Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time?
Abstract
:1. Introduction
1.1. Unmet Need in HCC Management
1.2. cfDNA Landscape in HCC
2. Perioperative Risk Stratification (POR) with cfDNA Testing in HCC
Publication (n) | Methods | Tested Markers | Findings | Additional Information | |
---|---|---|---|---|---|
cfDNA level | Ren et al., 2006 [78] (79) Preop | UV transilluminator | Circulating DNA levels | High levels are associated with worse PFS and OS (p = 0.017 and 0.001, respectively) | Cut-off ≥ 36.6 ng/mL Circulating DNA level was associated with tumor size (≤5 vs. >5 cm) (p = 0.008) and TNM (I-II vs. III-IV) stage (p = 0.040). TNM-6th edition |
Tokuhisa et al., 2007 [75] (87) Preop | Polymerase chain reaction (PCR) | GSTP1 gene | Patients with high cfDNA levels had shorter OS (p = 0.017). | Cut-off is 117.8 ng·mL−1 High cfDNA level to be an independent prognostic factor for OS (HR, 3.8; 95% CI, 1.7–8.5; p = 0.001) and cancer recurrence in distant organs (HR, 4.5; 95% CI, 1.3–14.9; p = 0.014). Higher cfDNA levels are associated with early intrahepatic recurrence but were not significant on logistic regression. | |
Mutations | Fu et al., 2022 [79] (258) Preop | PCR | High-risk genes APC, ARID1A, CDKN2A, FAT1, LRP1B, MAP3K1, PREX2, TERT, and TP53 | Number of mutant genes. Early recurrence (HR = 2.2, p < 0.001) and worse PFS in high-risk group (HR = 13.0, p < 0.001) | Low vs. mid vs. high-level based on the number of mutant genes. Nomogram constructed with TNM staging and risk level has accuracy with C index of 0.76 (95% CI 0.70–0.82). |
Liao et al., 2016 (41) Preop [80] | PCR | Hotspot mutations in TERT, CTNNB1, and TP53 | ctDNA+ tumors have poor PFS (89 vs. 365 days, p< 0.001) and are at high risk of vascular invasion (p = 0.041) | 100% specificity of recurrence in ctDNA+ patients No relationship between detectable mutations and concentration of cfDNA (p = 0.818). | |
Ye et al., 2022 (96) Postop [81] | NGS | Hot exons of 293 genes | ctDNA-positive tumors have worse PFS and OS. ctDNA + and high-AFP have the worst PFS | Detection of even one mutation was considered ctDNA+ AFP cutoff was >400 ng/mL | |
An et al., 2019 (26) Postop [82] | NGS | 354 genes | ctDNA-positive patients have worse PFS (17.5 vs. 6.7 months (m), HR = 7.655, p < 0.0001) | ctDNA positivity is the independent risk factor for prognosis (HR = 10.293, p < 0.0001) The number of mutations, VAF, and ctDNA concentration correlated with tumor size. | |
Zhou et al., 2020 (97) Postop [83] | NGS | 1021 gene panel | ctDNA + associated with recurrence (100%), shorter PFS (5 m vs. NR, p < 0.001) | ctDNA+ with high AFP (>400 ng/mL) is the worst prognostic feature for recurrence. | |
Cai et al., 2019 (34) Serial [76] | Targeted sequencing for SNV and WGS for CNVs | Tissue agnostic Somatic SNVs and CNVs | ctDNA+ have worse PFS and OS (p =0.001 for both) | Can predict recurrence on an average of 4.6 m before imaging could catch it Better than AFP, AFP-L3%, and Des-Gamma-Carboxy Prothrombin (DCP). | |
Ono et al., 2015 (46) Serial [40] | ctDNA detection by PCR on preop sample. Whole exome sequencing (WES) of cfDNA in postop sample | Tissue agnostic. Whole genome sequencing (WGS) on tumor tissue | High recurrence rates and extra-hepatic metastasis ctDNA+ group (p = 0.01 and 0.03, respectively) | Detected in 7/46 patients ctDNA+ patients are at high risk of microscopic vascular invasion (OR 6.10; 95% CI, 1.11–33.33, p = 0.038) Concordance rate was 83% Included patients with hepatectomy and liver transplant, and one patient with HCC-CCA variant | |
Zhu et al., 2022 (41) Serial [42] | NGS | NGS | ctDNA-positive (both pre- and post- op) patients tend have intrahepatic recurrence, and have shorter PFS Preop ctDNA-positive tumors tend be larger (>5 cm), have MVI, and higher differentiation. | Detection of NRAS, NEF2L2, and MET mutations associated with shorter PFS Higher MAF preop is an is a strong prognostic factor for PFS | |
Epigenetic markers | Tsutsui et al., 2010 (70) Preop [61] | PCR | CCND2 (methylated) | Patients with CCND2 gene methylation have shorter PFS (p = 0.02) | Cut off was >70 pg/mL serum) CCDN2 methylation is an independent risk factor for PFS (HR = 1.866, 95% CI: 1.106–3.149). |
Li et al., 2018 (155) Postop [84] | PCR | IGFBP7 methylation status | IGFBP7 promoter methylation was significantly correlated with OS (p < 0.001), was an independent prognostic predictor for OS (p = 0.000) and early tumor recurrence (p = 0.008), and was associated with vascular invasion (p = 0.014) | DNMTs mRNA levels, malondialdehyde (MDA), xanthine oxidase (XOD), glutathione hormone (GSH), and glutathione-S-transferases (GST) levels were also tested MDA and XOD levels were significantly higher in the IGFBP7 methylated group than the unmethylated group, while GSH level was lower in the methylated group than in unmethylated group (DA p = 0.001) (XOD p < 0.001). The DNMT1 and DNMT3a mRNA levels were higher in the IGFBP7 methylated group than unmethylated group (p = 0.002) |
