Maze (P90) | Not studied |
Allard et al., 2019 [8] | Lewis rats | Killed β-hemolytic GBS III BM110, 1010 CFU, ip | Every 12 h G19 to G22 | ↓ distance and mobility in the OF (P25) | No difference in the OF (P15–25) |
↓ startle response to acoustic stimuli (P35–65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vancolen, S.; Ayash, T.; Allard, M.-J.; Sébire, G. Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis. Int. J. Mol. Sci. 2023, 24, 14090. https://doi.org/10.3390/ijms241814090
Vancolen S, Ayash T, Allard M-J, Sébire G. Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis. International Journal of Molecular Sciences. 2023; 24(18):14090. https://doi.org/10.3390/ijms241814090
Chicago/Turabian StyleVancolen, Seline, Taghreed Ayash, Marie-Julie Allard, and Guillaume Sébire. 2023. "Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis" International Journal of Molecular Sciences 24, no. 18: 14090. https://doi.org/10.3390/ijms241814090
APA StyleVancolen, S., Ayash, T., Allard, M. -J., & Sébire, G. (2023). Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis. International Journal of Molecular Sciences, 24(18), 14090. https://doi.org/10.3390/ijms241814090