3. Prognostic Value of cfDNA Testing in HCC
Publication (n) | Methods | Tested Markers | Findings | Additional Information | |
---|---|---|---|---|---|
Mutations | Oversoe et al., 2020 (95) [34] | Digital droplet PCR (ddPCR) | TERT (C228T) | TERT mutation conferred increased mortality (HR 2.16 (1.20–3.88), p = 0.01) when detected in plasma (adjusted HR 2.16 (1.20–3.88), p = 0.010), but not in tumor (adjusted HR 1.11 (0.35–3.56), p = 0.860). | In treatment-naïve HCC, mortality was more pronounced (HR 4.11 (1.73–9.76) p= 0.001) Detectable plasma TERT mutation was correlated with advanced TNM stage and vascular invasion (p < 0.0005) Non-concordance was associated with an early TNM stage. |
Jiao et al., 2018 (215) [85] | ddPCR | TERT (C228T and C250T) | Mutation-positive tumors with cirrhosis have worse prognosis (p = 0.0042). This association was significant in MVA | Mutations associated with worse OS (p = 0.0062) for all HCC patients (with and without cirrhosis). This association was not significant on MVA | |
Yang et al., 2011 (60) [70] | Quantitative fluorescent polymerase chain reaction (FQ-PCR) | TERT | Plasma TERT DNA levels were closely related to tumor size (<5 vs. 5–10 vs. >10 cm), PVTT and TNM (I-II vs. III-IV) stage (p = 0.013, p = 0.010, and p = 0.029, respectively) | Cutoff–variable Survival analysis is not available. | |
Youssef et al., 2023 (100) [86] | PCR | BCL9 and RPS6KB1 | BCL9 gain and BCL9 + RPS6KB1 gain led to higher mortality rates and reduced survival times. | Prevalence of CNV gain in BCL9 and RPS6KB1 genes was detected in 14% and 24% of patients, respectively. Gain in both genes showed a high risk of HCC with elevated liver enzymes, Schistosomiasis, BCLC C, and PS > 1 | |
He et al., 2019 (29) [31]. | Next Gen Sequencing (NGS) | 2800 COSMIC hotspots in 50 high-frequency mutations in tumor genes. | MAF in the TP53, CTNNB1, PIK3CA, and CDKN2A increase the risk of larger tumors (>5 cm) MAF in the TP53, RET, FGFR3 and APC associated with multiple tumors or distant metastasis | 35 mutant genes/50 tested were noted in tumors. TP53 was detected in 50% of tumors. Cut-off for MAF is >1% | |
Kim et al., 2020 (107) [44] | NGS | 2924 SNVs in 69 genes | MLH1 SNV, in combination with an increased ctDNA level (≥5.77 ng/mL), predicted poor overall survival among | OS was worse in HCC with high ctDNA (vs. low, p = 0.0014); High ctDNA with MLH1 mutation vs. high ctDNA + MLH1 witld type (WT) vs. low ctDNA + MLH1 WT | |
Epigenetic markers | Tangkijvanich et al., 2007 (85) [88] | Combined bisulfite restriction analysis PCR | Serum hypomethylation status of LINE-1 repetitive sequences | High serum LINE-1 hypomethylation associated with worse OS (10.5 vs. 5.5 m, p = 0.012) | High levels are associated with larger (>5 cm) and advanced (based on CLIP scoring). Cut off- 53.17 ± 7.74%, |
Huang et al., 2011 (72) [57] | MSRE-qPCR | APC, GSTP1, RASSF1A, and SFRP1 | High levels of APC or RASSF1 methylation have worse outcomes. GSTP1 has a trend towards worst outcome (p = 0.062) | Methylated RASSF1A alone was independent risk factor for OS (hazard ratio = 3.262, 95% CI: 1.476–7.209, p = 0.003). | |
Sun et al., 2013 (43) [59] | PCR | TFPI2 methylation percentage | Higher stage is associated with increased TFPI2 methylation percentage | Higher percentage with stage—39, 38, 64, 75, from Stages I–IV, respectively (percentage = methylated/unmethylated) | |
Li et al., 2014 (136) [87] | PCR | IGFBP7 | Methylation is associated with vascular invasion (84% versus 60%, p = 0.010). | Frequency of serum IGFBP7 promoter methylation in HCC patients was 65% (89/136) | |
Xu et al., 2017 (1098) [55] | Deep sequencing of bis-DNA target-captured with molecular-inversion | BMPR1A PSD ARHGAP25 KLF3 PLAC8 ATXN1 Chr 6:170 Chr 6:3 ATAD2 Chr 8:20 | Higher combined diagnostic score (cd-score) was associated with advanced TNM stage, poor response, early recurrence, and tumor burden | cd-score also has a diagnostic value. | |
Xu et al., 2017 (1098) [55] | Deep sequencing of bis-DNA target-captured with molecular-inversion | SH3PXD2A C11orf9 Chr 17:78 PPFIA1 SERPINB5 NOTCH3 TMEM8B GRHL2 | High combined prognosis score (cp-score) was associated with poor survival. Cp-score and TNM staging better than individual alone. | Cut-off for cp-score was >0.24. Cp-score was validated by MVA (HR: 2.405; 95%; p < 0.00) |
4. Predictive Biomarkers
Publication | Methods | Tested Markers | Findings | Additional Information-Frequency |
---|---|---|---|---|
Sefrioui et al., 2022 (28) [89] TACE | ctDNA for TERT ddPCR cfDNA was quantified by the fluorometric method. | TERT hotspot cfDNA levels Samples collected prospectively: baseline (D − 1), day 2 (D + 2), and one month later (DM) | High-risk patients progressed in one month (80.0% vs. 4.3%, p = 0.001) and worse PFS (1.3 vs. 10.3 months, p = 0.002) | Score based on changes in cfDNA and ctDNA. High-risk or non-responders = no change in both; low-risk = change in at least one marker. cfDNA change from D-1 to D M+ 1 of > 31.4% (44.4% vs. 3.8%) and ctDNA change >0% as high risk (50.0% vs. 5.0%) |
Park et al., 2018 (55, 34 fractionated XRT and 21 SBRT) [91] | Ultraviolet-visible spectrophotometer | cfDNA levels before and after XRT | High pre-XRT cfDNA levels are associated with advanced disease (p = 0.049) and larger tumors (p = 0.017). High post-XRT cfDNA level is associated with poor response rates (p = 0.017), local control (p = 0.006), or intrahepatic recurrence rates (p = 0.035) | Cut-off values for cfDNA levels: 33.65 ng/mL before XRT is and 37.25 ng/mL after CRT) |
Hirai et al., 2021 (130, 44 TACE and 86 with lenvatinib or sorafenib) [90] | Digital droplet- polymerase chain reaction (dd-PCR) | TERT | Detection of TERT mutation and high fractional abundances (≥1%) associated with worse OS (p< 0.01). | TERT promoter mutations correlated with large intrahepatic tumor size (p = 0.05) and high des-gamma carboxyprothrombin (p = 0.005) |
Alunni-Fabbroni et al., 2019 (13, 10, TARE + sorafenib, 2 RFA + sorafenib, 1placebo) [92] | Next-generation sequencing (NGS) | 597 gene panel. Samples were collected between local therapy and beginning of sorafenib-based systemic therapy (T1), then at 3 time points—8 weeks apart from the date of starting sorafenib (T2, T3, T4) | High cfDNA concentrations at T1 associated with metastasis (p = 0.012) CYP2B6 variant detection at T1–T2 associated with worse OS (p = 0.013) | High T2 has a trend towards significance for metastasis (p = 0.07) T1 and T2 concentration do not affect OS; however, high levels at T3 (p = 0.057) and T4 (p = 0.095) have trends. Early detection of BAX (for MVI, p = 0.014) and HFN1A (for liver cirrhosis, p = 0.032) confer worse clinicopathological features. |
Oh et al., 2019 (151) [94] Sorafenib | Whole genome sequencing Baseline | cfDNA level, VEGFA-to-EIF2C1 ratios I score for genomic instability. | Patients who failed sorafenib had significantly higher cfDNA levels (0.82 vs. 0.63 ng/μL; p = 0.006) and I-scores (3405 vs. 1024; p = 0.0017) than those achieving disease control. VEGFA: EIF2C1 ratio was not significantly associated with treatment outcomes. | 94% had previous therapy cfDNA-high group had a worse time to progression compared to the low group (2.2 vs. 4.1 months; HR = 1.71; p = 0.002) and OS (4.1 vs. 14.8 months; HR = 3.50; p < 0.0001) Genome instability-high group progressed earlier (2.2 vs. 4.1 months; HR = 2.09; p < 0.0001) and had worse OS (4.6 vs. 14.8 months; HR = 3.35; p < 0.0001). |
Fuji et al., 2021 (24) [30] Lenvatinib | NGS cfDNA at the baseline and 4 weeks later | Guardant 360 panel | Reduction MAFmean 4 weeks after treatment was useful in predicting PR and CR, but not for SD or PD | Baseline mutations and MAF change were not indicative of OS or PFS MAFmean change ≥ 0 vs. <0 HR 8.4, 95% CI = 2.3–31.2, p = 0.002) as an independent factor was associated with poor PFS. MAFmean reduction was more sensitive than AFP |
Fu et al., 2022 [79] (n = 258, lenvatinib + ICI) | PCR | High-risk genes APC, ARID1A, CDKN2A, FAT1, LRP1B, MAP3K1, PREX2, TERT, and TP53 | Preserved FAT1 or LRP1B variants without TP53 associated with poor PFS (HR = 17.1, p < 0.001). | Samples were collected post-surgery |
Nakatsuka et al., 2021 (100 pre and 87 post treatment) [93] Treatments received include TACE, RFA (day 2), TKIs (lenvatinib, 27; sorafenib, 6; regorafenib, 1), and 1 ramucirumab * | Targeted ultra-deep sequencing | 22,0009 coverage in a panel of 275 cancer-related genes | Greater increase in the post-treatment cfDNA levels (>66.5 ng/mL) associated with increased response (AUC of 0.807, sensitivity 60.0%, specificity 92.9%) | In particular, the detection rate increased significantly from 31 to 54% in the systemic-therapy-treated cases (p = 0.045). A higher baseline cfDNA (>70.7 ng/mL) was associated with poor survival (5.5 m vs. 13.7 m, p < 0.001) and is an independent factor for OS. In Lenvatinib responders, AMER1, MLL3, and NOTCH2 were mutated. |
Matsumae et al., 2022 (85) [95] (Atezolizumab/bevacizumab) | . | Custom-made panel for detecting mutations in 25 HCC-related cancer genes | Higher cfDNA levels have poor objective response rates (PR and CR, p = 0.03) and PFS (p = 0.021) TERT-positive patients have poor OS (p = 0.001), but no difference in PFS. | Higher plasma cfDNA (≥2.23 ng/µL), TERT positivity, high AFP (>400 ng/mL) were independent prognostic factors for OS OS–TERT+ and AFP− high < TERT+ or AFP− high < TERT− and AFP low (p < 0.001) |
Von Feleden et al., 2021 (51, TKI = 23; ICI = 38) [29] | Ultra-deep sequencing for 25 genes ddPCR for TERT | PI3K/mTOR pathway genes for patients on TKI WNT pathway genes for patients on ICI | Mutation-positive patients have lower PFS (2.1 vs. 3.7 months, p < 0.001) No effect of mutations in WNT pathway on ICI response | Serial testing–not clear if it helps in predicting response In some patients’ primary resistance, there is no change in mutations profiles, but there is increase in VA. In some patients with partial response, mutations have disappeared—not clear if they help in monitoring response |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2021, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Glantzounis, G.K.; Paliouras, A.; Stylianidi, M.C.; Milionis, H.; Tzimas, P.; Roukos, D.; Pentheroudakis, G.; Felekouras, E. The role of liver resection in the management of intermediate and advanced stage hepatocellular carcinoma. A systematic review. Eur. J. Surg. Oncol. 2018, 44, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-J.; Li, Y.-N.; Shu, C.; Yang, H.-Y.; Huang, Z.; Tao, R.; Chen, Y.-Y.; Chen, X.-P.; Xiao, W. Prognostic value of preoperative circulating tumor cells for hepatocellular carcinoma with portal vein tumor thrombosis: A propensity score analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 8981–8991. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, D.; Park, Y.H.; Yoon, J.; Kim, J.S. Long-term surgical outcomes in patients with hepatocellular carcinoma undergoing laparoscopic vs. open liver resection: A retrospective and propensity score-matched study. Asian J. Surg. 2021, 44, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Moazzam, Z.; Alaimo, L.; Endo, Y.; Lima, H.A.; Woldesenbet, S.; Rueda, B.O.; Yang, J.; Ratti, F.; Marques, H.P.; Cauchy, F.; et al. A Prognostic Model To Predict Survival After Recurrence Among Patients With Recurrent Hepatocellular Carcinoma. Ann. Surg. 2023. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Ricke, J.; Klumpen, H.J.; Amthauer, H.; Bargellini, I.; Bartenstein, P.; de Toni, E.N.; Gasbarrini, A.; Pech, M.; Peck-Radosavljevic, M.; Popovic, P.; et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J. Hepatol. 2019, 71, 1164–1174. [Google Scholar] [CrossRef]
- Chow, P.K.H.; Gandhi, M.; Tan, S.-B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Sher, A.; Abboud, G.; Schwartz, M.; Facciuto, M.; Tabrizian, P.; Knešaurek, K.; Fischman, A.; Patel, R.; Nowakowski, S.; et al. Radiation segmentectomy for curative intent of unresectable very early to early stage hepatocellular carcinoma (RASER): A single-centre, single-arm study. Lancet Gastroenterol. Hepatol. 2022, 7, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Dhondt, E.; Lambert, B.; Hermie, L.; Huyck, L.; Vanlangenhove, P.; Geerts, A.; Verhelst, X.; Aerts, M.; Vanlander, A.; Berrevoet, F.; et al. 90Y Radioembolization versus Drug-eluting Bead Chemoembolization for Unresectable Hepatocellular Carcinoma: Results from the TRACE Phase II Randomized Controlled Trial. Radiology 2022, 303, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Bargellini, I.; Scalise, P.; Boni, G.; Traino, C.A.; Bozzi, E.; Lorenzoni, G.; Crocetti, L.; Cioni, R. Yttrium-90 Radioembolization for Hepatocellular Carcinoma with Portal Vein Invasion: Validation of the Milan Prognostic Score. J. Vasc. Interv. Radiol. 2020, 31, 2028–2032. [Google Scholar] [CrossRef]
- Spreafico, C.; Sposito, C.; Vaiani, M.; Cascella, T.; Bhoori, S.; Morosi, C.; Lanocita, R.; Romito, R.; Chiesa, C.; Maccauro, M.; et al. Development of a prognostic score to predict response to Yttrium-90 radioembolization for hepatocellular carcinoma with portal vein invasion. J. Hepatol. 2018, 68, 724–732. [Google Scholar] [CrossRef]
- Kimura, T.; Fujiwara, T.; Kameoka, T.; Adachi, Y.; Kariya, S. The Current Role of Stereotactic Body Radiation Therapy (SBRT) in Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 4383. [Google Scholar] [CrossRef]
- Durand-Labrunie, J.; Baumann, A.-S.; Ayav, A.; Laurent, V.; Boleslawski, E.; Cattan, S.; Bogart, E.; Le Deley, M.-C.; Steen, V.; Lacornerie, T.; et al. Curative Irradiation Treatment of Hepatocellular Carcinoma: A Multicenter Phase 2 Trial. Int. J. Radiat. Oncol. 2020, 107, 116–125. [Google Scholar] [CrossRef]
- Jang, W.I.; Bae, S.H.; Kim, M.S.; Han, C.J.; Park, S.C.; Kim, S.B.; Cho, E.H.; Choi, C.W.; Kim, K.S.; Hwang, S.; et al. A phase 2 multicenter study of stereotactic body radiotherapy for hepatocellular carcinoma: Safety and efficacy. Cancer 2020, 126, 363–372. [Google Scholar] [CrossRef]
- Takeda, A.; Sanuki, N.; Tsurugai, Y.; Iwabuchi, S.; Matsunaga, K.; Ebinuma, H.; Imajo, K.; Aoki, Y.; Saito, H.; Kunieda, E. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer 2016, 122, 2041–2049. [Google Scholar] [CrossRef]
- Andolino, D.L.; Johnson, C.S.; Maluccio, M.; Kwo, P.; Tector, A.J.; Zook, J.; Johnstone, P.A.S.; Cardenes, H.R. Stereotactic Body Radiotherapy for Primary Hepatocellular Carcinoma. Int. J. Radiat. Oncol. 2011, 81, e447–e453. [Google Scholar] [CrossRef]
- Kang, J.-K.; Kim, M.-S.; Cho, C.K.; Yang, K.M.; Yoo, H.J.; Kim, J.H.; Bae, S.H.; Jung, D.H.; Kim, K.B.; Lee, D.H.; et al. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 2012, 118, 5424–5431. [Google Scholar] [CrossRef]
- Bujold, A.; Massey, C.A.; Kim, J.J.; Brierley, J.; Cho, C.; Wong, R.K.S.; Dinniwell, R.E.; Kassam, Z.; Ringash, J.; Cummings, B.; et al. Sequential Phase I and II Trials of Stereotactic Body Radiotherapy for Locally Advanced Hepatocellular Carcinoma. J. Clin. Oncol. 2013, 31, 1631–1639. [Google Scholar] [CrossRef]
- Lasley, F.D.; Mannina, E.M.; Johnson, C.S.; Perkins, S.M.; Althouse, S.; Maluccio, M.; Kwo, P.; Cárdenes, H. Treatment variables related to liver toxicity in patients with hepatocellular carcinoma, Child-Pugh class A and B enrolled in a phase 1-2 trial of stereotactic body radiation therapy. Pract. Radiat. Oncol. 2015, 5, e443–e449. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; Winter, K.A.; Knox, J.J.; Zhu, A.X.; Krishnan, S.; Guha, C.; Kachnic, L.A.; Gillin, M.; Hong, T.S.; Craig, T.; et al. NRG/RTOG 1112: Randomized phase III study of sorafenib vs. stereotactic body radiation therapy (SBRT) followed by sorafenib in hepatocellular carcinoma (HCC). J. Clin. Oncol. 2023, 41, 489. [Google Scholar] [CrossRef]
- Hanif, H.; Ali, M.J.; Susheela, A.T.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Lau, D.T. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef]
- Mendiratta-Lala, M.; Masch, W.; Shankar, P.R.; Hartman, H.E.; Davenport, M.S.; Schipper, M.J.; Maurino, C.; Cuneo, K.C.; Lawrence, T.S.; Owen, D. Magnetic Resonance Imaging Evaluation of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy: Long Term Imaging Follow-Up. Int. J. Radiat. Oncol. 2019, 103, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Z.H.; Wang, S.; Lang, J.H. Circulating Cell-Free DNA or Circulating Tumor DNA in the Management of Ovarian and Endometrial Cancer. OncoTargets Ther. 2019, 12, 11517–11530. [Google Scholar] [CrossRef] [PubMed]
- Von Felden, J.; Craig, A.J.; Garcia-Lezana, T.; Labgaa, I.; Haber, P.K.; D’Avola, D.; Asgharpour, A.; Dieterich, D.; Bonaccorso, A.; Torres-Martin, M.; et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 2021, 40, 140–151. [Google Scholar] [CrossRef]
- Fujii, Y.; Ono, A.; Hayes, C.N.; Aikata, H.; Yamauchi, M.; Uchikawa, S.; Kodama, K.; Teraoka, Y.; Fujino, H.; Nakahara, T.; et al. Identification and monitoring of mutations in circulating cell-free tumor DNA in hepatocellular carcinoma treated with lenvatinib. J. Exp. Clin. Cancer Res. 2021, 40, 215. [Google Scholar] [CrossRef]
- He, G.; Chen, Y.; Zhu, C.; Zhou, J.; Xie, X.; Fei, R.; Wei, L.; Zhao, H.; Chen, H.; Zhang, H. Application of plasma circulating cell-free DNA detection to the molecular diagnosis of hepatocellular carcinoma. Am. J. Transl. Res. 2019, 11, 1428–1445. [Google Scholar]
- Ikeda, S.; Tsigelny, I.F.; Skjevik, Å.A.; Kono, Y.; Mendler, M.; Kuo, A.; Sicklick, J.K.; Heestand, G.; Banks, K.C.; Talasaz, A.; et al. Next-Generation Sequencing of Circulating Tumor DNA Reveals Frequent Alterations in Advanced Hepatocellular Carcinoma. Oncologist 2018, 23, 586–593. [Google Scholar] [CrossRef]
- Ikeda, S.; Lim, J.S.; Kurzrock, R. Analysis of Tissue and Circulating Tumor DNA by Next-Generation Sequencing of Hepatocellular Carcinoma: Implications for Targeted TherapeuticsTissue and ctDNA NGS in HCC. Mol. Cancer Ther. 2018, 17, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Oversoe, S.K.; Clement, M.S.; Pedersen, M.H.; Weber, B.; Aagaard, N.K.; Villadsen, G.E.; Grønbæk, H.; Hamilton-Dutoit, S.J.; Sorensen, B.S.; Kelsen, J. TERT promoter mutated circulating tumor DNA as a biomarker for prognosis in hepatocellular carcinoma. Scand. J. Gastroenterol. 2020, 55, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Ako, S.; Nouso, K.; Kinugasa, H.; Matsushita, H.; Terasawa, H.; Adachi, T.; Wada, N.; Takeuchi, Y.; Mandai, M.; Onishi, H.; et al. Human Telomerase Reverse Transcriptase Gene Promoter Mutation in Serum of Patients with Hepatocellular Carcinoma. Oncology 2020, 98, 311–317. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Li, E.; Xiao, Z.; Lei, J.; Zhou, F.; Yin, X.; Hu, D.; Mao, Y.; Wu, L.; et al. TP53 mutation detected in circulating exosomal DNA is associated with prognosis of patients with hepatocellular carcinoma. Cancer Biol. Ther. 2022, 23, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.; Atkinson, S.R.; Pinato, D.J.; Knapp, S.; Ward, C.; Minisini, R.; Burlone, M.E.; Leutner, M.; Pirisi, M.; Büttner, R.; et al. Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur. J. Cancer 2019, 116, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Higuera, M.; Vargas-Accarino, E.; Torrens, M.; Gregori, J.; Salcedo, M.T.; Martínez-Campreciós, J.; Torres, G.; Bermúdez-Ramos, M.; Bilbao, I.; Guerrero-Murillo, M.; et al. Ultra Deep Sequencing of Circulating Cell-Free DNA as a Potential Tool for Hepatocellular Carcinoma Management. Cancers 2022, 14, 3875. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, C.-R.; Zhang, S.; Chen, J.; Yin, Z.-Y. Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma. Cancer Manag. Res. 2019, 11, 5745. [Google Scholar] [CrossRef]
- Ono, A.; Fujimoto, A.; Yamamoto, Y.; Akamatsu, S.; Hiraga, N.; Imamura, M.; Kawaoka, T.; Tsuge, M.; Abe, H.; Hayes, C.N.; et al. Circulating Tumor DNA Analysis for Liver Cancers and Its Usefulness as a Liquid Biopsy. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 516–534. [Google Scholar] [CrossRef]
- Huang, A.; Zhao, X.; Yang, X.R.; Li, F.Q.; Zhou, X.L.; Wu, K.; Zhang, X.; Sun, Q.M.; Cao, Y.; Zhu, H.M.; et al. Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J. Hepatol. 2017, 67, 293–301. [Google Scholar] [CrossRef]
- Zhu, G.Q.; Liu, W.R.; Tang, Z.; Qu, W.F.; Fang, Y.; Jiang, X.F.; Song, S.S.; Wang, H.; Tao, C.Y.; Zhou, P.Y.; et al. Serial circulating tumor DNA to predict early recurrence in patients with hepatocellular carcinoma: A prospective study. Mol. Oncol. 2022, 16, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Kaseb, A.O.; Sánchez, N.S.; Sen, S.; Kelley, R.K.; Tan, B.; Bocobo, A.G.; Lim, K.H.; Abdel-Wahab, R.; Uemura, M.; Pestana, R.C. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin. Cancer Res. 2019, 25, 6107–6118. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Eun, J.W.; Choi, J.-H.; Woo, H.G.; Cho, H.J.; Ahn, H.R.; Suh, C.W.; Baek, G.O.; Cho, S.W.; Cheong, J.Y. MLH1 single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma. Sci. Rep. 2020, 10, 17862. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.Y.; Di Costanzo, G.G.; Tosti, N.; Paradiso, V.; Coto-Llerena, M.; Roscigno, G.; Perrina, V.; Quintavalle, C.; Boldanova, T.; Wieland, S.; et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naïve hepatocellular carcinoma patients: A pilot study. Ann. Oncol. 2018, 29, 1286–1291. [Google Scholar] [CrossRef]
- Bara, A.W.; Braszewska, A.; Kwasniewska, J. DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. Plants 2021, 10, 1408. [Google Scholar] [CrossRef]
- Manne, A.; Woods, E.; Tsung, A.; Mittra, A. Biliary Tract Cancers: Treatment Updates and Future Directions in the Era of Precision Medicine and Immuno-Oncology. Front. Oncol. 2021, 11, 768009. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, Q.; He, Q.; Hu, H.; Weng, Z.; Su, Z.; Chen, S.; Peng, S.; Kuang, M.; Chen, Z.; et al. Identification of DNA methylation signatures for hepatocellular carcinoma detection and microvascular invasion prediction. Eur. J. Med. Res. 2022, 27, 276. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.; Portela, A.; Sayols, S.; Battiston, C.; Hoshida, Y.; Méndez-González, J.; Imbeaud, S.; Letouzé, E.; Hernandez-Gea, V.; Cornella, H.; et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015, 61, 1945–1956. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, C.; Zhao, J.; Wang, C.; Xu, Y.; Han, Z.; Jiang, G.; Guo, X.; Li, R.; Bu, X.; et al. Correlation of CpG island methylator phenotype with poor prognosis in hepatocellular carcinoma. Exp. Mol. Pathol. 2010, 88, 112–117. [Google Scholar] [CrossRef]
- Li, B.; Liu, W.; Wang, L.; Li, M.; Wang, J.; Huang, L.; Huang, P.; Yuan, Y. CpG Island Methylator Phenotype Associated with Tumor Recurrence in Tumor–Node–Metastasis Stage I Hepatocellular Carcinoma. Ann. Surg. Oncol. 2010, 17, 1917–1926. [Google Scholar] [CrossRef]
- Wu, L.-M.; Zhang, F.; Zhou, L.; Yang, Z.; Xie, H.-Y.; Zheng, S.-S. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation. BMC Cancer 2010, 10, 399. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, P.; Fan, H.; Liang, H.; Zhang, K.; Zhao, Y.; Guo, S.; Schrodi, S.J.; Fan, Y.; Zhang, D. Gene body hypomethylation of pyroptosis-related genes NLRP7, NLRP2, and NLRP3 facilitate non-invasive surveillance of hepatocellular carcinoma. Funct. Integr. Genom. 2023, 23, 198. [Google Scholar] [CrossRef] [PubMed]
- Choy, L.Y.L.; Peng, W.; Jiang, P.; Cheng, S.H.; Yu, S.C.Y.; Shang, H.; Olivia Tse, O.Y.; Wong, J.; Wong, V.W.S.; Wong, G.L.H.; et al. Single-Molecule Sequencing Enables Long Cell-Free DNA Detection and Direct Methylation Analysis for Cancer Patients. Clin. Chem. 2022, 68, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-H.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017, 16, 1155–1161. [Google Scholar] [CrossRef]
- Lin, N.; Lin, Y.; Xu, J.; Liu, D.; Li, D.; Meng, H.; Gallant, M.A.; Kubota, N.; Roy, D.; Li, J.S.; et al. A multi-analyte cell-free DNA-based blood test for early detection of hepatocellular carcinoma. Hepatol. Commun. 2022, 6, 1753–1763. [Google Scholar] [CrossRef]
- Huang, Z.H.; Hu, Y.; Hua, D.; Wu, Y.Y.; Song, M.X.; Cheng, Z.H. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp. Mol. Pathol. 2011, 91, 702–707. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, L.-b.; Tang, Y.-m.; Wang, J. Promoter hypermethylation of p16 gene and DAPK gene in sera from hepatocellular carcinoma (HCC) patients. Chin. J. Cancer Res. 2005, 17, 250–254. [Google Scholar] [CrossRef]
- Sun, F.-K.; Fan, Y.-C.; Zhao, J.; Zhang, F.; Gao, S.; Zhao, Z.-H.; Sun, Q.; Wang, K. Detection of TFPI2 methylation in the serum of hepatocellular carcinoma patients. Dig. Dis. Sci. 2013, 58, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, G.; Yu, H.; Qiu, X. Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol. Int. 2010, 4, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, M.; Iizuka, N.; Moribe, T.; Miura, T.; Kimura, N.; Tamatsukuri, S.; Ishitsuka, H.; Fujita, Y.; Hamamoto, Y.; Tsunedomi, R.; et al. Methylated cyclin D2 gene circulating in the blood as a prognosis predictor of hepatocellular carcinoma. Clin. Chim. Acta 2010, 411, 516–520. [Google Scholar] [CrossRef]
- Chang, H.; Yi, B.; Li, L.; Zhang, H.-Y.; Sun, F.; Dong, S.-Q.; Cao, Y. Methylation of tumor associated genes in tissue and plasma samples from liver disease patients. Exp. Mol. Pathol. 2008, 85, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fan, Y.C.; Mu, N.N.; Zhao, J.; Sun, F.K.; Zhao, Z.H.; Gao, S.; Wang, K. Exportin 4 gene expression and DNA promoter methylation status in chronic hepatitis B virus infection. J. Viral Hepat. 2014, 21, 241–250. [Google Scholar] [CrossRef]
- Iyer, P.; Zekri, A.-R.; Hung, C.-W.; Schiefelbein, E.; Ismail, K.; Hablas, A.; Seifeldin, I.A.; Soliman, A.S. Concordance of DNA methylation pattern in plasma and tumor DNA of Egyptian hepatocellular carcinoma patients. Exp. Mol. Pathol. 2010, 88, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zheng, H.; Li, Y.; Li, Y.; Xiao, Y.; Zheng, J.; Zhu, X.; Xu, H.; He, Z.; Zhang, Q.; et al. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA. Clin. Epigenetics 2023, 15, 2. [Google Scholar] [CrossRef]
- Kumar, S.; Nadda, N.; Paul, S.; Gamanagatti, S.; Dash, N.R.; Vanamail, P.; Saraya, A.; Shalimar; Nayak, B. Evaluation of the cell-free DNA integrity index as a liquid biopsy marker to differentiate hepatocellular carcinoma from chronic liver disease. Front. Mol. Biosci. 2022, 9, 1024193. [Google Scholar] [CrossRef]
- Trung, N.T.; Hoan, N.X.; Trung, P.Q.; Binh, M.T.; Van Tong, H.; Toan, N.L.; Bang, M.H.; Song, L.H. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma. Sci. Rep. 2020, 10, 8181. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Xu, Z.; Kong, F.; Huang, X.; Xiao, Y.; Zhou, W.; Ye, S.; Ye, Q. Circulating tumour cell combined with DNA methylation for early detection of hepatocellular carcinoma. Front. Genet. 2022, 13, 1065693. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Fu, H.; Dillehay Mckillip, K.L.; Pinney, S.M.; Liu, Y. CRAG: De novo characterization of cell-free DNA fragmentation hotspots in plasma whole-genome sequencing. Genome Med. 2022, 14, 138. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Chen, H.; Huang, P.; Li, C.-H.; Dong, Z.-H.; Hou, Y.-L. Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin. Investig. Med. 2011, 34, 238. [Google Scholar] [CrossRef]
- Telli, P.; Ozturk, N.B.; Hakan, M.T.; Cavus, B.; Ormeci, A.C.; Yakut, A.; Senkal, V.; Imanov, Z.; Poyanli, A.; Isik, E.G.; et al. Cell-free methylation of RASSF1 and CDKN2AIP genes in the diagnosis of hepatocellular carcinoma associated with hepatitis B virus cirrhosis. Hepatol. Forum 2022, 3, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-Y.; Fan, Y.-C.; Mu, N.-N.; Gao, S.; Li, F.; Ji, X.-F.; Dou, C.-Y.; Wang, K. Aberrant DNA Methylation of G-protein-coupled Bile Acid Receptor Gpbar1 (TGR5) is a Potential Biomarker for Hepatitis B Virus Associated Hepatocellular Carcinoma. Int. J. Med. Sci. 2014, 11, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.A.; Swify, E.M.; Amin, N.F.; Soliman, M.M.; Tag-Eldin, L.M.; Elsherbiny, N.M. Is serum level of methylated RASSF1A valuable in diagnosing hepatocellular carcinoma in patients with chronic viral hepatitis C? Arab. J. Gastroenterol. 2012, 13, 111–115. [Google Scholar] [CrossRef]
- Li, C.L.; Ho, M.C.; Lin, Y.Y.; Tzeng, S.T.; Chen, Y.J.; Pai, H.Y.; Wang, Y.C.; Chen, C.L.; Lee, Y.H.; Chen, D.S.; et al. Cell-Free Virus-Host Chimera DNA From Hepatitis B Virus Integration Sites as a Circulating Biomarker of Hepatocellular Cancer. Hepatology 2020, 72, 2063–2076. [Google Scholar] [CrossRef]
- Tokuhisa, Y.; Iizuka, N.; Sakaida, I.; Moribe, T.; Fujita, N.; Miura, T.; Tamatsukuri, S.; Ishitsuka, H.; Uchida, K.; Terai, S.; et al. Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br. J. Cancer 2007, 97, 1399–1403. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, G.; Zeng, Y.; Dong, X.; Li, Z.; Huang, Y.; Xin, F.; Qiu, L.; Xu, H.; Zhang, W.; et al. Comprehensive Liquid Profiling of Circulating Tumor DNA and Protein Biomarkers in Long-Term Follow-Up Patients with Hepatocellular Carcinoma. Clin. Cancer Res. 2019, 25, 5284–5294. [Google Scholar] [CrossRef]
- Lyu, X.; Tsui, Y.M.; Ho, D.W.; Ng, I.O. Liquid Biopsy Using Cell-Free or Circulating Tumor DNA in the Management of Hepatocellular Carcinoma. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Ren, N. Circulating DNA level is negatively associated with the long-term survival of hepatocellular carcinoma patients. World J. Gastroenterol. 2006, 12, 3911. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Z.; Hu, Z.; Yang, Z.; Pan, Y.; Chen, J.; Wang, J.; Hu, D.; Zhou, Z.; Xu, L.; et al. Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol. Int. 2022, 16, 868–878. [Google Scholar] [CrossRef]
- Liao, W.; Yang, H.; Xu, H.; Wang, Y.; Ge, P.; Ren, J.; Xu, W.; Lu, X.; Sang, X.; Zhong, S.; et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing. Oncotarget 2016, 7, 40481–40490. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Fan, Q.; Yuan, M.; Wang, D.; Xiao, L.; Long, G.; Chen, R.; Fang, T.; Li, Z.; Zhou, L. Prognostic Value of Postoperative Circulating Tumor DNA in Patients With Early- and Intermediate-Stage Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 834992. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Guan, Y.; Xu, Y.; Han, Y.; Wu, C.; Bao, C.; Zhou, B.; Wang, H.; Zhang, M.; Liu, W. The diagnostic and prognostic usage of circulating tumor DNA in operable hepatocellular carcinoma. Am. J. Transl. Res. 2019, 11, 6462. [Google Scholar]
- Zhou, L.; Xu, Y.; Wang, D.; Ye, K.; Xiao, L.; Long, G.; Chen, R.; Xia, X. Perioperative circulating tumor DNA analysis to predict patient prognosis in liver cancer. J. Clin. Oncol. 2020, 38, 4593. [Google Scholar] [CrossRef]
- Li, F.; Qiao, C.-Y.; Gao, S.; Fan, Y.-C.; Chen, L.-Y.; Wang, K. Circulating cell-free DNA of methylated insulin-like growth factor-binding protein 7 predicts a poor prognosis in hepatitis B virus-associated hepatocellular carcinoma after hepatectomy. Free Radic. Res. 2018, 52, 455–464. [Google Scholar] [CrossRef]
- Jiao, J.; Watt, G.P.; Stevenson, H.L.; Calderone, T.L.; Fisher-Hoch, S.P.; Ye, Y.; Wu, X.; Vierling, J.M.; Beretta, L. Telomerase reverse transcriptase mutations in plasma DNA in patients with hepatocellular carcinoma or cirrhosis: Prevalence and risk factors. Hepatol. Commun. 2018, 2, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Youssef, S.S.; El-Araby, R.E.; Abbas, E.A.E.; Hassany, M.; Elbaz, T. Prognostic and survival impact of BCL9 and RPS6KB1 copy number variation detected from circulating free DNA in hepatocellular carcinoma. Expert Rev. Mol. Diagn. 2023, 23, 267–278. [Google Scholar] [CrossRef]
- Li, F.; Fan, Y.C.; Gao, S.; Sun, F.K.; Yang, Y.; Wang, K. Methylation of serum insulin-like growth factor-binding protein 7 promoter in hepatitis B virus-associated hepatocellular carcinoma. Genes Chromosomes. Cancer 2014, 53, 90–97. [Google Scholar] [CrossRef]
- Tangkijvanich, P.; Hourpai, N.; Rattanatanyong, P.; Wisedopas, N.; Mahachai, V.; Mutirangura, A. Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin. Chim. Acta 2007, 379, 127–133. [Google Scholar] [CrossRef]
- Sefrioui, D.; Verdier, V.; Savoye-Collet, C.; Beaussire, L.; Ghomadi, S.; Gangloff, A.; Goria, O.; Riachi, G.; Montialoux, H.; Schwarz, L.; et al. CirculatingDNA changes are predictive of disease progression after transarterial chemoembolization. Int. J. Cancer 2022, 150, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Hirai, M.; Kinugasa, H.; Nouso, K.; Yamamoto, S.; Terasawa, H.; Onishi, Y.; Oyama, A.; Adachi, T.; Wada, N.; Sakata, M.; et al. Prediction of the prognosis of advanced hepatocellular carcinoma by TERT promoter mutations in circulating tumor DNA. J. Gastroenterol. Hepatol. 2021, 36, 1118–1125. [Google Scholar] [CrossRef]
- Park, S.; Lee, E.J.; Rim, C.H.; Seong, J. Plasma cell-free DNA as a predictive marker after radiotherapy for hepatocellular carcinoma. Yonsei Med. J. 2018, 59, 470–479. [Google Scholar] [CrossRef]
- Alunni-Fabbroni, M.; Rönsch, K.; Huber, T.; Cyran, C.C.; Seidensticker, M.; Mayerle, J.; Pech, M.; Basu, B.; Verslype, C.; Benckert, J.; et al. Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: A translational exploratory study from the SORAMIC trial. J. Transl. Med. 2019, 17, 328. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Nakagawa, H.; Hayata, Y.; Wake, T.; Yamada, T.; Nishibatake Kinoshita, M.; Nakagomi, R.; Sato, M.; Minami, T.; Uchino, K.; et al. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma. J. Gastroenterol. 2021, 56, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.R.; Kong, S.-Y.; Im, H.-S.; Kim, H.J.; Kim, M.K.; Yoon, K.-A.; Cho, E.-H.; Jang, J.-H.; Lee, J.; Kang, J.; et al. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with Sorafenib. BMC Cancer 2019, 19, 292. [Google Scholar] [CrossRef] [PubMed]
- Matsumae, T.; Kodama, T.; Myojin, Y.; Maesaka, K.; Sakamori, R.; Takuwa, A.; Oku, K.; Motooka, D.; Sawai, Y.; Oshita, M.; et al. Circulating Cell-Free DNA Profiling Predicts the Therapeutic Outcome in Advanced Hepatocellular Carcinoma Patients Treated with Combination Immunotherapy. Cancers 2022, 14, 3367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeepalyam, S.; Sheel, A.; Ejaz, A.; Miller, E.; Manne, A. Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time? Int. J. Mol. Sci. 2023, 24, 14231. https://doi.org/10.3390/ijms241814231
Jeepalyam S, Sheel A, Ejaz A, Miller E, Manne A. Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time? International Journal of Molecular Sciences. 2023; 24(18):14231. https://doi.org/10.3390/ijms241814231
Chicago/Turabian StyleJeepalyam, Sravan, Ankur Sheel, Aslam Ejaz, Eric Miller, and Ashish Manne. 2023. "Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time?" International Journal of Molecular Sciences 24, no. 18: 14231. https://doi.org/10.3390/ijms241814231
APA StyleJeepalyam, S., Sheel, A., Ejaz, A., Miller, E., & Manne, A. (2023). Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time? International Journal of Molecular Sciences, 24(18), 14231. https://doi.org/10.3390/ijms241814231